| /* |
| * In-Memory Collection (IMC) Performance Monitor counter support. |
| * |
| * Copyright (C) 2017 Madhavan Srinivasan, IBM Corporation. |
| * (C) 2017 Anju T Sudhakar, IBM Corporation. |
| * (C) 2017 Hemant K Shaw, IBM Corporation. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or later version. |
| */ |
| #include <linux/perf_event.h> |
| #include <linux/slab.h> |
| #include <asm/opal.h> |
| #include <asm/imc-pmu.h> |
| #include <asm/cputhreads.h> |
| #include <asm/smp.h> |
| #include <linux/string.h> |
| |
| /* Nest IMC data structures and variables */ |
| |
| /* |
| * Used to avoid races in counting the nest-pmu units during hotplug |
| * register and unregister |
| */ |
| static DEFINE_MUTEX(nest_init_lock); |
| static DEFINE_PER_CPU(struct imc_pmu_ref *, local_nest_imc_refc); |
| static struct imc_pmu **per_nest_pmu_arr; |
| static cpumask_t nest_imc_cpumask; |
| struct imc_pmu_ref *nest_imc_refc; |
| static int nest_pmus; |
| |
| /* Core IMC data structures and variables */ |
| |
| static cpumask_t core_imc_cpumask; |
| struct imc_pmu_ref *core_imc_refc; |
| static struct imc_pmu *core_imc_pmu; |
| |
| /* Thread IMC data structures and variables */ |
| |
| static DEFINE_PER_CPU(u64 *, thread_imc_mem); |
| static struct imc_pmu *thread_imc_pmu; |
| static int thread_imc_mem_size; |
| |
| struct imc_pmu *imc_event_to_pmu(struct perf_event *event) |
| { |
| return container_of(event->pmu, struct imc_pmu, pmu); |
| } |
| |
| PMU_FORMAT_ATTR(event, "config:0-40"); |
| PMU_FORMAT_ATTR(offset, "config:0-31"); |
| PMU_FORMAT_ATTR(rvalue, "config:32"); |
| PMU_FORMAT_ATTR(mode, "config:33-40"); |
| static struct attribute *imc_format_attrs[] = { |
| &format_attr_event.attr, |
| &format_attr_offset.attr, |
| &format_attr_rvalue.attr, |
| &format_attr_mode.attr, |
| NULL, |
| }; |
| |
| static struct attribute_group imc_format_group = { |
| .name = "format", |
| .attrs = imc_format_attrs, |
| }; |
| |
| /* Get the cpumask printed to a buffer "buf" */ |
| static ssize_t imc_pmu_cpumask_get_attr(struct device *dev, |
| struct device_attribute *attr, |
| char *buf) |
| { |
| struct pmu *pmu = dev_get_drvdata(dev); |
| struct imc_pmu *imc_pmu = container_of(pmu, struct imc_pmu, pmu); |
| cpumask_t *active_mask; |
| |
| switch(imc_pmu->domain){ |
| case IMC_DOMAIN_NEST: |
| active_mask = &nest_imc_cpumask; |
| break; |
| case IMC_DOMAIN_CORE: |
| active_mask = &core_imc_cpumask; |
| break; |
| default: |
| return 0; |
| } |
| |
| return cpumap_print_to_pagebuf(true, buf, active_mask); |
| } |
| |
| static DEVICE_ATTR(cpumask, S_IRUGO, imc_pmu_cpumask_get_attr, NULL); |
| |
| static struct attribute *imc_pmu_cpumask_attrs[] = { |
| &dev_attr_cpumask.attr, |
| NULL, |
| }; |
| |
| static struct attribute_group imc_pmu_cpumask_attr_group = { |
| .attrs = imc_pmu_cpumask_attrs, |
| }; |
| |
| /* device_str_attr_create : Populate event "name" and string "str" in attribute */ |
| static struct attribute *device_str_attr_create(const char *name, const char *str) |
| { |
| struct perf_pmu_events_attr *attr; |
| |
| attr = kzalloc(sizeof(*attr), GFP_KERNEL); |
| if (!attr) |
| return NULL; |
| sysfs_attr_init(&attr->attr.attr); |
| |
| attr->event_str = str; |
| attr->attr.attr.name = name; |
| attr->attr.attr.mode = 0444; |
| attr->attr.show = perf_event_sysfs_show; |
| |
| return &attr->attr.attr; |
| } |
| |
| struct imc_events *imc_parse_event(struct device_node *np, const char *scale, |
| const char *unit, const char *prefix, u32 base) |
| { |
| struct imc_events *event; |
| const char *s; |
| u32 reg; |
| |
| event = kzalloc(sizeof(struct imc_events), GFP_KERNEL); |
| if (!event) |
| return NULL; |
| |
| if (of_property_read_u32(np, "reg", ®)) |
| goto error; |
| /* Add the base_reg value to the "reg" */ |
| event->value = base + reg; |
| |
| if (of_property_read_string(np, "event-name", &s)) |
| goto error; |
| |
| event->name = kasprintf(GFP_KERNEL, "%s%s", prefix, s); |
| if (!event->name) |
| goto error; |
| |
| if (of_property_read_string(np, "scale", &s)) |
| s = scale; |
| |
| if (s) { |
| event->scale = kstrdup(s, GFP_KERNEL); |
| if (!event->scale) |
| goto error; |
| } |
| |
| if (of_property_read_string(np, "unit", &s)) |
| s = unit; |
| |
| if (s) { |
| event->unit = kstrdup(s, GFP_KERNEL); |
| if (!event->unit) |
| goto error; |
| } |
| |
| return event; |
| error: |
| kfree(event->unit); |
| kfree(event->scale); |
| kfree(event->name); |
| kfree(event); |
| |
| return NULL; |
| } |
| |
| /* |
| * update_events_in_group: Update the "events" information in an attr_group |
| * and assign the attr_group to the pmu "pmu". |
| */ |
| static int update_events_in_group(struct device_node *node, struct imc_pmu *pmu) |
| { |
| struct attribute_group *attr_group; |
| struct attribute **attrs, *dev_str; |
| struct device_node *np, *pmu_events; |
| struct imc_events *ev; |
| u32 handle, base_reg; |
| int i=0, j=0, ct; |
| const char *prefix, *g_scale, *g_unit; |
| const char *ev_val_str, *ev_scale_str, *ev_unit_str; |
| |
| if (!of_property_read_u32(node, "events", &handle)) |
| pmu_events = of_find_node_by_phandle(handle); |
| else |
| return 0; |
| |
| /* Did not find any node with a given phandle */ |
| if (!pmu_events) |
| return 0; |
| |
| /* Get a count of number of child nodes */ |
| ct = of_get_child_count(pmu_events); |
| |
| /* Get the event prefix */ |
| if (of_property_read_string(node, "events-prefix", &prefix)) |
| return 0; |
| |
| /* Get a global unit and scale data if available */ |
| if (of_property_read_string(node, "scale", &g_scale)) |
| g_scale = NULL; |
| |
| if (of_property_read_string(node, "unit", &g_unit)) |
| g_unit = NULL; |
| |
| /* "reg" property gives out the base offset of the counters data */ |
| of_property_read_u32(node, "reg", &base_reg); |
| |
| /* Allocate memory for the events */ |
| pmu->events = kcalloc(ct, sizeof(struct imc_events), GFP_KERNEL); |
| if (!pmu->events) |
| return -ENOMEM; |
| |
| ct = 0; |
| /* Parse the events and update the struct */ |
| for_each_child_of_node(pmu_events, np) { |
| ev = imc_parse_event(np, g_scale, g_unit, prefix, base_reg); |
| if (ev) |
| pmu->events[ct++] = ev; |
| } |
| |
| /* Allocate memory for attribute group */ |
| attr_group = kzalloc(sizeof(*attr_group), GFP_KERNEL); |
| if (!attr_group) |
| return -ENOMEM; |
| |
| /* |
| * Allocate memory for attributes. |
| * Since we have count of events for this pmu, we also allocate |
| * memory for the scale and unit attribute for now. |
| * "ct" has the total event structs added from the events-parent node. |
| * So allocate three times the "ct" (this includes event, event_scale and |
| * event_unit). |
| */ |
| attrs = kcalloc(((ct * 3) + 1), sizeof(struct attribute *), GFP_KERNEL); |
| if (!attrs) { |
| kfree(attr_group); |
| kfree(pmu->events); |
| return -ENOMEM; |
| } |
| |
| attr_group->name = "events"; |
| attr_group->attrs = attrs; |
| do { |
| ev_val_str = kasprintf(GFP_KERNEL, "event=0x%x", pmu->events[i]->value); |
| dev_str = device_str_attr_create(pmu->events[i]->name, ev_val_str); |
| if (!dev_str) |
| continue; |
| |
| attrs[j++] = dev_str; |
| if (pmu->events[i]->scale) { |
| ev_scale_str = kasprintf(GFP_KERNEL, "%s.scale",pmu->events[i]->name); |
| dev_str = device_str_attr_create(ev_scale_str, pmu->events[i]->scale); |
| if (!dev_str) |
| continue; |
| |
| attrs[j++] = dev_str; |
| } |
| |
| if (pmu->events[i]->unit) { |
| ev_unit_str = kasprintf(GFP_KERNEL, "%s.unit",pmu->events[i]->name); |
| dev_str = device_str_attr_create(ev_unit_str, pmu->events[i]->unit); |
| if (!dev_str) |
| continue; |
| |
| attrs[j++] = dev_str; |
| } |
| } while (++i < ct); |
| |
| /* Save the event attribute */ |
| pmu->attr_groups[IMC_EVENT_ATTR] = attr_group; |
| |
| kfree(pmu->events); |
| return 0; |
| } |
| |
| /* get_nest_pmu_ref: Return the imc_pmu_ref struct for the given node */ |
| static struct imc_pmu_ref *get_nest_pmu_ref(int cpu) |
| { |
| return per_cpu(local_nest_imc_refc, cpu); |
| } |
| |
| static void nest_change_cpu_context(int old_cpu, int new_cpu) |
| { |
| struct imc_pmu **pn = per_nest_pmu_arr; |
| |
| if (old_cpu < 0 || new_cpu < 0) |
| return; |
| |
| while (*pn) { |
| perf_pmu_migrate_context(&(*pn)->pmu, old_cpu, new_cpu); |
| pn++; |
| } |
| } |
| |
| static int ppc_nest_imc_cpu_offline(unsigned int cpu) |
| { |
| int nid, target = -1; |
| const struct cpumask *l_cpumask; |
| struct imc_pmu_ref *ref; |
| |
| /* |
| * Check in the designated list for this cpu. Dont bother |
| * if not one of them. |
| */ |
| if (!cpumask_test_and_clear_cpu(cpu, &nest_imc_cpumask)) |
| return 0; |
| |
| /* |
| * Check whether nest_imc is registered. We could end up here if the |
| * cpuhotplug callback registration fails. i.e, callback invokes the |
| * offline path for all successfully registered nodes. At this stage, |
| * nest_imc pmu will not be registered and we should return here. |
| * |
| * We return with a zero since this is not an offline failure. And |
| * cpuhp_setup_state() returns the actual failure reason to the caller, |
| * which in turn will call the cleanup routine. |
| */ |
| if (!nest_pmus) |
| return 0; |
| |
| /* |
| * Now that this cpu is one of the designated, |
| * find a next cpu a) which is online and b) in same chip. |
| */ |
| nid = cpu_to_node(cpu); |
| l_cpumask = cpumask_of_node(nid); |
| target = cpumask_any_but(l_cpumask, cpu); |
| |
| /* |
| * Update the cpumask with the target cpu and |
| * migrate the context if needed |
| */ |
| if (target >= 0 && target < nr_cpu_ids) { |
| cpumask_set_cpu(target, &nest_imc_cpumask); |
| nest_change_cpu_context(cpu, target); |
| } else { |
| opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST, |
| get_hard_smp_processor_id(cpu)); |
| /* |
| * If this is the last cpu in this chip then, skip the reference |
| * count mutex lock and make the reference count on this chip zero. |
| */ |
| ref = get_nest_pmu_ref(cpu); |
| if (!ref) |
| return -EINVAL; |
| |
| ref->refc = 0; |
| } |
| return 0; |
| } |
| |
| static int ppc_nest_imc_cpu_online(unsigned int cpu) |
| { |
| const struct cpumask *l_cpumask; |
| static struct cpumask tmp_mask; |
| int res; |
| |
| /* Get the cpumask of this node */ |
| l_cpumask = cpumask_of_node(cpu_to_node(cpu)); |
| |
| /* |
| * If this is not the first online CPU on this node, then |
| * just return. |
| */ |
| if (cpumask_and(&tmp_mask, l_cpumask, &nest_imc_cpumask)) |
| return 0; |
| |
| /* |
| * If this is the first online cpu on this node |
| * disable the nest counters by making an OPAL call. |
| */ |
| res = opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST, |
| get_hard_smp_processor_id(cpu)); |
| if (res) |
| return res; |
| |
| /* Make this CPU the designated target for counter collection */ |
| cpumask_set_cpu(cpu, &nest_imc_cpumask); |
| return 0; |
| } |
| |
| static int nest_pmu_cpumask_init(void) |
| { |
| return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_NEST_IMC_ONLINE, |
| "perf/powerpc/imc:online", |
| ppc_nest_imc_cpu_online, |
| ppc_nest_imc_cpu_offline); |
| } |
| |
| static void nest_imc_counters_release(struct perf_event *event) |
| { |
| int rc, node_id; |
| struct imc_pmu_ref *ref; |
| |
| if (event->cpu < 0) |
| return; |
| |
| node_id = cpu_to_node(event->cpu); |
| |
| /* |
| * See if we need to disable the nest PMU. |
| * If no events are currently in use, then we have to take a |
| * mutex to ensure that we don't race with another task doing |
| * enable or disable the nest counters. |
| */ |
| ref = get_nest_pmu_ref(event->cpu); |
| if (!ref) |
| return; |
| |
| /* Take the mutex lock for this node and then decrement the reference count */ |
| mutex_lock(&ref->lock); |
| if (ref->refc == 0) { |
| /* |
| * The scenario where this is true is, when perf session is |
| * started, followed by offlining of all cpus in a given node. |
| * |
| * In the cpuhotplug offline path, ppc_nest_imc_cpu_offline() |
| * function set the ref->count to zero, if the cpu which is |
| * about to offline is the last cpu in a given node and make |
| * an OPAL call to disable the engine in that node. |
| * |
| */ |
| mutex_unlock(&ref->lock); |
| return; |
| } |
| ref->refc--; |
| if (ref->refc == 0) { |
| rc = opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST, |
| get_hard_smp_processor_id(event->cpu)); |
| if (rc) { |
| mutex_unlock(&ref->lock); |
| pr_err("nest-imc: Unable to stop the counters for core %d\n", node_id); |
| return; |
| } |
| } else if (ref->refc < 0) { |
| WARN(1, "nest-imc: Invalid event reference count\n"); |
| ref->refc = 0; |
| } |
| mutex_unlock(&ref->lock); |
| } |
| |
| static int nest_imc_event_init(struct perf_event *event) |
| { |
| int chip_id, rc, node_id; |
| u32 l_config, config = event->attr.config; |
| struct imc_mem_info *pcni; |
| struct imc_pmu *pmu; |
| struct imc_pmu_ref *ref; |
| bool flag = false; |
| |
| if (event->attr.type != event->pmu->type) |
| return -ENOENT; |
| |
| /* Sampling not supported */ |
| if (event->hw.sample_period) |
| return -EINVAL; |
| |
| /* unsupported modes and filters */ |
| if (event->attr.exclude_user || |
| event->attr.exclude_kernel || |
| event->attr.exclude_hv || |
| event->attr.exclude_idle || |
| event->attr.exclude_host || |
| event->attr.exclude_guest) |
| return -EINVAL; |
| |
| if (event->cpu < 0) |
| return -EINVAL; |
| |
| pmu = imc_event_to_pmu(event); |
| |
| /* Sanity check for config (event offset) */ |
| if ((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size) |
| return -EINVAL; |
| |
| /* |
| * Nest HW counter memory resides in a per-chip reserve-memory (HOMER). |
| * Get the base memory addresss for this cpu. |
| */ |
| chip_id = cpu_to_chip_id(event->cpu); |
| |
| /* Return, if chip_id is not valid */ |
| if (chip_id < 0) |
| return -ENODEV; |
| |
| pcni = pmu->mem_info; |
| do { |
| if (pcni->id == chip_id) { |
| flag = true; |
| break; |
| } |
| pcni++; |
| } while (pcni); |
| |
| if (!flag) |
| return -ENODEV; |
| |
| /* |
| * Add the event offset to the base address. |
| */ |
| l_config = config & IMC_EVENT_OFFSET_MASK; |
| event->hw.event_base = (u64)pcni->vbase + l_config; |
| node_id = cpu_to_node(event->cpu); |
| |
| /* |
| * Get the imc_pmu_ref struct for this node. |
| * Take the mutex lock and then increment the count of nest pmu events |
| * inited. |
| */ |
| ref = get_nest_pmu_ref(event->cpu); |
| if (!ref) |
| return -EINVAL; |
| |
| mutex_lock(&ref->lock); |
| if (ref->refc == 0) { |
| rc = opal_imc_counters_start(OPAL_IMC_COUNTERS_NEST, |
| get_hard_smp_processor_id(event->cpu)); |
| if (rc) { |
| mutex_unlock(&ref->lock); |
| pr_err("nest-imc: Unable to start the counters for node %d\n", |
| node_id); |
| return rc; |
| } |
| } |
| ++ref->refc; |
| mutex_unlock(&ref->lock); |
| |
| event->destroy = nest_imc_counters_release; |
| return 0; |
| } |
| |
| /* |
| * core_imc_mem_init : Initializes memory for the current core. |
| * |
| * Uses alloc_pages_node() and uses the returned address as an argument to |
| * an opal call to configure the pdbar. The address sent as an argument is |
| * converted to physical address before the opal call is made. This is the |
| * base address at which the core imc counters are populated. |
| */ |
| static int core_imc_mem_init(int cpu, int size) |
| { |
| int nid, rc = 0, core_id = (cpu / threads_per_core); |
| struct imc_mem_info *mem_info; |
| |
| /* |
| * alloc_pages_node() will allocate memory for core in the |
| * local node only. |
| */ |
| nid = cpu_to_node(cpu); |
| mem_info = &core_imc_pmu->mem_info[core_id]; |
| mem_info->id = core_id; |
| |
| /* We need only vbase for core counters */ |
| mem_info->vbase = page_address(alloc_pages_node(nid, |
| GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE | |
| __GFP_NOWARN, get_order(size))); |
| if (!mem_info->vbase) |
| return -ENOMEM; |
| |
| /* Init the mutex */ |
| core_imc_refc[core_id].id = core_id; |
| mutex_init(&core_imc_refc[core_id].lock); |
| |
| rc = opal_imc_counters_init(OPAL_IMC_COUNTERS_CORE, |
| __pa((void *)mem_info->vbase), |
| get_hard_smp_processor_id(cpu)); |
| if (rc) { |
| free_pages((u64)mem_info->vbase, get_order(size)); |
| mem_info->vbase = NULL; |
| } |
| |
| return rc; |
| } |
| |
| static bool is_core_imc_mem_inited(int cpu) |
| { |
| struct imc_mem_info *mem_info; |
| int core_id = (cpu / threads_per_core); |
| |
| mem_info = &core_imc_pmu->mem_info[core_id]; |
| if (!mem_info->vbase) |
| return false; |
| |
| return true; |
| } |
| |
| static int ppc_core_imc_cpu_online(unsigned int cpu) |
| { |
| const struct cpumask *l_cpumask; |
| static struct cpumask tmp_mask; |
| int ret = 0; |
| |
| /* Get the cpumask for this core */ |
| l_cpumask = cpu_sibling_mask(cpu); |
| |
| /* If a cpu for this core is already set, then, don't do anything */ |
| if (cpumask_and(&tmp_mask, l_cpumask, &core_imc_cpumask)) |
| return 0; |
| |
| if (!is_core_imc_mem_inited(cpu)) { |
| ret = core_imc_mem_init(cpu, core_imc_pmu->counter_mem_size); |
| if (ret) { |
| pr_info("core_imc memory allocation for cpu %d failed\n", cpu); |
| return ret; |
| } |
| } |
| |
| /* set the cpu in the mask */ |
| cpumask_set_cpu(cpu, &core_imc_cpumask); |
| return 0; |
| } |
| |
| static int ppc_core_imc_cpu_offline(unsigned int cpu) |
| { |
| unsigned int ncpu, core_id; |
| struct imc_pmu_ref *ref; |
| |
| /* |
| * clear this cpu out of the mask, if not present in the mask, |
| * don't bother doing anything. |
| */ |
| if (!cpumask_test_and_clear_cpu(cpu, &core_imc_cpumask)) |
| return 0; |
| |
| /* |
| * Check whether core_imc is registered. We could end up here |
| * if the cpuhotplug callback registration fails. i.e, callback |
| * invokes the offline path for all sucessfully registered cpus. |
| * At this stage, core_imc pmu will not be registered and we |
| * should return here. |
| * |
| * We return with a zero since this is not an offline failure. |
| * And cpuhp_setup_state() returns the actual failure reason |
| * to the caller, which inturn will call the cleanup routine. |
| */ |
| if (!core_imc_pmu->pmu.event_init) |
| return 0; |
| |
| /* Find any online cpu in that core except the current "cpu" */ |
| ncpu = cpumask_any_but(cpu_sibling_mask(cpu), cpu); |
| |
| if (ncpu >= 0 && ncpu < nr_cpu_ids) { |
| cpumask_set_cpu(ncpu, &core_imc_cpumask); |
| perf_pmu_migrate_context(&core_imc_pmu->pmu, cpu, ncpu); |
| } else { |
| /* |
| * If this is the last cpu in this core then, skip taking refernce |
| * count mutex lock for this core and directly zero "refc" for |
| * this core. |
| */ |
| opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE, |
| get_hard_smp_processor_id(cpu)); |
| core_id = cpu / threads_per_core; |
| ref = &core_imc_refc[core_id]; |
| if (!ref) |
| return -EINVAL; |
| |
| ref->refc = 0; |
| } |
| return 0; |
| } |
| |
| static int core_imc_pmu_cpumask_init(void) |
| { |
| return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_CORE_IMC_ONLINE, |
| "perf/powerpc/imc_core:online", |
| ppc_core_imc_cpu_online, |
| ppc_core_imc_cpu_offline); |
| } |
| |
| static void core_imc_counters_release(struct perf_event *event) |
| { |
| int rc, core_id; |
| struct imc_pmu_ref *ref; |
| |
| if (event->cpu < 0) |
| return; |
| /* |
| * See if we need to disable the IMC PMU. |
| * If no events are currently in use, then we have to take a |
| * mutex to ensure that we don't race with another task doing |
| * enable or disable the core counters. |
| */ |
| core_id = event->cpu / threads_per_core; |
| |
| /* Take the mutex lock and decrement the refernce count for this core */ |
| ref = &core_imc_refc[core_id]; |
| if (!ref) |
| return; |
| |
| mutex_lock(&ref->lock); |
| if (ref->refc == 0) { |
| /* |
| * The scenario where this is true is, when perf session is |
| * started, followed by offlining of all cpus in a given core. |
| * |
| * In the cpuhotplug offline path, ppc_core_imc_cpu_offline() |
| * function set the ref->count to zero, if the cpu which is |
| * about to offline is the last cpu in a given core and make |
| * an OPAL call to disable the engine in that core. |
| * |
| */ |
| mutex_unlock(&ref->lock); |
| return; |
| } |
| ref->refc--; |
| if (ref->refc == 0) { |
| rc = opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE, |
| get_hard_smp_processor_id(event->cpu)); |
| if (rc) { |
| mutex_unlock(&ref->lock); |
| pr_err("IMC: Unable to stop the counters for core %d\n", core_id); |
| return; |
| } |
| } else if (ref->refc < 0) { |
| WARN(1, "core-imc: Invalid event reference count\n"); |
| ref->refc = 0; |
| } |
| mutex_unlock(&ref->lock); |
| } |
| |
| static int core_imc_event_init(struct perf_event *event) |
| { |
| int core_id, rc; |
| u64 config = event->attr.config; |
| struct imc_mem_info *pcmi; |
| struct imc_pmu *pmu; |
| struct imc_pmu_ref *ref; |
| |
| if (event->attr.type != event->pmu->type) |
| return -ENOENT; |
| |
| /* Sampling not supported */ |
| if (event->hw.sample_period) |
| return -EINVAL; |
| |
| /* unsupported modes and filters */ |
| if (event->attr.exclude_user || |
| event->attr.exclude_kernel || |
| event->attr.exclude_hv || |
| event->attr.exclude_idle || |
| event->attr.exclude_host || |
| event->attr.exclude_guest) |
| return -EINVAL; |
| |
| if (event->cpu < 0) |
| return -EINVAL; |
| |
| event->hw.idx = -1; |
| pmu = imc_event_to_pmu(event); |
| |
| /* Sanity check for config (event offset) */ |
| if (((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size)) |
| return -EINVAL; |
| |
| if (!is_core_imc_mem_inited(event->cpu)) |
| return -ENODEV; |
| |
| core_id = event->cpu / threads_per_core; |
| pcmi = &core_imc_pmu->mem_info[core_id]; |
| if ((!pcmi->vbase)) |
| return -ENODEV; |
| |
| /* Get the core_imc mutex for this core */ |
| ref = &core_imc_refc[core_id]; |
| if (!ref) |
| return -EINVAL; |
| |
| /* |
| * Core pmu units are enabled only when it is used. |
| * See if this is triggered for the first time. |
| * If yes, take the mutex lock and enable the core counters. |
| * If not, just increment the count in core_imc_refc struct. |
| */ |
| mutex_lock(&ref->lock); |
| if (ref->refc == 0) { |
| rc = opal_imc_counters_start(OPAL_IMC_COUNTERS_CORE, |
| get_hard_smp_processor_id(event->cpu)); |
| if (rc) { |
| mutex_unlock(&ref->lock); |
| pr_err("core-imc: Unable to start the counters for core %d\n", |
| core_id); |
| return rc; |
| } |
| } |
| ++ref->refc; |
| mutex_unlock(&ref->lock); |
| |
| event->hw.event_base = (u64)pcmi->vbase + (config & IMC_EVENT_OFFSET_MASK); |
| event->destroy = core_imc_counters_release; |
| return 0; |
| } |
| |
| /* |
| * Allocates a page of memory for each of the online cpus, and write the |
| * physical base address of that page to the LDBAR for that cpu. |
| * |
| * LDBAR Register Layout: |
| * |
| * 0 4 8 12 16 20 24 28 |
| * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | |
| * | | [ ] [ Counter Address [8:50] |
| * | * Mode | |
| * | * PB Scope |
| * * Enable/Disable |
| * |
| * 32 36 40 44 48 52 56 60 |
| * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | |
| * Counter Address [8:50] ] |
| * |
| */ |
| static int thread_imc_mem_alloc(int cpu_id, int size) |
| { |
| u64 ldbar_value, *local_mem = per_cpu(thread_imc_mem, cpu_id); |
| int nid = cpu_to_node(cpu_id); |
| |
| if (!local_mem) { |
| /* |
| * This case could happen only once at start, since we dont |
| * free the memory in cpu offline path. |
| */ |
| local_mem = page_address(alloc_pages_node(nid, |
| GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE | |
| __GFP_NOWARN, get_order(size))); |
| if (!local_mem) |
| return -ENOMEM; |
| |
| per_cpu(thread_imc_mem, cpu_id) = local_mem; |
| } |
| |
| ldbar_value = ((u64)local_mem & THREAD_IMC_LDBAR_MASK) | THREAD_IMC_ENABLE; |
| |
| mtspr(SPRN_LDBAR, ldbar_value); |
| return 0; |
| } |
| |
| static int ppc_thread_imc_cpu_online(unsigned int cpu) |
| { |
| return thread_imc_mem_alloc(cpu, thread_imc_mem_size); |
| } |
| |
| static int ppc_thread_imc_cpu_offline(unsigned int cpu) |
| { |
| mtspr(SPRN_LDBAR, 0); |
| return 0; |
| } |
| |
| static int thread_imc_cpu_init(void) |
| { |
| return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_THREAD_IMC_ONLINE, |
| "perf/powerpc/imc_thread:online", |
| ppc_thread_imc_cpu_online, |
| ppc_thread_imc_cpu_offline); |
| } |
| |
| void thread_imc_pmu_sched_task(struct perf_event_context *ctx, |
| bool sched_in) |
| { |
| int core_id; |
| struct imc_pmu_ref *ref; |
| |
| if (!is_core_imc_mem_inited(smp_processor_id())) |
| return; |
| |
| core_id = smp_processor_id() / threads_per_core; |
| /* |
| * imc pmus are enabled only when it is used. |
| * See if this is triggered for the first time. |
| * If yes, take the mutex lock and enable the counters. |
| * If not, just increment the count in ref count struct. |
| */ |
| ref = &core_imc_refc[core_id]; |
| if (!ref) |
| return; |
| |
| if (sched_in) { |
| mutex_lock(&ref->lock); |
| if (ref->refc == 0) { |
| if (opal_imc_counters_start(OPAL_IMC_COUNTERS_CORE, |
| get_hard_smp_processor_id(smp_processor_id()))) { |
| mutex_unlock(&ref->lock); |
| pr_err("thread-imc: Unable to start the counter\ |
| for core %d\n", core_id); |
| return; |
| } |
| } |
| ++ref->refc; |
| mutex_unlock(&ref->lock); |
| } else { |
| mutex_lock(&ref->lock); |
| ref->refc--; |
| if (ref->refc == 0) { |
| if (opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE, |
| get_hard_smp_processor_id(smp_processor_id()))) { |
| mutex_unlock(&ref->lock); |
| pr_err("thread-imc: Unable to stop the counters\ |
| for core %d\n", core_id); |
| return; |
| } |
| } else if (ref->refc < 0) { |
| ref->refc = 0; |
| } |
| mutex_unlock(&ref->lock); |
| } |
| |
| return; |
| } |
| |
| static int thread_imc_event_init(struct perf_event *event) |
| { |
| u32 config = event->attr.config; |
| struct task_struct *target; |
| struct imc_pmu *pmu; |
| |
| if (event->attr.type != event->pmu->type) |
| return -ENOENT; |
| |
| /* Sampling not supported */ |
| if (event->hw.sample_period) |
| return -EINVAL; |
| |
| event->hw.idx = -1; |
| pmu = imc_event_to_pmu(event); |
| |
| /* Sanity check for config offset */ |
| if (((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size)) |
| return -EINVAL; |
| |
| target = event->hw.target; |
| if (!target) |
| return -EINVAL; |
| |
| event->pmu->task_ctx_nr = perf_sw_context; |
| return 0; |
| } |
| |
| static bool is_thread_imc_pmu(struct perf_event *event) |
| { |
| if (!strncmp(event->pmu->name, "thread_imc", strlen("thread_imc"))) |
| return true; |
| |
| return false; |
| } |
| |
| static u64 * get_event_base_addr(struct perf_event *event) |
| { |
| u64 addr; |
| |
| if (is_thread_imc_pmu(event)) { |
| addr = (u64)per_cpu(thread_imc_mem, smp_processor_id()); |
| return (u64 *)(addr + (event->attr.config & IMC_EVENT_OFFSET_MASK)); |
| } |
| |
| return (u64 *)event->hw.event_base; |
| } |
| |
| static void thread_imc_pmu_start_txn(struct pmu *pmu, |
| unsigned int txn_flags) |
| { |
| if (txn_flags & ~PERF_PMU_TXN_ADD) |
| return; |
| perf_pmu_disable(pmu); |
| } |
| |
| static void thread_imc_pmu_cancel_txn(struct pmu *pmu) |
| { |
| perf_pmu_enable(pmu); |
| } |
| |
| static int thread_imc_pmu_commit_txn(struct pmu *pmu) |
| { |
| perf_pmu_enable(pmu); |
| return 0; |
| } |
| |
| static u64 imc_read_counter(struct perf_event *event) |
| { |
| u64 *addr, data; |
| |
| /* |
| * In-Memory Collection (IMC) counters are free flowing counters. |
| * So we take a snapshot of the counter value on enable and save it |
| * to calculate the delta at later stage to present the event counter |
| * value. |
| */ |
| addr = get_event_base_addr(event); |
| data = be64_to_cpu(READ_ONCE(*addr)); |
| local64_set(&event->hw.prev_count, data); |
| |
| return data; |
| } |
| |
| static void imc_event_update(struct perf_event *event) |
| { |
| u64 counter_prev, counter_new, final_count; |
| |
| counter_prev = local64_read(&event->hw.prev_count); |
| counter_new = imc_read_counter(event); |
| final_count = counter_new - counter_prev; |
| |
| /* Update the delta to the event count */ |
| local64_add(final_count, &event->count); |
| } |
| |
| static void imc_event_start(struct perf_event *event, int flags) |
| { |
| /* |
| * In Memory Counters are free flowing counters. HW or the microcode |
| * keeps adding to the counter offset in memory. To get event |
| * counter value, we snapshot the value here and we calculate |
| * delta at later point. |
| */ |
| imc_read_counter(event); |
| } |
| |
| static void imc_event_stop(struct perf_event *event, int flags) |
| { |
| /* |
| * Take a snapshot and calculate the delta and update |
| * the event counter values. |
| */ |
| imc_event_update(event); |
| } |
| |
| static int imc_event_add(struct perf_event *event, int flags) |
| { |
| if (flags & PERF_EF_START) |
| imc_event_start(event, flags); |
| |
| return 0; |
| } |
| |
| static int thread_imc_event_add(struct perf_event *event, int flags) |
| { |
| if (flags & PERF_EF_START) |
| imc_event_start(event, flags); |
| |
| /* Enable the sched_task to start the engine */ |
| perf_sched_cb_inc(event->ctx->pmu); |
| return 0; |
| } |
| |
| static void thread_imc_event_del(struct perf_event *event, int flags) |
| { |
| /* |
| * Take a snapshot and calculate the delta and update |
| * the event counter values. |
| */ |
| imc_event_update(event); |
| perf_sched_cb_dec(event->ctx->pmu); |
| } |
| |
| /* update_pmu_ops : Populate the appropriate operations for "pmu" */ |
| static int update_pmu_ops(struct imc_pmu *pmu) |
| { |
| pmu->pmu.task_ctx_nr = perf_invalid_context; |
| pmu->pmu.add = imc_event_add; |
| pmu->pmu.del = imc_event_stop; |
| pmu->pmu.start = imc_event_start; |
| pmu->pmu.stop = imc_event_stop; |
| pmu->pmu.read = imc_event_update; |
| pmu->pmu.attr_groups = pmu->attr_groups; |
| pmu->attr_groups[IMC_FORMAT_ATTR] = &imc_format_group; |
| |
| switch (pmu->domain) { |
| case IMC_DOMAIN_NEST: |
| pmu->pmu.event_init = nest_imc_event_init; |
| pmu->attr_groups[IMC_CPUMASK_ATTR] = &imc_pmu_cpumask_attr_group; |
| break; |
| case IMC_DOMAIN_CORE: |
| pmu->pmu.event_init = core_imc_event_init; |
| pmu->attr_groups[IMC_CPUMASK_ATTR] = &imc_pmu_cpumask_attr_group; |
| break; |
| case IMC_DOMAIN_THREAD: |
| pmu->pmu.event_init = thread_imc_event_init; |
| pmu->pmu.sched_task = thread_imc_pmu_sched_task; |
| pmu->pmu.add = thread_imc_event_add; |
| pmu->pmu.del = thread_imc_event_del; |
| pmu->pmu.start_txn = thread_imc_pmu_start_txn; |
| pmu->pmu.cancel_txn = thread_imc_pmu_cancel_txn; |
| pmu->pmu.commit_txn = thread_imc_pmu_commit_txn; |
| break; |
| default: |
| break; |
| } |
| |
| return 0; |
| } |
| |
| /* init_nest_pmu_ref: Initialize the imc_pmu_ref struct for all the nodes */ |
| static int init_nest_pmu_ref(void) |
| { |
| int nid, i, cpu; |
| |
| nest_imc_refc = kcalloc(num_possible_nodes(), sizeof(*nest_imc_refc), |
| GFP_KERNEL); |
| |
| if (!nest_imc_refc) |
| return -ENOMEM; |
| |
| i = 0; |
| for_each_node(nid) { |
| /* |
| * Mutex lock to avoid races while tracking the number of |
| * sessions using the chip's nest pmu units. |
| */ |
| mutex_init(&nest_imc_refc[i].lock); |
| |
| /* |
| * Loop to init the "id" with the node_id. Variable "i" initialized to |
| * 0 and will be used as index to the array. "i" will not go off the |
| * end of the array since the "for_each_node" loops for "N_POSSIBLE" |
| * nodes only. |
| */ |
| nest_imc_refc[i++].id = nid; |
| } |
| |
| /* |
| * Loop to init the per_cpu "local_nest_imc_refc" with the proper |
| * "nest_imc_refc" index. This makes get_nest_pmu_ref() alot simple. |
| */ |
| for_each_possible_cpu(cpu) { |
| nid = cpu_to_node(cpu); |
| for (i = 0; i < num_possible_nodes(); i++) { |
| if (nest_imc_refc[i].id == nid) { |
| per_cpu(local_nest_imc_refc, cpu) = &nest_imc_refc[i]; |
| break; |
| } |
| } |
| } |
| return 0; |
| } |
| |
| static void cleanup_all_core_imc_memory(void) |
| { |
| int i, nr_cores = DIV_ROUND_UP(num_possible_cpus(), threads_per_core); |
| struct imc_mem_info *ptr = core_imc_pmu->mem_info; |
| int size = core_imc_pmu->counter_mem_size; |
| |
| /* mem_info will never be NULL */ |
| for (i = 0; i < nr_cores; i++) { |
| if (ptr[i].vbase) |
| free_pages((u64)ptr->vbase, get_order(size)); |
| } |
| |
| kfree(ptr); |
| kfree(core_imc_refc); |
| } |
| |
| static void thread_imc_ldbar_disable(void *dummy) |
| { |
| /* |
| * By Zeroing LDBAR, we disable thread-imc |
| * updates. |
| */ |
| mtspr(SPRN_LDBAR, 0); |
| } |
| |
| void thread_imc_disable(void) |
| { |
| on_each_cpu(thread_imc_ldbar_disable, NULL, 1); |
| } |
| |
| static void cleanup_all_thread_imc_memory(void) |
| { |
| int i, order = get_order(thread_imc_mem_size); |
| |
| for_each_online_cpu(i) { |
| if (per_cpu(thread_imc_mem, i)) |
| free_pages((u64)per_cpu(thread_imc_mem, i), order); |
| |
| } |
| } |
| |
| /* |
| * Common function to unregister cpu hotplug callback and |
| * free the memory. |
| * TODO: Need to handle pmu unregistering, which will be |
| * done in followup series. |
| */ |
| static void imc_common_cpuhp_mem_free(struct imc_pmu *pmu_ptr) |
| { |
| if (pmu_ptr->domain == IMC_DOMAIN_NEST) { |
| mutex_lock(&nest_init_lock); |
| if (nest_pmus == 1) { |
| cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_NEST_IMC_ONLINE); |
| kfree(nest_imc_refc); |
| kfree(per_nest_pmu_arr); |
| } |
| |
| if (nest_pmus > 0) |
| nest_pmus--; |
| mutex_unlock(&nest_init_lock); |
| } |
| |
| /* Free core_imc memory */ |
| if (pmu_ptr->domain == IMC_DOMAIN_CORE) { |
| cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_CORE_IMC_ONLINE); |
| cleanup_all_core_imc_memory(); |
| } |
| |
| /* Free thread_imc memory */ |
| if (pmu_ptr->domain == IMC_DOMAIN_THREAD) { |
| cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_THREAD_IMC_ONLINE); |
| cleanup_all_thread_imc_memory(); |
| } |
| |
| /* Only free the attr_groups which are dynamically allocated */ |
| if (pmu_ptr->attr_groups[IMC_EVENT_ATTR]) |
| kfree(pmu_ptr->attr_groups[IMC_EVENT_ATTR]->attrs); |
| kfree(pmu_ptr->attr_groups[IMC_EVENT_ATTR]); |
| kfree(pmu_ptr); |
| return; |
| } |
| |
| |
| /* |
| * imc_mem_init : Function to support memory allocation for core imc. |
| */ |
| static int imc_mem_init(struct imc_pmu *pmu_ptr, struct device_node *parent, |
| int pmu_index) |
| { |
| const char *s; |
| int nr_cores, cpu, res; |
| |
| if (of_property_read_string(parent, "name", &s)) |
| return -ENODEV; |
| |
| switch (pmu_ptr->domain) { |
| case IMC_DOMAIN_NEST: |
| /* Update the pmu name */ |
| pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s_imc", "nest_", s); |
| if (!pmu_ptr->pmu.name) |
| return -ENOMEM; |
| |
| /* Needed for hotplug/migration */ |
| if (!per_nest_pmu_arr) { |
| per_nest_pmu_arr = kcalloc(get_max_nest_dev() + 1, |
| sizeof(struct imc_pmu *), |
| GFP_KERNEL); |
| if (!per_nest_pmu_arr) |
| return -ENOMEM; |
| } |
| per_nest_pmu_arr[pmu_index] = pmu_ptr; |
| break; |
| case IMC_DOMAIN_CORE: |
| /* Update the pmu name */ |
| pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc"); |
| if (!pmu_ptr->pmu.name) |
| return -ENOMEM; |
| |
| nr_cores = DIV_ROUND_UP(num_possible_cpus(), threads_per_core); |
| pmu_ptr->mem_info = kcalloc(nr_cores, sizeof(struct imc_mem_info), |
| GFP_KERNEL); |
| |
| if (!pmu_ptr->mem_info) |
| return -ENOMEM; |
| |
| core_imc_refc = kcalloc(nr_cores, sizeof(struct imc_pmu_ref), |
| GFP_KERNEL); |
| |
| if (!core_imc_refc) |
| return -ENOMEM; |
| |
| core_imc_pmu = pmu_ptr; |
| break; |
| case IMC_DOMAIN_THREAD: |
| /* Update the pmu name */ |
| pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc"); |
| if (!pmu_ptr->pmu.name) |
| return -ENOMEM; |
| |
| thread_imc_mem_size = pmu_ptr->counter_mem_size; |
| for_each_online_cpu(cpu) { |
| res = thread_imc_mem_alloc(cpu, pmu_ptr->counter_mem_size); |
| if (res) |
| return res; |
| } |
| |
| thread_imc_pmu = pmu_ptr; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * init_imc_pmu : Setup and register the IMC pmu device. |
| * |
| * @parent: Device tree unit node |
| * @pmu_ptr: memory allocated for this pmu |
| * @pmu_idx: Count of nest pmc registered |
| * |
| * init_imc_pmu() setup pmu cpumask and registers for a cpu hotplug callback. |
| * Handles failure cases and accordingly frees memory. |
| */ |
| int init_imc_pmu(struct device_node *parent, struct imc_pmu *pmu_ptr, int pmu_idx) |
| { |
| int ret; |
| |
| ret = imc_mem_init(pmu_ptr, parent, pmu_idx); |
| if (ret) |
| goto err_free; |
| |
| switch (pmu_ptr->domain) { |
| case IMC_DOMAIN_NEST: |
| /* |
| * Nest imc pmu need only one cpu per chip, we initialize the |
| * cpumask for the first nest imc pmu and use the same for the |
| * rest. To handle the cpuhotplug callback unregister, we track |
| * the number of nest pmus in "nest_pmus". |
| */ |
| mutex_lock(&nest_init_lock); |
| if (nest_pmus == 0) { |
| ret = init_nest_pmu_ref(); |
| if (ret) { |
| mutex_unlock(&nest_init_lock); |
| goto err_free; |
| } |
| /* Register for cpu hotplug notification. */ |
| ret = nest_pmu_cpumask_init(); |
| if (ret) { |
| mutex_unlock(&nest_init_lock); |
| kfree(nest_imc_refc); |
| kfree(per_nest_pmu_arr); |
| goto err_free; |
| } |
| } |
| nest_pmus++; |
| mutex_unlock(&nest_init_lock); |
| break; |
| case IMC_DOMAIN_CORE: |
| ret = core_imc_pmu_cpumask_init(); |
| if (ret) { |
| cleanup_all_core_imc_memory(); |
| return ret; |
| } |
| |
| break; |
| case IMC_DOMAIN_THREAD: |
| ret = thread_imc_cpu_init(); |
| if (ret) { |
| cleanup_all_thread_imc_memory(); |
| return ret; |
| } |
| |
| break; |
| default: |
| return -1; /* Unknown domain */ |
| } |
| |
| ret = update_events_in_group(parent, pmu_ptr); |
| if (ret) |
| goto err_free; |
| |
| ret = update_pmu_ops(pmu_ptr); |
| if (ret) |
| goto err_free; |
| |
| ret = perf_pmu_register(&pmu_ptr->pmu, pmu_ptr->pmu.name, -1); |
| if (ret) |
| goto err_free; |
| |
| pr_info("%s performance monitor hardware support registered\n", |
| pmu_ptr->pmu.name); |
| |
| return 0; |
| |
| err_free: |
| imc_common_cpuhp_mem_free(pmu_ptr); |
| return ret; |
| } |