| /* |
| * SLOB Allocator: Simple List Of Blocks |
| * |
| * Matt Mackall <mpm@selenic.com> 12/30/03 |
| * |
| * How SLOB works: |
| * |
| * The core of SLOB is a traditional K&R style heap allocator, with |
| * support for returning aligned objects. The granularity of this |
| * allocator is 8 bytes on x86, though it's perhaps possible to reduce |
| * this to 4 if it's deemed worth the effort. The slob heap is a |
| * singly-linked list of pages from __get_free_page, grown on demand |
| * and allocation from the heap is currently first-fit. |
| * |
| * Above this is an implementation of kmalloc/kfree. Blocks returned |
| * from kmalloc are 8-byte aligned and prepended with a 8-byte header. |
| * If kmalloc is asked for objects of PAGE_SIZE or larger, it calls |
| * __get_free_pages directly so that it can return page-aligned blocks |
| * and keeps a linked list of such pages and their orders. These |
| * objects are detected in kfree() by their page alignment. |
| * |
| * SLAB is emulated on top of SLOB by simply calling constructors and |
| * destructors for every SLAB allocation. Objects are returned with |
| * the 8-byte alignment unless the SLAB_HWCACHE_ALIGN flag is |
| * set, in which case the low-level allocator will fragment blocks to |
| * create the proper alignment. Again, objects of page-size or greater |
| * are allocated by calling __get_free_pages. As SLAB objects know |
| * their size, no separate size bookkeeping is necessary and there is |
| * essentially no allocation space overhead. |
| */ |
| |
| #include <linux/slab.h> |
| #include <linux/mm.h> |
| #include <linux/cache.h> |
| #include <linux/init.h> |
| #include <linux/module.h> |
| #include <linux/timer.h> |
| #include <linux/rcupdate.h> |
| |
| struct slob_block { |
| int units; |
| struct slob_block *next; |
| }; |
| typedef struct slob_block slob_t; |
| |
| #define SLOB_UNIT sizeof(slob_t) |
| #define SLOB_UNITS(size) (((size) + SLOB_UNIT - 1)/SLOB_UNIT) |
| #define SLOB_ALIGN L1_CACHE_BYTES |
| |
| struct bigblock { |
| int order; |
| void *pages; |
| struct bigblock *next; |
| }; |
| typedef struct bigblock bigblock_t; |
| |
| /* |
| * struct slob_rcu is inserted at the tail of allocated slob blocks, which |
| * were created with a SLAB_DESTROY_BY_RCU slab. slob_rcu is used to free |
| * the block using call_rcu. |
| */ |
| struct slob_rcu { |
| struct rcu_head head; |
| int size; |
| }; |
| |
| static slob_t arena = { .next = &arena, .units = 1 }; |
| static slob_t *slobfree = &arena; |
| static bigblock_t *bigblocks; |
| static DEFINE_SPINLOCK(slob_lock); |
| static DEFINE_SPINLOCK(block_lock); |
| |
| static void slob_free(void *b, int size); |
| static void slob_timer_cbk(void); |
| |
| |
| static void *slob_alloc(size_t size, gfp_t gfp, int align) |
| { |
| slob_t *prev, *cur, *aligned = 0; |
| int delta = 0, units = SLOB_UNITS(size); |
| unsigned long flags; |
| |
| spin_lock_irqsave(&slob_lock, flags); |
| prev = slobfree; |
| for (cur = prev->next; ; prev = cur, cur = cur->next) { |
| if (align) { |
| aligned = (slob_t *)ALIGN((unsigned long)cur, align); |
| delta = aligned - cur; |
| } |
| if (cur->units >= units + delta) { /* room enough? */ |
| if (delta) { /* need to fragment head to align? */ |
| aligned->units = cur->units - delta; |
| aligned->next = cur->next; |
| cur->next = aligned; |
| cur->units = delta; |
| prev = cur; |
| cur = aligned; |
| } |
| |
| if (cur->units == units) /* exact fit? */ |
| prev->next = cur->next; /* unlink */ |
| else { /* fragment */ |
| prev->next = cur + units; |
| prev->next->units = cur->units - units; |
| prev->next->next = cur->next; |
| cur->units = units; |
| } |
| |
| slobfree = prev; |
| spin_unlock_irqrestore(&slob_lock, flags); |
| return cur; |
| } |
| if (cur == slobfree) { |
| spin_unlock_irqrestore(&slob_lock, flags); |
| |
| if (size == PAGE_SIZE) /* trying to shrink arena? */ |
| return 0; |
| |
| cur = (slob_t *)__get_free_page(gfp); |
| if (!cur) |
| return 0; |
| |
| slob_free(cur, PAGE_SIZE); |
| spin_lock_irqsave(&slob_lock, flags); |
| cur = slobfree; |
| } |
| } |
| } |
| |
| static void slob_free(void *block, int size) |
| { |
| slob_t *cur, *b = (slob_t *)block; |
| unsigned long flags; |
| |
| if (!block) |
| return; |
| |
| if (size) |
| b->units = SLOB_UNITS(size); |
| |
| /* Find reinsertion point */ |
| spin_lock_irqsave(&slob_lock, flags); |
| for (cur = slobfree; !(b > cur && b < cur->next); cur = cur->next) |
| if (cur >= cur->next && (b > cur || b < cur->next)) |
| break; |
| |
| if (b + b->units == cur->next) { |
| b->units += cur->next->units; |
| b->next = cur->next->next; |
| } else |
| b->next = cur->next; |
| |
| if (cur + cur->units == b) { |
| cur->units += b->units; |
| cur->next = b->next; |
| } else |
| cur->next = b; |
| |
| slobfree = cur; |
| |
| spin_unlock_irqrestore(&slob_lock, flags); |
| } |
| |
| void *__kmalloc(size_t size, gfp_t gfp) |
| { |
| slob_t *m; |
| bigblock_t *bb; |
| unsigned long flags; |
| |
| if (size < PAGE_SIZE - SLOB_UNIT) { |
| m = slob_alloc(size + SLOB_UNIT, gfp, 0); |
| return m ? (void *)(m + 1) : 0; |
| } |
| |
| bb = slob_alloc(sizeof(bigblock_t), gfp, 0); |
| if (!bb) |
| return 0; |
| |
| bb->order = get_order(size); |
| bb->pages = (void *)__get_free_pages(gfp, bb->order); |
| |
| if (bb->pages) { |
| spin_lock_irqsave(&block_lock, flags); |
| bb->next = bigblocks; |
| bigblocks = bb; |
| spin_unlock_irqrestore(&block_lock, flags); |
| return bb->pages; |
| } |
| |
| slob_free(bb, sizeof(bigblock_t)); |
| return 0; |
| } |
| EXPORT_SYMBOL(__kmalloc); |
| |
| /** |
| * krealloc - reallocate memory. The contents will remain unchanged. |
| * |
| * @p: object to reallocate memory for. |
| * @new_size: how many bytes of memory are required. |
| * @flags: the type of memory to allocate. |
| * |
| * The contents of the object pointed to are preserved up to the |
| * lesser of the new and old sizes. If @p is %NULL, krealloc() |
| * behaves exactly like kmalloc(). If @size is 0 and @p is not a |
| * %NULL pointer, the object pointed to is freed. |
| */ |
| void *krealloc(const void *p, size_t new_size, gfp_t flags) |
| { |
| void *ret; |
| |
| if (unlikely(!p)) |
| return kmalloc_track_caller(new_size, flags); |
| |
| if (unlikely(!new_size)) { |
| kfree(p); |
| return NULL; |
| } |
| |
| ret = kmalloc_track_caller(new_size, flags); |
| if (ret) { |
| memcpy(ret, p, min(new_size, ksize(p))); |
| kfree(p); |
| } |
| return ret; |
| } |
| EXPORT_SYMBOL(krealloc); |
| |
| void kfree(const void *block) |
| { |
| bigblock_t *bb, **last = &bigblocks; |
| unsigned long flags; |
| |
| if (!block) |
| return; |
| |
| if (!((unsigned long)block & (PAGE_SIZE-1))) { |
| /* might be on the big block list */ |
| spin_lock_irqsave(&block_lock, flags); |
| for (bb = bigblocks; bb; last = &bb->next, bb = bb->next) { |
| if (bb->pages == block) { |
| *last = bb->next; |
| spin_unlock_irqrestore(&block_lock, flags); |
| free_pages((unsigned long)block, bb->order); |
| slob_free(bb, sizeof(bigblock_t)); |
| return; |
| } |
| } |
| spin_unlock_irqrestore(&block_lock, flags); |
| } |
| |
| slob_free((slob_t *)block - 1, 0); |
| return; |
| } |
| |
| EXPORT_SYMBOL(kfree); |
| |
| size_t ksize(const void *block) |
| { |
| bigblock_t *bb; |
| unsigned long flags; |
| |
| if (!block) |
| return 0; |
| |
| if (!((unsigned long)block & (PAGE_SIZE-1))) { |
| spin_lock_irqsave(&block_lock, flags); |
| for (bb = bigblocks; bb; bb = bb->next) |
| if (bb->pages == block) { |
| spin_unlock_irqrestore(&slob_lock, flags); |
| return PAGE_SIZE << bb->order; |
| } |
| spin_unlock_irqrestore(&block_lock, flags); |
| } |
| |
| return ((slob_t *)block - 1)->units * SLOB_UNIT; |
| } |
| |
| struct kmem_cache { |
| unsigned int size, align; |
| unsigned long flags; |
| const char *name; |
| void (*ctor)(void *, struct kmem_cache *, unsigned long); |
| }; |
| |
| struct kmem_cache *kmem_cache_create(const char *name, size_t size, |
| size_t align, unsigned long flags, |
| void (*ctor)(void*, struct kmem_cache *, unsigned long), |
| void (*dtor)(void*, struct kmem_cache *, unsigned long)) |
| { |
| struct kmem_cache *c; |
| |
| c = slob_alloc(sizeof(struct kmem_cache), flags, 0); |
| |
| if (c) { |
| c->name = name; |
| c->size = size; |
| if (flags & SLAB_DESTROY_BY_RCU) { |
| /* leave room for rcu footer at the end of object */ |
| c->size += sizeof(struct slob_rcu); |
| } |
| c->flags = flags; |
| c->ctor = ctor; |
| /* ignore alignment unless it's forced */ |
| c->align = (flags & SLAB_HWCACHE_ALIGN) ? SLOB_ALIGN : 0; |
| if (c->align < align) |
| c->align = align; |
| } else if (flags & SLAB_PANIC) |
| panic("Cannot create slab cache %s\n", name); |
| |
| return c; |
| } |
| EXPORT_SYMBOL(kmem_cache_create); |
| |
| void kmem_cache_destroy(struct kmem_cache *c) |
| { |
| slob_free(c, sizeof(struct kmem_cache)); |
| } |
| EXPORT_SYMBOL(kmem_cache_destroy); |
| |
| void *kmem_cache_alloc(struct kmem_cache *c, gfp_t flags) |
| { |
| void *b; |
| |
| if (c->size < PAGE_SIZE) |
| b = slob_alloc(c->size, flags, c->align); |
| else |
| b = (void *)__get_free_pages(flags, get_order(c->size)); |
| |
| if (c->ctor) |
| c->ctor(b, c, SLAB_CTOR_CONSTRUCTOR); |
| |
| return b; |
| } |
| EXPORT_SYMBOL(kmem_cache_alloc); |
| |
| void *kmem_cache_zalloc(struct kmem_cache *c, gfp_t flags) |
| { |
| void *ret = kmem_cache_alloc(c, flags); |
| if (ret) |
| memset(ret, 0, c->size); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL(kmem_cache_zalloc); |
| |
| static void __kmem_cache_free(void *b, int size) |
| { |
| if (size < PAGE_SIZE) |
| slob_free(b, size); |
| else |
| free_pages((unsigned long)b, get_order(size)); |
| } |
| |
| static void kmem_rcu_free(struct rcu_head *head) |
| { |
| struct slob_rcu *slob_rcu = (struct slob_rcu *)head; |
| void *b = (void *)slob_rcu - (slob_rcu->size - sizeof(struct slob_rcu)); |
| |
| __kmem_cache_free(b, slob_rcu->size); |
| } |
| |
| void kmem_cache_free(struct kmem_cache *c, void *b) |
| { |
| if (unlikely(c->flags & SLAB_DESTROY_BY_RCU)) { |
| struct slob_rcu *slob_rcu; |
| slob_rcu = b + (c->size - sizeof(struct slob_rcu)); |
| INIT_RCU_HEAD(&slob_rcu->head); |
| slob_rcu->size = c->size; |
| call_rcu(&slob_rcu->head, kmem_rcu_free); |
| } else { |
| __kmem_cache_free(b, c->size); |
| } |
| } |
| EXPORT_SYMBOL(kmem_cache_free); |
| |
| unsigned int kmem_cache_size(struct kmem_cache *c) |
| { |
| return c->size; |
| } |
| EXPORT_SYMBOL(kmem_cache_size); |
| |
| const char *kmem_cache_name(struct kmem_cache *c) |
| { |
| return c->name; |
| } |
| EXPORT_SYMBOL(kmem_cache_name); |
| |
| static struct timer_list slob_timer = TIMER_INITIALIZER( |
| (void (*)(unsigned long))slob_timer_cbk, 0, 0); |
| |
| int kmem_cache_shrink(struct kmem_cache *d) |
| { |
| return 0; |
| } |
| EXPORT_SYMBOL(kmem_cache_shrink); |
| |
| int kmem_ptr_validate(struct kmem_cache *a, const void *b) |
| { |
| return 0; |
| } |
| |
| void __init kmem_cache_init(void) |
| { |
| slob_timer_cbk(); |
| } |
| |
| static void slob_timer_cbk(void) |
| { |
| void *p = slob_alloc(PAGE_SIZE, 0, PAGE_SIZE-1); |
| |
| if (p) |
| free_page((unsigned long)p); |
| |
| mod_timer(&slob_timer, jiffies + HZ); |
| } |