| /* |
| * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) |
| * Copyright 2007-2010 Freescale Semiconductor, Inc. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| * |
| * Modified by Cort Dougan (cort@cs.nmt.edu) |
| * and Paul Mackerras (paulus@samba.org) |
| */ |
| |
| /* |
| * This file handles the architecture-dependent parts of hardware exceptions |
| */ |
| |
| #include <linux/errno.h> |
| #include <linux/sched.h> |
| #include <linux/sched/debug.h> |
| #include <linux/kernel.h> |
| #include <linux/mm.h> |
| #include <linux/stddef.h> |
| #include <linux/unistd.h> |
| #include <linux/ptrace.h> |
| #include <linux/user.h> |
| #include <linux/interrupt.h> |
| #include <linux/init.h> |
| #include <linux/extable.h> |
| #include <linux/module.h> /* print_modules */ |
| #include <linux/prctl.h> |
| #include <linux/delay.h> |
| #include <linux/kprobes.h> |
| #include <linux/kexec.h> |
| #include <linux/backlight.h> |
| #include <linux/bug.h> |
| #include <linux/kdebug.h> |
| #include <linux/ratelimit.h> |
| #include <linux/context_tracking.h> |
| |
| #include <asm/emulated_ops.h> |
| #include <asm/pgtable.h> |
| #include <linux/uaccess.h> |
| #include <asm/debugfs.h> |
| #include <asm/io.h> |
| #include <asm/machdep.h> |
| #include <asm/rtas.h> |
| #include <asm/pmc.h> |
| #include <asm/reg.h> |
| #ifdef CONFIG_PMAC_BACKLIGHT |
| #include <asm/backlight.h> |
| #endif |
| #ifdef CONFIG_PPC64 |
| #include <asm/firmware.h> |
| #include <asm/processor.h> |
| #include <asm/tm.h> |
| #endif |
| #include <asm/kexec.h> |
| #include <asm/ppc-opcode.h> |
| #include <asm/rio.h> |
| #include <asm/fadump.h> |
| #include <asm/switch_to.h> |
| #include <asm/tm.h> |
| #include <asm/debug.h> |
| #include <asm/asm-prototypes.h> |
| #include <asm/hmi.h> |
| #include <sysdev/fsl_pci.h> |
| #include <asm/kprobes.h> |
| |
| #if defined(CONFIG_DEBUGGER) || defined(CONFIG_KEXEC_CORE) |
| int (*__debugger)(struct pt_regs *regs) __read_mostly; |
| int (*__debugger_ipi)(struct pt_regs *regs) __read_mostly; |
| int (*__debugger_bpt)(struct pt_regs *regs) __read_mostly; |
| int (*__debugger_sstep)(struct pt_regs *regs) __read_mostly; |
| int (*__debugger_iabr_match)(struct pt_regs *regs) __read_mostly; |
| int (*__debugger_break_match)(struct pt_regs *regs) __read_mostly; |
| int (*__debugger_fault_handler)(struct pt_regs *regs) __read_mostly; |
| |
| EXPORT_SYMBOL(__debugger); |
| EXPORT_SYMBOL(__debugger_ipi); |
| EXPORT_SYMBOL(__debugger_bpt); |
| EXPORT_SYMBOL(__debugger_sstep); |
| EXPORT_SYMBOL(__debugger_iabr_match); |
| EXPORT_SYMBOL(__debugger_break_match); |
| EXPORT_SYMBOL(__debugger_fault_handler); |
| #endif |
| |
| /* Transactional Memory trap debug */ |
| #ifdef TM_DEBUG_SW |
| #define TM_DEBUG(x...) printk(KERN_INFO x) |
| #else |
| #define TM_DEBUG(x...) do { } while(0) |
| #endif |
| |
| /* |
| * Trap & Exception support |
| */ |
| |
| #ifdef CONFIG_PMAC_BACKLIGHT |
| static void pmac_backlight_unblank(void) |
| { |
| mutex_lock(&pmac_backlight_mutex); |
| if (pmac_backlight) { |
| struct backlight_properties *props; |
| |
| props = &pmac_backlight->props; |
| props->brightness = props->max_brightness; |
| props->power = FB_BLANK_UNBLANK; |
| backlight_update_status(pmac_backlight); |
| } |
| mutex_unlock(&pmac_backlight_mutex); |
| } |
| #else |
| static inline void pmac_backlight_unblank(void) { } |
| #endif |
| |
| /* |
| * If oops/die is expected to crash the machine, return true here. |
| * |
| * This should not be expected to be 100% accurate, there may be |
| * notifiers registered or other unexpected conditions that may bring |
| * down the kernel. Or if the current process in the kernel is holding |
| * locks or has other critical state, the kernel may become effectively |
| * unusable anyway. |
| */ |
| bool die_will_crash(void) |
| { |
| if (should_fadump_crash()) |
| return true; |
| if (kexec_should_crash(current)) |
| return true; |
| if (in_interrupt() || panic_on_oops || |
| !current->pid || is_global_init(current)) |
| return true; |
| |
| return false; |
| } |
| |
| static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED; |
| static int die_owner = -1; |
| static unsigned int die_nest_count; |
| static int die_counter; |
| |
| static unsigned long oops_begin(struct pt_regs *regs) |
| { |
| int cpu; |
| unsigned long flags; |
| |
| oops_enter(); |
| |
| /* racy, but better than risking deadlock. */ |
| raw_local_irq_save(flags); |
| cpu = smp_processor_id(); |
| if (!arch_spin_trylock(&die_lock)) { |
| if (cpu == die_owner) |
| /* nested oops. should stop eventually */; |
| else |
| arch_spin_lock(&die_lock); |
| } |
| die_nest_count++; |
| die_owner = cpu; |
| console_verbose(); |
| bust_spinlocks(1); |
| if (machine_is(powermac)) |
| pmac_backlight_unblank(); |
| return flags; |
| } |
| NOKPROBE_SYMBOL(oops_begin); |
| |
| static void oops_end(unsigned long flags, struct pt_regs *regs, |
| int signr) |
| { |
| bust_spinlocks(0); |
| add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE); |
| die_nest_count--; |
| oops_exit(); |
| printk("\n"); |
| if (!die_nest_count) { |
| /* Nest count reaches zero, release the lock. */ |
| die_owner = -1; |
| arch_spin_unlock(&die_lock); |
| } |
| raw_local_irq_restore(flags); |
| |
| /* |
| * system_reset_excption handles debugger, crash dump, panic, for 0x100 |
| */ |
| if (TRAP(regs) == 0x100) |
| return; |
| |
| crash_fadump(regs, "die oops"); |
| |
| if (kexec_should_crash(current)) |
| crash_kexec(regs); |
| |
| if (!signr) |
| return; |
| |
| /* |
| * While our oops output is serialised by a spinlock, output |
| * from panic() called below can race and corrupt it. If we |
| * know we are going to panic, delay for 1 second so we have a |
| * chance to get clean backtraces from all CPUs that are oopsing. |
| */ |
| if (in_interrupt() || panic_on_oops || !current->pid || |
| is_global_init(current)) { |
| mdelay(MSEC_PER_SEC); |
| } |
| |
| if (in_interrupt()) |
| panic("Fatal exception in interrupt"); |
| if (panic_on_oops) |
| panic("Fatal exception"); |
| make_task_dead(signr); |
| } |
| NOKPROBE_SYMBOL(oops_end); |
| |
| static int __die(const char *str, struct pt_regs *regs, long err) |
| { |
| printk("Oops: %s, sig: %ld [#%d]\n", str, err, ++die_counter); |
| |
| if (IS_ENABLED(CONFIG_CPU_LITTLE_ENDIAN)) |
| printk("LE "); |
| else |
| printk("BE "); |
| |
| if (IS_ENABLED(CONFIG_PREEMPT)) |
| pr_cont("PREEMPT "); |
| |
| if (IS_ENABLED(CONFIG_SMP)) |
| pr_cont("SMP NR_CPUS=%d ", NR_CPUS); |
| |
| if (debug_pagealloc_enabled()) |
| pr_cont("DEBUG_PAGEALLOC "); |
| |
| if (IS_ENABLED(CONFIG_NUMA)) |
| pr_cont("NUMA "); |
| |
| pr_cont("%s\n", ppc_md.name ? ppc_md.name : ""); |
| |
| if (notify_die(DIE_OOPS, str, regs, err, 255, SIGSEGV) == NOTIFY_STOP) |
| return 1; |
| |
| print_modules(); |
| show_regs(regs); |
| |
| return 0; |
| } |
| NOKPROBE_SYMBOL(__die); |
| |
| void die(const char *str, struct pt_regs *regs, long err) |
| { |
| unsigned long flags; |
| |
| /* |
| * system_reset_excption handles debugger, crash dump, panic, for 0x100 |
| */ |
| if (TRAP(regs) != 0x100) { |
| if (debugger(regs)) |
| return; |
| } |
| |
| flags = oops_begin(regs); |
| if (__die(str, regs, err)) |
| err = 0; |
| oops_end(flags, regs, err); |
| } |
| NOKPROBE_SYMBOL(die); |
| |
| void user_single_step_siginfo(struct task_struct *tsk, |
| struct pt_regs *regs, siginfo_t *info) |
| { |
| memset(info, 0, sizeof(*info)); |
| info->si_signo = SIGTRAP; |
| info->si_code = TRAP_TRACE; |
| info->si_addr = (void __user *)regs->nip; |
| } |
| |
| void _exception(int signr, struct pt_regs *regs, int code, unsigned long addr) |
| { |
| siginfo_t info; |
| const char fmt32[] = KERN_INFO "%s[%d]: unhandled signal %d " \ |
| "at %08lx nip %08lx lr %08lx code %x\n"; |
| const char fmt64[] = KERN_INFO "%s[%d]: unhandled signal %d " \ |
| "at %016lx nip %016lx lr %016lx code %x\n"; |
| |
| if (!user_mode(regs)) { |
| die("Exception in kernel mode", regs, signr); |
| return; |
| } |
| |
| if (show_unhandled_signals && unhandled_signal(current, signr)) { |
| printk_ratelimited(regs->msr & MSR_64BIT ? fmt64 : fmt32, |
| current->comm, current->pid, signr, |
| addr, regs->nip, regs->link, code); |
| } |
| |
| if (arch_irqs_disabled() && !arch_irq_disabled_regs(regs)) |
| local_irq_enable(); |
| |
| current->thread.trap_nr = code; |
| memset(&info, 0, sizeof(info)); |
| info.si_signo = signr; |
| info.si_code = code; |
| info.si_addr = (void __user *) addr; |
| force_sig_info(signr, &info, current); |
| } |
| |
| void system_reset_exception(struct pt_regs *regs) |
| { |
| /* |
| * Avoid crashes in case of nested NMI exceptions. Recoverability |
| * is determined by RI and in_nmi |
| */ |
| bool nested = in_nmi(); |
| if (!nested) |
| nmi_enter(); |
| |
| __this_cpu_inc(irq_stat.sreset_irqs); |
| |
| /* See if any machine dependent calls */ |
| if (ppc_md.system_reset_exception) { |
| if (ppc_md.system_reset_exception(regs)) |
| goto out; |
| } |
| |
| if (debugger(regs)) |
| goto out; |
| |
| /* |
| * A system reset is a request to dump, so we always send |
| * it through the crashdump code (if fadump or kdump are |
| * registered). |
| */ |
| crash_fadump(regs, "System Reset"); |
| |
| crash_kexec(regs); |
| |
| /* |
| * We aren't the primary crash CPU. We need to send it |
| * to a holding pattern to avoid it ending up in the panic |
| * code. |
| */ |
| crash_kexec_secondary(regs); |
| |
| /* |
| * No debugger or crash dump registered, print logs then |
| * panic. |
| */ |
| die("System Reset", regs, SIGABRT); |
| |
| mdelay(2*MSEC_PER_SEC); /* Wait a little while for others to print */ |
| add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE); |
| nmi_panic(regs, "System Reset"); |
| |
| out: |
| #ifdef CONFIG_PPC_BOOK3S_64 |
| BUG_ON(get_paca()->in_nmi == 0); |
| if (get_paca()->in_nmi > 1) |
| die("Unrecoverable nested System Reset", regs, SIGABRT); |
| #endif |
| /* Must die if the interrupt is not recoverable */ |
| if (!(regs->msr & MSR_RI)) { |
| /* For the reason explained in die_mce, nmi_exit before die */ |
| nmi_exit(); |
| die("Unrecoverable System Reset", regs, SIGABRT); |
| } |
| |
| if (!nested) |
| nmi_exit(); |
| |
| /* What should we do here? We could issue a shutdown or hard reset. */ |
| } |
| |
| /* |
| * I/O accesses can cause machine checks on powermacs. |
| * Check if the NIP corresponds to the address of a sync |
| * instruction for which there is an entry in the exception |
| * table. |
| * Note that the 601 only takes a machine check on TEA |
| * (transfer error ack) signal assertion, and does not |
| * set any of the top 16 bits of SRR1. |
| * -- paulus. |
| */ |
| static inline int check_io_access(struct pt_regs *regs) |
| { |
| #ifdef CONFIG_PPC32 |
| unsigned long msr = regs->msr; |
| const struct exception_table_entry *entry; |
| unsigned int *nip = (unsigned int *)regs->nip; |
| |
| if (((msr & 0xffff0000) == 0 || (msr & (0x80000 | 0x40000))) |
| && (entry = search_exception_tables(regs->nip)) != NULL) { |
| /* |
| * Check that it's a sync instruction, or somewhere |
| * in the twi; isync; nop sequence that inb/inw/inl uses. |
| * As the address is in the exception table |
| * we should be able to read the instr there. |
| * For the debug message, we look at the preceding |
| * load or store. |
| */ |
| if (*nip == PPC_INST_NOP) |
| nip -= 2; |
| else if (*nip == PPC_INST_ISYNC) |
| --nip; |
| if (*nip == PPC_INST_SYNC || (*nip >> 26) == OP_TRAP) { |
| unsigned int rb; |
| |
| --nip; |
| rb = (*nip >> 11) & 0x1f; |
| printk(KERN_DEBUG "%s bad port %lx at %p\n", |
| (*nip & 0x100)? "OUT to": "IN from", |
| regs->gpr[rb] - _IO_BASE, nip); |
| regs->msr |= MSR_RI; |
| regs->nip = extable_fixup(entry); |
| return 1; |
| } |
| } |
| #endif /* CONFIG_PPC32 */ |
| return 0; |
| } |
| |
| #ifdef CONFIG_PPC_ADV_DEBUG_REGS |
| /* On 4xx, the reason for the machine check or program exception |
| is in the ESR. */ |
| #define get_reason(regs) ((regs)->dsisr) |
| #define REASON_FP ESR_FP |
| #define REASON_ILLEGAL (ESR_PIL | ESR_PUO) |
| #define REASON_PRIVILEGED ESR_PPR |
| #define REASON_TRAP ESR_PTR |
| |
| /* single-step stuff */ |
| #define single_stepping(regs) (current->thread.debug.dbcr0 & DBCR0_IC) |
| #define clear_single_step(regs) (current->thread.debug.dbcr0 &= ~DBCR0_IC) |
| |
| #else |
| /* On non-4xx, the reason for the machine check or program |
| exception is in the MSR. */ |
| #define get_reason(regs) ((regs)->msr) |
| #define REASON_TM SRR1_PROGTM |
| #define REASON_FP SRR1_PROGFPE |
| #define REASON_ILLEGAL SRR1_PROGILL |
| #define REASON_PRIVILEGED SRR1_PROGPRIV |
| #define REASON_TRAP SRR1_PROGTRAP |
| |
| #define single_stepping(regs) ((regs)->msr & MSR_SE) |
| #define clear_single_step(regs) ((regs)->msr &= ~MSR_SE) |
| #endif |
| |
| #if defined(CONFIG_E500) |
| int machine_check_e500mc(struct pt_regs *regs) |
| { |
| unsigned long mcsr = mfspr(SPRN_MCSR); |
| unsigned long pvr = mfspr(SPRN_PVR); |
| unsigned long reason = mcsr; |
| int recoverable = 1; |
| |
| if (reason & MCSR_LD) { |
| recoverable = fsl_rio_mcheck_exception(regs); |
| if (recoverable == 1) |
| goto silent_out; |
| } |
| |
| printk("Machine check in kernel mode.\n"); |
| printk("Caused by (from MCSR=%lx): ", reason); |
| |
| if (reason & MCSR_MCP) |
| printk("Machine Check Signal\n"); |
| |
| if (reason & MCSR_ICPERR) { |
| printk("Instruction Cache Parity Error\n"); |
| |
| /* |
| * This is recoverable by invalidating the i-cache. |
| */ |
| mtspr(SPRN_L1CSR1, mfspr(SPRN_L1CSR1) | L1CSR1_ICFI); |
| while (mfspr(SPRN_L1CSR1) & L1CSR1_ICFI) |
| ; |
| |
| /* |
| * This will generally be accompanied by an instruction |
| * fetch error report -- only treat MCSR_IF as fatal |
| * if it wasn't due to an L1 parity error. |
| */ |
| reason &= ~MCSR_IF; |
| } |
| |
| if (reason & MCSR_DCPERR_MC) { |
| printk("Data Cache Parity Error\n"); |
| |
| /* |
| * In write shadow mode we auto-recover from the error, but it |
| * may still get logged and cause a machine check. We should |
| * only treat the non-write shadow case as non-recoverable. |
| */ |
| /* On e6500 core, L1 DCWS (Data cache write shadow mode) bit |
| * is not implemented but L1 data cache always runs in write |
| * shadow mode. Hence on data cache parity errors HW will |
| * automatically invalidate the L1 Data Cache. |
| */ |
| if (PVR_VER(pvr) != PVR_VER_E6500) { |
| if (!(mfspr(SPRN_L1CSR2) & L1CSR2_DCWS)) |
| recoverable = 0; |
| } |
| } |
| |
| if (reason & MCSR_L2MMU_MHIT) { |
| printk("Hit on multiple TLB entries\n"); |
| recoverable = 0; |
| } |
| |
| if (reason & MCSR_NMI) |
| printk("Non-maskable interrupt\n"); |
| |
| if (reason & MCSR_IF) { |
| printk("Instruction Fetch Error Report\n"); |
| recoverable = 0; |
| } |
| |
| if (reason & MCSR_LD) { |
| printk("Load Error Report\n"); |
| recoverable = 0; |
| } |
| |
| if (reason & MCSR_ST) { |
| printk("Store Error Report\n"); |
| recoverable = 0; |
| } |
| |
| if (reason & MCSR_LDG) { |
| printk("Guarded Load Error Report\n"); |
| recoverable = 0; |
| } |
| |
| if (reason & MCSR_TLBSYNC) |
| printk("Simultaneous tlbsync operations\n"); |
| |
| if (reason & MCSR_BSL2_ERR) { |
| printk("Level 2 Cache Error\n"); |
| recoverable = 0; |
| } |
| |
| if (reason & MCSR_MAV) { |
| u64 addr; |
| |
| addr = mfspr(SPRN_MCAR); |
| addr |= (u64)mfspr(SPRN_MCARU) << 32; |
| |
| printk("Machine Check %s Address: %#llx\n", |
| reason & MCSR_MEA ? "Effective" : "Physical", addr); |
| } |
| |
| silent_out: |
| mtspr(SPRN_MCSR, mcsr); |
| return mfspr(SPRN_MCSR) == 0 && recoverable; |
| } |
| |
| int machine_check_e500(struct pt_regs *regs) |
| { |
| unsigned long reason = mfspr(SPRN_MCSR); |
| |
| if (reason & MCSR_BUS_RBERR) { |
| if (fsl_rio_mcheck_exception(regs)) |
| return 1; |
| if (fsl_pci_mcheck_exception(regs)) |
| return 1; |
| } |
| |
| printk("Machine check in kernel mode.\n"); |
| printk("Caused by (from MCSR=%lx): ", reason); |
| |
| if (reason & MCSR_MCP) |
| printk("Machine Check Signal\n"); |
| if (reason & MCSR_ICPERR) |
| printk("Instruction Cache Parity Error\n"); |
| if (reason & MCSR_DCP_PERR) |
| printk("Data Cache Push Parity Error\n"); |
| if (reason & MCSR_DCPERR) |
| printk("Data Cache Parity Error\n"); |
| if (reason & MCSR_BUS_IAERR) |
| printk("Bus - Instruction Address Error\n"); |
| if (reason & MCSR_BUS_RAERR) |
| printk("Bus - Read Address Error\n"); |
| if (reason & MCSR_BUS_WAERR) |
| printk("Bus - Write Address Error\n"); |
| if (reason & MCSR_BUS_IBERR) |
| printk("Bus - Instruction Data Error\n"); |
| if (reason & MCSR_BUS_RBERR) |
| printk("Bus - Read Data Bus Error\n"); |
| if (reason & MCSR_BUS_WBERR) |
| printk("Bus - Write Data Bus Error\n"); |
| if (reason & MCSR_BUS_IPERR) |
| printk("Bus - Instruction Parity Error\n"); |
| if (reason & MCSR_BUS_RPERR) |
| printk("Bus - Read Parity Error\n"); |
| |
| return 0; |
| } |
| |
| int machine_check_generic(struct pt_regs *regs) |
| { |
| return 0; |
| } |
| #elif defined(CONFIG_E200) |
| int machine_check_e200(struct pt_regs *regs) |
| { |
| unsigned long reason = mfspr(SPRN_MCSR); |
| |
| printk("Machine check in kernel mode.\n"); |
| printk("Caused by (from MCSR=%lx): ", reason); |
| |
| if (reason & MCSR_MCP) |
| printk("Machine Check Signal\n"); |
| if (reason & MCSR_CP_PERR) |
| printk("Cache Push Parity Error\n"); |
| if (reason & MCSR_CPERR) |
| printk("Cache Parity Error\n"); |
| if (reason & MCSR_EXCP_ERR) |
| printk("ISI, ITLB, or Bus Error on first instruction fetch for an exception handler\n"); |
| if (reason & MCSR_BUS_IRERR) |
| printk("Bus - Read Bus Error on instruction fetch\n"); |
| if (reason & MCSR_BUS_DRERR) |
| printk("Bus - Read Bus Error on data load\n"); |
| if (reason & MCSR_BUS_WRERR) |
| printk("Bus - Write Bus Error on buffered store or cache line push\n"); |
| |
| return 0; |
| } |
| #elif defined(CONFIG_PPC32) |
| int machine_check_generic(struct pt_regs *regs) |
| { |
| unsigned long reason = regs->msr; |
| |
| printk("Machine check in kernel mode.\n"); |
| printk("Caused by (from SRR1=%lx): ", reason); |
| switch (reason & 0x601F0000) { |
| case 0x80000: |
| printk("Machine check signal\n"); |
| break; |
| case 0: /* for 601 */ |
| case 0x40000: |
| case 0x140000: /* 7450 MSS error and TEA */ |
| printk("Transfer error ack signal\n"); |
| break; |
| case 0x20000: |
| printk("Data parity error signal\n"); |
| break; |
| case 0x10000: |
| printk("Address parity error signal\n"); |
| break; |
| case 0x20000000: |
| printk("L1 Data Cache error\n"); |
| break; |
| case 0x40000000: |
| printk("L1 Instruction Cache error\n"); |
| break; |
| case 0x00100000: |
| printk("L2 data cache parity error\n"); |
| break; |
| default: |
| printk("Unknown values in msr\n"); |
| } |
| return 0; |
| } |
| #endif /* everything else */ |
| |
| void machine_check_exception(struct pt_regs *regs) |
| { |
| int recover = 0; |
| bool nested = in_nmi(); |
| if (!nested) |
| nmi_enter(); |
| |
| /* 64s accounts the mce in machine_check_early when in HVMODE */ |
| if (!IS_ENABLED(CONFIG_PPC_BOOK3S_64) || !cpu_has_feature(CPU_FTR_HVMODE)) |
| __this_cpu_inc(irq_stat.mce_exceptions); |
| |
| add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE); |
| |
| /* See if any machine dependent calls. In theory, we would want |
| * to call the CPU first, and call the ppc_md. one if the CPU |
| * one returns a positive number. However there is existing code |
| * that assumes the board gets a first chance, so let's keep it |
| * that way for now and fix things later. --BenH. |
| */ |
| if (ppc_md.machine_check_exception) |
| recover = ppc_md.machine_check_exception(regs); |
| else if (cur_cpu_spec->machine_check) |
| recover = cur_cpu_spec->machine_check(regs); |
| |
| if (recover > 0) |
| goto bail; |
| |
| if (debugger_fault_handler(regs)) |
| goto bail; |
| |
| if (check_io_access(regs)) |
| goto bail; |
| |
| if (!nested) |
| nmi_exit(); |
| |
| die("Machine check", regs, SIGBUS); |
| |
| /* Must die if the interrupt is not recoverable */ |
| if (!(regs->msr & MSR_RI)) |
| die("Unrecoverable Machine check", regs, SIGBUS); |
| |
| return; |
| |
| bail: |
| if (!nested) |
| nmi_exit(); |
| } |
| |
| void SMIException(struct pt_regs *regs) |
| { |
| die("System Management Interrupt", regs, SIGABRT); |
| } |
| |
| void handle_hmi_exception(struct pt_regs *regs) |
| { |
| struct pt_regs *old_regs; |
| |
| old_regs = set_irq_regs(regs); |
| irq_enter(); |
| |
| if (ppc_md.handle_hmi_exception) |
| ppc_md.handle_hmi_exception(regs); |
| |
| irq_exit(); |
| set_irq_regs(old_regs); |
| } |
| |
| void unknown_exception(struct pt_regs *regs) |
| { |
| enum ctx_state prev_state = exception_enter(); |
| |
| printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n", |
| regs->nip, regs->msr, regs->trap); |
| |
| _exception(SIGTRAP, regs, 0, 0); |
| |
| exception_exit(prev_state); |
| } |
| |
| void instruction_breakpoint_exception(struct pt_regs *regs) |
| { |
| enum ctx_state prev_state = exception_enter(); |
| |
| if (notify_die(DIE_IABR_MATCH, "iabr_match", regs, 5, |
| 5, SIGTRAP) == NOTIFY_STOP) |
| goto bail; |
| if (debugger_iabr_match(regs)) |
| goto bail; |
| _exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip); |
| |
| bail: |
| exception_exit(prev_state); |
| } |
| |
| void RunModeException(struct pt_regs *regs) |
| { |
| _exception(SIGTRAP, regs, 0, 0); |
| } |
| |
| void single_step_exception(struct pt_regs *regs) |
| { |
| enum ctx_state prev_state = exception_enter(); |
| |
| clear_single_step(regs); |
| |
| if (kprobe_post_handler(regs)) |
| return; |
| |
| if (notify_die(DIE_SSTEP, "single_step", regs, 5, |
| 5, SIGTRAP) == NOTIFY_STOP) |
| goto bail; |
| if (debugger_sstep(regs)) |
| goto bail; |
| |
| _exception(SIGTRAP, regs, TRAP_TRACE, regs->nip); |
| |
| bail: |
| exception_exit(prev_state); |
| } |
| NOKPROBE_SYMBOL(single_step_exception); |
| |
| /* |
| * After we have successfully emulated an instruction, we have to |
| * check if the instruction was being single-stepped, and if so, |
| * pretend we got a single-step exception. This was pointed out |
| * by Kumar Gala. -- paulus |
| */ |
| static void emulate_single_step(struct pt_regs *regs) |
| { |
| if (single_stepping(regs)) |
| single_step_exception(regs); |
| } |
| |
| static inline int __parse_fpscr(unsigned long fpscr) |
| { |
| int ret = 0; |
| |
| /* Invalid operation */ |
| if ((fpscr & FPSCR_VE) && (fpscr & FPSCR_VX)) |
| ret = FPE_FLTINV; |
| |
| /* Overflow */ |
| else if ((fpscr & FPSCR_OE) && (fpscr & FPSCR_OX)) |
| ret = FPE_FLTOVF; |
| |
| /* Underflow */ |
| else if ((fpscr & FPSCR_UE) && (fpscr & FPSCR_UX)) |
| ret = FPE_FLTUND; |
| |
| /* Divide by zero */ |
| else if ((fpscr & FPSCR_ZE) && (fpscr & FPSCR_ZX)) |
| ret = FPE_FLTDIV; |
| |
| /* Inexact result */ |
| else if ((fpscr & FPSCR_XE) && (fpscr & FPSCR_XX)) |
| ret = FPE_FLTRES; |
| |
| return ret; |
| } |
| |
| static void parse_fpe(struct pt_regs *regs) |
| { |
| int code = 0; |
| |
| flush_fp_to_thread(current); |
| |
| code = __parse_fpscr(current->thread.fp_state.fpscr); |
| |
| _exception(SIGFPE, regs, code, regs->nip); |
| } |
| |
| /* |
| * Illegal instruction emulation support. Originally written to |
| * provide the PVR to user applications using the mfspr rd, PVR. |
| * Return non-zero if we can't emulate, or -EFAULT if the associated |
| * memory access caused an access fault. Return zero on success. |
| * |
| * There are a couple of ways to do this, either "decode" the instruction |
| * or directly match lots of bits. In this case, matching lots of |
| * bits is faster and easier. |
| * |
| */ |
| static int emulate_string_inst(struct pt_regs *regs, u32 instword) |
| { |
| u8 rT = (instword >> 21) & 0x1f; |
| u8 rA = (instword >> 16) & 0x1f; |
| u8 NB_RB = (instword >> 11) & 0x1f; |
| u32 num_bytes; |
| unsigned long EA; |
| int pos = 0; |
| |
| /* Early out if we are an invalid form of lswx */ |
| if ((instword & PPC_INST_STRING_MASK) == PPC_INST_LSWX) |
| if ((rT == rA) || (rT == NB_RB)) |
| return -EINVAL; |
| |
| EA = (rA == 0) ? 0 : regs->gpr[rA]; |
| |
| switch (instword & PPC_INST_STRING_MASK) { |
| case PPC_INST_LSWX: |
| case PPC_INST_STSWX: |
| EA += NB_RB; |
| num_bytes = regs->xer & 0x7f; |
| break; |
| case PPC_INST_LSWI: |
| case PPC_INST_STSWI: |
| num_bytes = (NB_RB == 0) ? 32 : NB_RB; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| while (num_bytes != 0) |
| { |
| u8 val; |
| u32 shift = 8 * (3 - (pos & 0x3)); |
| |
| /* if process is 32-bit, clear upper 32 bits of EA */ |
| if ((regs->msr & MSR_64BIT) == 0) |
| EA &= 0xFFFFFFFF; |
| |
| switch ((instword & PPC_INST_STRING_MASK)) { |
| case PPC_INST_LSWX: |
| case PPC_INST_LSWI: |
| if (get_user(val, (u8 __user *)EA)) |
| return -EFAULT; |
| /* first time updating this reg, |
| * zero it out */ |
| if (pos == 0) |
| regs->gpr[rT] = 0; |
| regs->gpr[rT] |= val << shift; |
| break; |
| case PPC_INST_STSWI: |
| case PPC_INST_STSWX: |
| val = regs->gpr[rT] >> shift; |
| if (put_user(val, (u8 __user *)EA)) |
| return -EFAULT; |
| break; |
| } |
| /* move EA to next address */ |
| EA += 1; |
| num_bytes--; |
| |
| /* manage our position within the register */ |
| if (++pos == 4) { |
| pos = 0; |
| if (++rT == 32) |
| rT = 0; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int emulate_popcntb_inst(struct pt_regs *regs, u32 instword) |
| { |
| u32 ra,rs; |
| unsigned long tmp; |
| |
| ra = (instword >> 16) & 0x1f; |
| rs = (instword >> 21) & 0x1f; |
| |
| tmp = regs->gpr[rs]; |
| tmp = tmp - ((tmp >> 1) & 0x5555555555555555ULL); |
| tmp = (tmp & 0x3333333333333333ULL) + ((tmp >> 2) & 0x3333333333333333ULL); |
| tmp = (tmp + (tmp >> 4)) & 0x0f0f0f0f0f0f0f0fULL; |
| regs->gpr[ra] = tmp; |
| |
| return 0; |
| } |
| |
| static int emulate_isel(struct pt_regs *regs, u32 instword) |
| { |
| u8 rT = (instword >> 21) & 0x1f; |
| u8 rA = (instword >> 16) & 0x1f; |
| u8 rB = (instword >> 11) & 0x1f; |
| u8 BC = (instword >> 6) & 0x1f; |
| u8 bit; |
| unsigned long tmp; |
| |
| tmp = (rA == 0) ? 0 : regs->gpr[rA]; |
| bit = (regs->ccr >> (31 - BC)) & 0x1; |
| |
| regs->gpr[rT] = bit ? tmp : regs->gpr[rB]; |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| static inline bool tm_abort_check(struct pt_regs *regs, int cause) |
| { |
| /* If we're emulating a load/store in an active transaction, we cannot |
| * emulate it as the kernel operates in transaction suspended context. |
| * We need to abort the transaction. This creates a persistent TM |
| * abort so tell the user what caused it with a new code. |
| */ |
| if (MSR_TM_TRANSACTIONAL(regs->msr)) { |
| tm_enable(); |
| tm_abort(cause); |
| return true; |
| } |
| return false; |
| } |
| #else |
| static inline bool tm_abort_check(struct pt_regs *regs, int reason) |
| { |
| return false; |
| } |
| #endif |
| |
| static int emulate_instruction(struct pt_regs *regs) |
| { |
| u32 instword; |
| u32 rd; |
| |
| if (!user_mode(regs)) |
| return -EINVAL; |
| CHECK_FULL_REGS(regs); |
| |
| if (get_user(instword, (u32 __user *)(regs->nip))) |
| return -EFAULT; |
| |
| /* Emulate the mfspr rD, PVR. */ |
| if ((instword & PPC_INST_MFSPR_PVR_MASK) == PPC_INST_MFSPR_PVR) { |
| PPC_WARN_EMULATED(mfpvr, regs); |
| rd = (instword >> 21) & 0x1f; |
| regs->gpr[rd] = mfspr(SPRN_PVR); |
| return 0; |
| } |
| |
| /* Emulating the dcba insn is just a no-op. */ |
| if ((instword & PPC_INST_DCBA_MASK) == PPC_INST_DCBA) { |
| PPC_WARN_EMULATED(dcba, regs); |
| return 0; |
| } |
| |
| /* Emulate the mcrxr insn. */ |
| if ((instword & PPC_INST_MCRXR_MASK) == PPC_INST_MCRXR) { |
| int shift = (instword >> 21) & 0x1c; |
| unsigned long msk = 0xf0000000UL >> shift; |
| |
| PPC_WARN_EMULATED(mcrxr, regs); |
| regs->ccr = (regs->ccr & ~msk) | ((regs->xer >> shift) & msk); |
| regs->xer &= ~0xf0000000UL; |
| return 0; |
| } |
| |
| /* Emulate load/store string insn. */ |
| if ((instword & PPC_INST_STRING_GEN_MASK) == PPC_INST_STRING) { |
| if (tm_abort_check(regs, |
| TM_CAUSE_EMULATE | TM_CAUSE_PERSISTENT)) |
| return -EINVAL; |
| PPC_WARN_EMULATED(string, regs); |
| return emulate_string_inst(regs, instword); |
| } |
| |
| /* Emulate the popcntb (Population Count Bytes) instruction. */ |
| if ((instword & PPC_INST_POPCNTB_MASK) == PPC_INST_POPCNTB) { |
| PPC_WARN_EMULATED(popcntb, regs); |
| return emulate_popcntb_inst(regs, instword); |
| } |
| |
| /* Emulate isel (Integer Select) instruction */ |
| if ((instword & PPC_INST_ISEL_MASK) == PPC_INST_ISEL) { |
| PPC_WARN_EMULATED(isel, regs); |
| return emulate_isel(regs, instword); |
| } |
| |
| /* Emulate sync instruction variants */ |
| if ((instword & PPC_INST_SYNC_MASK) == PPC_INST_SYNC) { |
| PPC_WARN_EMULATED(sync, regs); |
| asm volatile("sync"); |
| return 0; |
| } |
| |
| #ifdef CONFIG_PPC64 |
| /* Emulate the mfspr rD, DSCR. */ |
| if ((((instword & PPC_INST_MFSPR_DSCR_USER_MASK) == |
| PPC_INST_MFSPR_DSCR_USER) || |
| ((instword & PPC_INST_MFSPR_DSCR_MASK) == |
| PPC_INST_MFSPR_DSCR)) && |
| cpu_has_feature(CPU_FTR_DSCR)) { |
| PPC_WARN_EMULATED(mfdscr, regs); |
| rd = (instword >> 21) & 0x1f; |
| regs->gpr[rd] = mfspr(SPRN_DSCR); |
| return 0; |
| } |
| /* Emulate the mtspr DSCR, rD. */ |
| if ((((instword & PPC_INST_MTSPR_DSCR_USER_MASK) == |
| PPC_INST_MTSPR_DSCR_USER) || |
| ((instword & PPC_INST_MTSPR_DSCR_MASK) == |
| PPC_INST_MTSPR_DSCR)) && |
| cpu_has_feature(CPU_FTR_DSCR)) { |
| PPC_WARN_EMULATED(mtdscr, regs); |
| rd = (instword >> 21) & 0x1f; |
| current->thread.dscr = regs->gpr[rd]; |
| current->thread.dscr_inherit = 1; |
| mtspr(SPRN_DSCR, current->thread.dscr); |
| return 0; |
| } |
| #endif |
| |
| return -EINVAL; |
| } |
| |
| int is_valid_bugaddr(unsigned long addr) |
| { |
| return is_kernel_addr(addr); |
| } |
| |
| #ifdef CONFIG_MATH_EMULATION |
| static int emulate_math(struct pt_regs *regs) |
| { |
| int ret; |
| extern int do_mathemu(struct pt_regs *regs); |
| |
| ret = do_mathemu(regs); |
| if (ret >= 0) |
| PPC_WARN_EMULATED(math, regs); |
| |
| switch (ret) { |
| case 0: |
| emulate_single_step(regs); |
| return 0; |
| case 1: { |
| int code = 0; |
| code = __parse_fpscr(current->thread.fp_state.fpscr); |
| _exception(SIGFPE, regs, code, regs->nip); |
| return 0; |
| } |
| case -EFAULT: |
| _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip); |
| return 0; |
| } |
| |
| return -1; |
| } |
| #else |
| static inline int emulate_math(struct pt_regs *regs) { return -1; } |
| #endif |
| |
| void program_check_exception(struct pt_regs *regs) |
| { |
| enum ctx_state prev_state = exception_enter(); |
| unsigned int reason = get_reason(regs); |
| |
| /* We can now get here via a FP Unavailable exception if the core |
| * has no FPU, in that case the reason flags will be 0 */ |
| |
| if (reason & REASON_FP) { |
| /* IEEE FP exception */ |
| parse_fpe(regs); |
| goto bail; |
| } |
| if (reason & REASON_TRAP) { |
| unsigned long bugaddr; |
| /* Debugger is first in line to stop recursive faults in |
| * rcu_lock, notify_die, or atomic_notifier_call_chain */ |
| if (debugger_bpt(regs)) |
| goto bail; |
| |
| if (kprobe_handler(regs)) |
| goto bail; |
| |
| /* trap exception */ |
| if (notify_die(DIE_BPT, "breakpoint", regs, 5, 5, SIGTRAP) |
| == NOTIFY_STOP) |
| goto bail; |
| |
| bugaddr = regs->nip; |
| /* |
| * Fixup bugaddr for BUG_ON() in real mode |
| */ |
| if (!is_kernel_addr(bugaddr) && !(regs->msr & MSR_IR)) |
| bugaddr += PAGE_OFFSET; |
| |
| if (!(regs->msr & MSR_PR) && /* not user-mode */ |
| report_bug(bugaddr, regs) == BUG_TRAP_TYPE_WARN) { |
| regs->nip += 4; |
| goto bail; |
| } |
| _exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip); |
| goto bail; |
| } |
| #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| if (reason & REASON_TM) { |
| /* This is a TM "Bad Thing Exception" program check. |
| * This occurs when: |
| * - An rfid/hrfid/mtmsrd attempts to cause an illegal |
| * transition in TM states. |
| * - A trechkpt is attempted when transactional. |
| * - A treclaim is attempted when non transactional. |
| * - A tend is illegally attempted. |
| * - writing a TM SPR when transactional. |
| */ |
| if (!user_mode(regs) && |
| report_bug(regs->nip, regs) == BUG_TRAP_TYPE_WARN) { |
| regs->nip += 4; |
| goto bail; |
| } |
| /* If usermode caused this, it's done something illegal and |
| * gets a SIGILL slap on the wrist. We call it an illegal |
| * operand to distinguish from the instruction just being bad |
| * (e.g. executing a 'tend' on a CPU without TM!); it's an |
| * illegal /placement/ of a valid instruction. |
| */ |
| if (user_mode(regs)) { |
| _exception(SIGILL, regs, ILL_ILLOPN, regs->nip); |
| goto bail; |
| } else { |
| printk(KERN_EMERG "Unexpected TM Bad Thing exception " |
| "at %lx (msr 0x%x)\n", regs->nip, reason); |
| die("Unrecoverable exception", regs, SIGABRT); |
| } |
| } |
| #endif |
| |
| /* |
| * If we took the program check in the kernel skip down to sending a |
| * SIGILL. The subsequent cases all relate to emulating instructions |
| * which we should only do for userspace. We also do not want to enable |
| * interrupts for kernel faults because that might lead to further |
| * faults, and loose the context of the original exception. |
| */ |
| if (!user_mode(regs)) |
| goto sigill; |
| |
| /* We restore the interrupt state now */ |
| if (!arch_irq_disabled_regs(regs)) |
| local_irq_enable(); |
| |
| /* (reason & REASON_ILLEGAL) would be the obvious thing here, |
| * but there seems to be a hardware bug on the 405GP (RevD) |
| * that means ESR is sometimes set incorrectly - either to |
| * ESR_DST (!?) or 0. In the process of chasing this with the |
| * hardware people - not sure if it can happen on any illegal |
| * instruction or only on FP instructions, whether there is a |
| * pattern to occurrences etc. -dgibson 31/Mar/2003 |
| */ |
| if (!emulate_math(regs)) |
| goto bail; |
| |
| /* Try to emulate it if we should. */ |
| if (reason & (REASON_ILLEGAL | REASON_PRIVILEGED)) { |
| switch (emulate_instruction(regs)) { |
| case 0: |
| regs->nip += 4; |
| emulate_single_step(regs); |
| goto bail; |
| case -EFAULT: |
| _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip); |
| goto bail; |
| } |
| } |
| |
| sigill: |
| if (reason & REASON_PRIVILEGED) |
| _exception(SIGILL, regs, ILL_PRVOPC, regs->nip); |
| else |
| _exception(SIGILL, regs, ILL_ILLOPC, regs->nip); |
| |
| bail: |
| exception_exit(prev_state); |
| } |
| NOKPROBE_SYMBOL(program_check_exception); |
| |
| /* |
| * This occurs when running in hypervisor mode on POWER6 or later |
| * and an illegal instruction is encountered. |
| */ |
| void emulation_assist_interrupt(struct pt_regs *regs) |
| { |
| regs->msr |= REASON_ILLEGAL; |
| program_check_exception(regs); |
| } |
| NOKPROBE_SYMBOL(emulation_assist_interrupt); |
| |
| void alignment_exception(struct pt_regs *regs) |
| { |
| enum ctx_state prev_state = exception_enter(); |
| int sig, code, fixed = 0; |
| |
| /* We restore the interrupt state now */ |
| if (!arch_irq_disabled_regs(regs)) |
| local_irq_enable(); |
| |
| if (tm_abort_check(regs, TM_CAUSE_ALIGNMENT | TM_CAUSE_PERSISTENT)) |
| goto bail; |
| |
| /* we don't implement logging of alignment exceptions */ |
| if (!(current->thread.align_ctl & PR_UNALIGN_SIGBUS)) |
| fixed = fix_alignment(regs); |
| |
| if (fixed == 1) { |
| regs->nip += 4; /* skip over emulated instruction */ |
| emulate_single_step(regs); |
| goto bail; |
| } |
| |
| /* Operand address was bad */ |
| if (fixed == -EFAULT) { |
| sig = SIGSEGV; |
| code = SEGV_ACCERR; |
| } else { |
| sig = SIGBUS; |
| code = BUS_ADRALN; |
| } |
| if (user_mode(regs)) |
| _exception(sig, regs, code, regs->dar); |
| else |
| bad_page_fault(regs, regs->dar, sig); |
| |
| bail: |
| exception_exit(prev_state); |
| } |
| |
| void slb_miss_bad_addr(struct pt_regs *regs) |
| { |
| enum ctx_state prev_state = exception_enter(); |
| |
| if (user_mode(regs)) |
| _exception(SIGSEGV, regs, SEGV_BNDERR, regs->dar); |
| else |
| bad_page_fault(regs, regs->dar, SIGSEGV); |
| |
| exception_exit(prev_state); |
| } |
| |
| void StackOverflow(struct pt_regs *regs) |
| { |
| pr_crit("Kernel stack overflow in process %s[%d], r1=%lx\n", |
| current->comm, task_pid_nr(current), regs->gpr[1]); |
| debugger(regs); |
| show_regs(regs); |
| panic("kernel stack overflow"); |
| } |
| |
| void nonrecoverable_exception(struct pt_regs *regs) |
| { |
| printk(KERN_ERR "Non-recoverable exception at PC=%lx MSR=%lx\n", |
| regs->nip, regs->msr); |
| debugger(regs); |
| die("nonrecoverable exception", regs, SIGKILL); |
| } |
| |
| void kernel_fp_unavailable_exception(struct pt_regs *regs) |
| { |
| enum ctx_state prev_state = exception_enter(); |
| |
| printk(KERN_EMERG "Unrecoverable FP Unavailable Exception " |
| "%lx at %lx\n", regs->trap, regs->nip); |
| die("Unrecoverable FP Unavailable Exception", regs, SIGABRT); |
| |
| exception_exit(prev_state); |
| } |
| |
| void altivec_unavailable_exception(struct pt_regs *regs) |
| { |
| enum ctx_state prev_state = exception_enter(); |
| |
| if (user_mode(regs)) { |
| /* A user program has executed an altivec instruction, |
| but this kernel doesn't support altivec. */ |
| _exception(SIGILL, regs, ILL_ILLOPC, regs->nip); |
| goto bail; |
| } |
| |
| printk(KERN_EMERG "Unrecoverable VMX/Altivec Unavailable Exception " |
| "%lx at %lx\n", regs->trap, regs->nip); |
| die("Unrecoverable VMX/Altivec Unavailable Exception", regs, SIGABRT); |
| |
| bail: |
| exception_exit(prev_state); |
| } |
| |
| void vsx_unavailable_exception(struct pt_regs *regs) |
| { |
| if (user_mode(regs)) { |
| /* A user program has executed an vsx instruction, |
| but this kernel doesn't support vsx. */ |
| _exception(SIGILL, regs, ILL_ILLOPC, regs->nip); |
| return; |
| } |
| |
| printk(KERN_EMERG "Unrecoverable VSX Unavailable Exception " |
| "%lx at %lx\n", regs->trap, regs->nip); |
| die("Unrecoverable VSX Unavailable Exception", regs, SIGABRT); |
| } |
| |
| #ifdef CONFIG_PPC64 |
| static void tm_unavailable(struct pt_regs *regs) |
| { |
| #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| if (user_mode(regs)) { |
| current->thread.load_tm++; |
| regs->msr |= MSR_TM; |
| tm_enable(); |
| tm_restore_sprs(¤t->thread); |
| return; |
| } |
| #endif |
| pr_emerg("Unrecoverable TM Unavailable Exception " |
| "%lx at %lx\n", regs->trap, regs->nip); |
| die("Unrecoverable TM Unavailable Exception", regs, SIGABRT); |
| } |
| |
| void facility_unavailable_exception(struct pt_regs *regs) |
| { |
| static char *facility_strings[] = { |
| [FSCR_FP_LG] = "FPU", |
| [FSCR_VECVSX_LG] = "VMX/VSX", |
| [FSCR_DSCR_LG] = "DSCR", |
| [FSCR_PM_LG] = "PMU SPRs", |
| [FSCR_BHRB_LG] = "BHRB", |
| [FSCR_TM_LG] = "TM", |
| [FSCR_EBB_LG] = "EBB", |
| [FSCR_TAR_LG] = "TAR", |
| [FSCR_MSGP_LG] = "MSGP", |
| [FSCR_SCV_LG] = "SCV", |
| }; |
| char *facility = "unknown"; |
| u64 value; |
| u32 instword, rd; |
| u8 status; |
| bool hv; |
| |
| hv = (regs->trap == 0xf80); |
| if (hv) |
| value = mfspr(SPRN_HFSCR); |
| else |
| value = mfspr(SPRN_FSCR); |
| |
| status = value >> 56; |
| if ((hv || status >= 2) && |
| (status < ARRAY_SIZE(facility_strings)) && |
| facility_strings[status]) |
| facility = facility_strings[status]; |
| |
| /* We should not have taken this interrupt in kernel */ |
| if (!user_mode(regs)) { |
| pr_emerg("Facility '%s' unavailable (%d) exception in kernel mode at %lx\n", |
| facility, status, regs->nip); |
| die("Unexpected facility unavailable exception", regs, SIGABRT); |
| } |
| |
| /* We restore the interrupt state now */ |
| if (!arch_irq_disabled_regs(regs)) |
| local_irq_enable(); |
| |
| if (status == FSCR_DSCR_LG) { |
| /* |
| * User is accessing the DSCR register using the problem |
| * state only SPR number (0x03) either through a mfspr or |
| * a mtspr instruction. If it is a write attempt through |
| * a mtspr, then we set the inherit bit. This also allows |
| * the user to write or read the register directly in the |
| * future by setting via the FSCR DSCR bit. But in case it |
| * is a read DSCR attempt through a mfspr instruction, we |
| * just emulate the instruction instead. This code path will |
| * always emulate all the mfspr instructions till the user |
| * has attempted at least one mtspr instruction. This way it |
| * preserves the same behaviour when the user is accessing |
| * the DSCR through privilege level only SPR number (0x11) |
| * which is emulated through illegal instruction exception. |
| * We always leave HFSCR DSCR set. |
| */ |
| if (get_user(instword, (u32 __user *)(regs->nip))) { |
| pr_err("Failed to fetch the user instruction\n"); |
| return; |
| } |
| |
| /* Write into DSCR (mtspr 0x03, RS) */ |
| if ((instword & PPC_INST_MTSPR_DSCR_USER_MASK) |
| == PPC_INST_MTSPR_DSCR_USER) { |
| rd = (instword >> 21) & 0x1f; |
| current->thread.dscr = regs->gpr[rd]; |
| current->thread.dscr_inherit = 1; |
| current->thread.fscr |= FSCR_DSCR; |
| mtspr(SPRN_FSCR, current->thread.fscr); |
| } |
| |
| /* Read from DSCR (mfspr RT, 0x03) */ |
| if ((instword & PPC_INST_MFSPR_DSCR_USER_MASK) |
| == PPC_INST_MFSPR_DSCR_USER) { |
| if (emulate_instruction(regs)) { |
| pr_err("DSCR based mfspr emulation failed\n"); |
| return; |
| } |
| regs->nip += 4; |
| emulate_single_step(regs); |
| } |
| return; |
| } |
| |
| if (status == FSCR_TM_LG) { |
| /* |
| * If we're here then the hardware is TM aware because it |
| * generated an exception with FSRM_TM set. |
| * |
| * If cpu_has_feature(CPU_FTR_TM) is false, then either firmware |
| * told us not to do TM, or the kernel is not built with TM |
| * support. |
| * |
| * If both of those things are true, then userspace can spam the |
| * console by triggering the printk() below just by continually |
| * doing tbegin (or any TM instruction). So in that case just |
| * send the process a SIGILL immediately. |
| */ |
| if (!cpu_has_feature(CPU_FTR_TM)) |
| goto out; |
| |
| tm_unavailable(regs); |
| return; |
| } |
| |
| pr_err_ratelimited("%sFacility '%s' unavailable (%d), exception at 0x%lx, MSR=%lx\n", |
| hv ? "Hypervisor " : "", facility, status, regs->nip, regs->msr); |
| |
| out: |
| _exception(SIGILL, regs, ILL_ILLOPC, regs->nip); |
| } |
| #endif |
| |
| #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| |
| void fp_unavailable_tm(struct pt_regs *regs) |
| { |
| /* Note: This does not handle any kind of FP laziness. */ |
| |
| TM_DEBUG("FP Unavailable trap whilst transactional at 0x%lx, MSR=%lx\n", |
| regs->nip, regs->msr); |
| |
| /* We can only have got here if the task started using FP after |
| * beginning the transaction. So, the transactional regs are just a |
| * copy of the checkpointed ones. But, we still need to recheckpoint |
| * as we're enabling FP for the process; it will return, abort the |
| * transaction, and probably retry but now with FP enabled. So the |
| * checkpointed FP registers need to be loaded. |
| */ |
| tm_reclaim_current(TM_CAUSE_FAC_UNAV); |
| /* Reclaim didn't save out any FPRs to transact_fprs. */ |
| |
| /* Enable FP for the task: */ |
| regs->msr |= (MSR_FP | current->thread.fpexc_mode); |
| |
| /* This loads and recheckpoints the FP registers from |
| * thread.fpr[]. They will remain in registers after the |
| * checkpoint so we don't need to reload them after. |
| * If VMX is in use, the VRs now hold checkpointed values, |
| * so we don't want to load the VRs from the thread_struct. |
| */ |
| tm_recheckpoint(¤t->thread, MSR_FP); |
| |
| /* If VMX is in use, get the transactional values back */ |
| if (regs->msr & MSR_VEC) { |
| msr_check_and_set(MSR_VEC); |
| load_vr_state(¤t->thread.vr_state); |
| /* At this point all the VSX state is loaded, so enable it */ |
| regs->msr |= MSR_VSX; |
| } |
| } |
| |
| void altivec_unavailable_tm(struct pt_regs *regs) |
| { |
| /* See the comments in fp_unavailable_tm(). This function operates |
| * the same way. |
| */ |
| |
| TM_DEBUG("Vector Unavailable trap whilst transactional at 0x%lx," |
| "MSR=%lx\n", |
| regs->nip, regs->msr); |
| tm_reclaim_current(TM_CAUSE_FAC_UNAV); |
| regs->msr |= MSR_VEC; |
| tm_recheckpoint(¤t->thread, MSR_VEC); |
| current->thread.used_vr = 1; |
| |
| if (regs->msr & MSR_FP) { |
| msr_check_and_set(MSR_FP); |
| load_fp_state(¤t->thread.fp_state); |
| regs->msr |= MSR_VSX; |
| } |
| } |
| |
| void vsx_unavailable_tm(struct pt_regs *regs) |
| { |
| unsigned long orig_msr = regs->msr; |
| |
| /* See the comments in fp_unavailable_tm(). This works similarly, |
| * though we're loading both FP and VEC registers in here. |
| * |
| * If FP isn't in use, load FP regs. If VEC isn't in use, load VEC |
| * regs. Either way, set MSR_VSX. |
| */ |
| |
| TM_DEBUG("VSX Unavailable trap whilst transactional at 0x%lx," |
| "MSR=%lx\n", |
| regs->nip, regs->msr); |
| |
| current->thread.used_vsr = 1; |
| |
| /* If FP and VMX are already loaded, we have all the state we need */ |
| if ((orig_msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC)) { |
| regs->msr |= MSR_VSX; |
| return; |
| } |
| |
| /* This reclaims FP and/or VR regs if they're already enabled */ |
| tm_reclaim_current(TM_CAUSE_FAC_UNAV); |
| |
| regs->msr |= MSR_VEC | MSR_FP | current->thread.fpexc_mode | |
| MSR_VSX; |
| |
| /* This loads & recheckpoints FP and VRs; but we have |
| * to be sure not to overwrite previously-valid state. |
| */ |
| tm_recheckpoint(¤t->thread, regs->msr & ~orig_msr); |
| |
| msr_check_and_set(orig_msr & (MSR_FP | MSR_VEC)); |
| |
| if (orig_msr & MSR_FP) |
| load_fp_state(¤t->thread.fp_state); |
| if (orig_msr & MSR_VEC) |
| load_vr_state(¤t->thread.vr_state); |
| } |
| #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ |
| |
| void performance_monitor_exception(struct pt_regs *regs) |
| { |
| __this_cpu_inc(irq_stat.pmu_irqs); |
| |
| perf_irq(regs); |
| } |
| |
| #ifdef CONFIG_PPC_ADV_DEBUG_REGS |
| static void handle_debug(struct pt_regs *regs, unsigned long debug_status) |
| { |
| int changed = 0; |
| /* |
| * Determine the cause of the debug event, clear the |
| * event flags and send a trap to the handler. Torez |
| */ |
| if (debug_status & (DBSR_DAC1R | DBSR_DAC1W)) { |
| dbcr_dac(current) &= ~(DBCR_DAC1R | DBCR_DAC1W); |
| #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE |
| current->thread.debug.dbcr2 &= ~DBCR2_DAC12MODE; |
| #endif |
| do_send_trap(regs, mfspr(SPRN_DAC1), debug_status, TRAP_HWBKPT, |
| 5); |
| changed |= 0x01; |
| } else if (debug_status & (DBSR_DAC2R | DBSR_DAC2W)) { |
| dbcr_dac(current) &= ~(DBCR_DAC2R | DBCR_DAC2W); |
| do_send_trap(regs, mfspr(SPRN_DAC2), debug_status, TRAP_HWBKPT, |
| 6); |
| changed |= 0x01; |
| } else if (debug_status & DBSR_IAC1) { |
| current->thread.debug.dbcr0 &= ~DBCR0_IAC1; |
| dbcr_iac_range(current) &= ~DBCR_IAC12MODE; |
| do_send_trap(regs, mfspr(SPRN_IAC1), debug_status, TRAP_HWBKPT, |
| 1); |
| changed |= 0x01; |
| } else if (debug_status & DBSR_IAC2) { |
| current->thread.debug.dbcr0 &= ~DBCR0_IAC2; |
| do_send_trap(regs, mfspr(SPRN_IAC2), debug_status, TRAP_HWBKPT, |
| 2); |
| changed |= 0x01; |
| } else if (debug_status & DBSR_IAC3) { |
| current->thread.debug.dbcr0 &= ~DBCR0_IAC3; |
| dbcr_iac_range(current) &= ~DBCR_IAC34MODE; |
| do_send_trap(regs, mfspr(SPRN_IAC3), debug_status, TRAP_HWBKPT, |
| 3); |
| changed |= 0x01; |
| } else if (debug_status & DBSR_IAC4) { |
| current->thread.debug.dbcr0 &= ~DBCR0_IAC4; |
| do_send_trap(regs, mfspr(SPRN_IAC4), debug_status, TRAP_HWBKPT, |
| 4); |
| changed |= 0x01; |
| } |
| /* |
| * At the point this routine was called, the MSR(DE) was turned off. |
| * Check all other debug flags and see if that bit needs to be turned |
| * back on or not. |
| */ |
| if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0, |
| current->thread.debug.dbcr1)) |
| regs->msr |= MSR_DE; |
| else |
| /* Make sure the IDM flag is off */ |
| current->thread.debug.dbcr0 &= ~DBCR0_IDM; |
| |
| if (changed & 0x01) |
| mtspr(SPRN_DBCR0, current->thread.debug.dbcr0); |
| } |
| |
| void DebugException(struct pt_regs *regs, unsigned long debug_status) |
| { |
| current->thread.debug.dbsr = debug_status; |
| |
| /* Hack alert: On BookE, Branch Taken stops on the branch itself, while |
| * on server, it stops on the target of the branch. In order to simulate |
| * the server behaviour, we thus restart right away with a single step |
| * instead of stopping here when hitting a BT |
| */ |
| if (debug_status & DBSR_BT) { |
| regs->msr &= ~MSR_DE; |
| |
| /* Disable BT */ |
| mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_BT); |
| /* Clear the BT event */ |
| mtspr(SPRN_DBSR, DBSR_BT); |
| |
| /* Do the single step trick only when coming from userspace */ |
| if (user_mode(regs)) { |
| current->thread.debug.dbcr0 &= ~DBCR0_BT; |
| current->thread.debug.dbcr0 |= DBCR0_IDM | DBCR0_IC; |
| regs->msr |= MSR_DE; |
| return; |
| } |
| |
| if (kprobe_post_handler(regs)) |
| return; |
| |
| if (notify_die(DIE_SSTEP, "block_step", regs, 5, |
| 5, SIGTRAP) == NOTIFY_STOP) { |
| return; |
| } |
| if (debugger_sstep(regs)) |
| return; |
| } else if (debug_status & DBSR_IC) { /* Instruction complete */ |
| regs->msr &= ~MSR_DE; |
| |
| /* Disable instruction completion */ |
| mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_IC); |
| /* Clear the instruction completion event */ |
| mtspr(SPRN_DBSR, DBSR_IC); |
| |
| if (kprobe_post_handler(regs)) |
| return; |
| |
| if (notify_die(DIE_SSTEP, "single_step", regs, 5, |
| 5, SIGTRAP) == NOTIFY_STOP) { |
| return; |
| } |
| |
| if (debugger_sstep(regs)) |
| return; |
| |
| if (user_mode(regs)) { |
| current->thread.debug.dbcr0 &= ~DBCR0_IC; |
| if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0, |
| current->thread.debug.dbcr1)) |
| regs->msr |= MSR_DE; |
| else |
| /* Make sure the IDM bit is off */ |
| current->thread.debug.dbcr0 &= ~DBCR0_IDM; |
| } |
| |
| _exception(SIGTRAP, regs, TRAP_TRACE, regs->nip); |
| } else |
| handle_debug(regs, debug_status); |
| } |
| NOKPROBE_SYMBOL(DebugException); |
| #endif /* CONFIG_PPC_ADV_DEBUG_REGS */ |
| |
| #if !defined(CONFIG_TAU_INT) |
| void TAUException(struct pt_regs *regs) |
| { |
| printk("TAU trap at PC: %lx, MSR: %lx, vector=%lx %s\n", |
| regs->nip, regs->msr, regs->trap, print_tainted()); |
| } |
| #endif /* CONFIG_INT_TAU */ |
| |
| #ifdef CONFIG_ALTIVEC |
| void altivec_assist_exception(struct pt_regs *regs) |
| { |
| int err; |
| |
| if (!user_mode(regs)) { |
| printk(KERN_EMERG "VMX/Altivec assist exception in kernel mode" |
| " at %lx\n", regs->nip); |
| die("Kernel VMX/Altivec assist exception", regs, SIGILL); |
| } |
| |
| flush_altivec_to_thread(current); |
| |
| PPC_WARN_EMULATED(altivec, regs); |
| err = emulate_altivec(regs); |
| if (err == 0) { |
| regs->nip += 4; /* skip emulated instruction */ |
| emulate_single_step(regs); |
| return; |
| } |
| |
| if (err == -EFAULT) { |
| /* got an error reading the instruction */ |
| _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip); |
| } else { |
| /* didn't recognize the instruction */ |
| /* XXX quick hack for now: set the non-Java bit in the VSCR */ |
| printk_ratelimited(KERN_ERR "Unrecognized altivec instruction " |
| "in %s at %lx\n", current->comm, regs->nip); |
| current->thread.vr_state.vscr.u[3] |= 0x10000; |
| } |
| } |
| #endif /* CONFIG_ALTIVEC */ |
| |
| #ifdef CONFIG_FSL_BOOKE |
| void CacheLockingException(struct pt_regs *regs, unsigned long address, |
| unsigned long error_code) |
| { |
| /* We treat cache locking instructions from the user |
| * as priv ops, in the future we could try to do |
| * something smarter |
| */ |
| if (error_code & (ESR_DLK|ESR_ILK)) |
| _exception(SIGILL, regs, ILL_PRVOPC, regs->nip); |
| return; |
| } |
| #endif /* CONFIG_FSL_BOOKE */ |
| |
| #ifdef CONFIG_SPE |
| void SPEFloatingPointException(struct pt_regs *regs) |
| { |
| extern int do_spe_mathemu(struct pt_regs *regs); |
| unsigned long spefscr; |
| int fpexc_mode; |
| int code = 0; |
| int err; |
| |
| flush_spe_to_thread(current); |
| |
| spefscr = current->thread.spefscr; |
| fpexc_mode = current->thread.fpexc_mode; |
| |
| if ((spefscr & SPEFSCR_FOVF) && (fpexc_mode & PR_FP_EXC_OVF)) { |
| code = FPE_FLTOVF; |
| } |
| else if ((spefscr & SPEFSCR_FUNF) && (fpexc_mode & PR_FP_EXC_UND)) { |
| code = FPE_FLTUND; |
| } |
| else if ((spefscr & SPEFSCR_FDBZ) && (fpexc_mode & PR_FP_EXC_DIV)) |
| code = FPE_FLTDIV; |
| else if ((spefscr & SPEFSCR_FINV) && (fpexc_mode & PR_FP_EXC_INV)) { |
| code = FPE_FLTINV; |
| } |
| else if ((spefscr & (SPEFSCR_FG | SPEFSCR_FX)) && (fpexc_mode & PR_FP_EXC_RES)) |
| code = FPE_FLTRES; |
| |
| err = do_spe_mathemu(regs); |
| if (err == 0) { |
| regs->nip += 4; /* skip emulated instruction */ |
| emulate_single_step(regs); |
| return; |
| } |
| |
| if (err == -EFAULT) { |
| /* got an error reading the instruction */ |
| _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip); |
| } else if (err == -EINVAL) { |
| /* didn't recognize the instruction */ |
| printk(KERN_ERR "unrecognized spe instruction " |
| "in %s at %lx\n", current->comm, regs->nip); |
| } else { |
| _exception(SIGFPE, regs, code, regs->nip); |
| } |
| |
| return; |
| } |
| |
| void SPEFloatingPointRoundException(struct pt_regs *regs) |
| { |
| extern int speround_handler(struct pt_regs *regs); |
| int err; |
| |
| preempt_disable(); |
| if (regs->msr & MSR_SPE) |
| giveup_spe(current); |
| preempt_enable(); |
| |
| regs->nip -= 4; |
| err = speround_handler(regs); |
| if (err == 0) { |
| regs->nip += 4; /* skip emulated instruction */ |
| emulate_single_step(regs); |
| return; |
| } |
| |
| if (err == -EFAULT) { |
| /* got an error reading the instruction */ |
| _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip); |
| } else if (err == -EINVAL) { |
| /* didn't recognize the instruction */ |
| printk(KERN_ERR "unrecognized spe instruction " |
| "in %s at %lx\n", current->comm, regs->nip); |
| } else { |
| _exception(SIGFPE, regs, 0, regs->nip); |
| return; |
| } |
| } |
| #endif |
| |
| /* |
| * We enter here if we get an unrecoverable exception, that is, one |
| * that happened at a point where the RI (recoverable interrupt) bit |
| * in the MSR is 0. This indicates that SRR0/1 are live, and that |
| * we therefore lost state by taking this exception. |
| */ |
| void unrecoverable_exception(struct pt_regs *regs) |
| { |
| printk(KERN_EMERG "Unrecoverable exception %lx at %lx\n", |
| regs->trap, regs->nip); |
| die("Unrecoverable exception", regs, SIGABRT); |
| } |
| NOKPROBE_SYMBOL(unrecoverable_exception); |
| |
| #if defined(CONFIG_BOOKE_WDT) || defined(CONFIG_40x) |
| /* |
| * Default handler for a Watchdog exception, |
| * spins until a reboot occurs |
| */ |
| void __attribute__ ((weak)) WatchdogHandler(struct pt_regs *regs) |
| { |
| /* Generic WatchdogHandler, implement your own */ |
| mtspr(SPRN_TCR, mfspr(SPRN_TCR)&(~TCR_WIE)); |
| return; |
| } |
| |
| void WatchdogException(struct pt_regs *regs) |
| { |
| printk (KERN_EMERG "PowerPC Book-E Watchdog Exception\n"); |
| WatchdogHandler(regs); |
| } |
| #endif |
| |
| /* |
| * We enter here if we discover during exception entry that we are |
| * running in supervisor mode with a userspace value in the stack pointer. |
| */ |
| void kernel_bad_stack(struct pt_regs *regs) |
| { |
| printk(KERN_EMERG "Bad kernel stack pointer %lx at %lx\n", |
| regs->gpr[1], regs->nip); |
| die("Bad kernel stack pointer", regs, SIGABRT); |
| } |
| NOKPROBE_SYMBOL(kernel_bad_stack); |
| |
| void __init trap_init(void) |
| { |
| } |
| |
| |
| #ifdef CONFIG_PPC_EMULATED_STATS |
| |
| #define WARN_EMULATED_SETUP(type) .type = { .name = #type } |
| |
| struct ppc_emulated ppc_emulated = { |
| #ifdef CONFIG_ALTIVEC |
| WARN_EMULATED_SETUP(altivec), |
| #endif |
| WARN_EMULATED_SETUP(dcba), |
| WARN_EMULATED_SETUP(dcbz), |
| WARN_EMULATED_SETUP(fp_pair), |
| WARN_EMULATED_SETUP(isel), |
| WARN_EMULATED_SETUP(mcrxr), |
| WARN_EMULATED_SETUP(mfpvr), |
| WARN_EMULATED_SETUP(multiple), |
| WARN_EMULATED_SETUP(popcntb), |
| WARN_EMULATED_SETUP(spe), |
| WARN_EMULATED_SETUP(string), |
| WARN_EMULATED_SETUP(sync), |
| WARN_EMULATED_SETUP(unaligned), |
| #ifdef CONFIG_MATH_EMULATION |
| WARN_EMULATED_SETUP(math), |
| #endif |
| #ifdef CONFIG_VSX |
| WARN_EMULATED_SETUP(vsx), |
| #endif |
| #ifdef CONFIG_PPC64 |
| WARN_EMULATED_SETUP(mfdscr), |
| WARN_EMULATED_SETUP(mtdscr), |
| WARN_EMULATED_SETUP(lq_stq), |
| #endif |
| }; |
| |
| u32 ppc_warn_emulated; |
| |
| void ppc_warn_emulated_print(const char *type) |
| { |
| pr_warn_ratelimited("%s used emulated %s instruction\n", current->comm, |
| type); |
| } |
| |
| static int __init ppc_warn_emulated_init(void) |
| { |
| struct dentry *dir, *d; |
| unsigned int i; |
| struct ppc_emulated_entry *entries = (void *)&ppc_emulated; |
| |
| if (!powerpc_debugfs_root) |
| return -ENODEV; |
| |
| dir = debugfs_create_dir("emulated_instructions", |
| powerpc_debugfs_root); |
| if (!dir) |
| return -ENOMEM; |
| |
| d = debugfs_create_u32("do_warn", S_IRUGO | S_IWUSR, dir, |
| &ppc_warn_emulated); |
| if (!d) |
| goto fail; |
| |
| for (i = 0; i < sizeof(ppc_emulated)/sizeof(*entries); i++) { |
| d = debugfs_create_u32(entries[i].name, S_IRUGO | S_IWUSR, dir, |
| (u32 *)&entries[i].val.counter); |
| if (!d) |
| goto fail; |
| } |
| |
| return 0; |
| |
| fail: |
| debugfs_remove_recursive(dir); |
| return -ENOMEM; |
| } |
| |
| device_initcall(ppc_warn_emulated_init); |
| |
| #endif /* CONFIG_PPC_EMULATED_STATS */ |