| /* arch/sparc64/kernel/process.c |
| * |
| * Copyright (C) 1995, 1996, 2008 David S. Miller (davem@davemloft.net) |
| * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be) |
| * Copyright (C) 1997, 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz) |
| */ |
| |
| /* |
| * This file handles the architecture-dependent parts of process handling.. |
| */ |
| |
| #include <stdarg.h> |
| |
| #include <linux/errno.h> |
| #include <linux/module.h> |
| #include <linux/sched.h> |
| #include <linux/kernel.h> |
| #include <linux/mm.h> |
| #include <linux/fs.h> |
| #include <linux/smp.h> |
| #include <linux/stddef.h> |
| #include <linux/ptrace.h> |
| #include <linux/slab.h> |
| #include <linux/user.h> |
| #include <linux/delay.h> |
| #include <linux/compat.h> |
| #include <linux/tick.h> |
| #include <linux/init.h> |
| #include <linux/cpu.h> |
| #include <linux/elfcore.h> |
| #include <linux/sysrq.h> |
| #include <linux/nmi.h> |
| |
| #include <asm/uaccess.h> |
| #include <asm/system.h> |
| #include <asm/page.h> |
| #include <asm/pgalloc.h> |
| #include <asm/pgtable.h> |
| #include <asm/processor.h> |
| #include <asm/pstate.h> |
| #include <asm/elf.h> |
| #include <asm/fpumacro.h> |
| #include <asm/head.h> |
| #include <asm/cpudata.h> |
| #include <asm/mmu_context.h> |
| #include <asm/unistd.h> |
| #include <asm/hypervisor.h> |
| #include <asm/syscalls.h> |
| #include <asm/irq_regs.h> |
| #include <asm/smp.h> |
| |
| #include "kstack.h" |
| |
| static void sparc64_yield(int cpu) |
| { |
| if (tlb_type != hypervisor) { |
| touch_nmi_watchdog(); |
| return; |
| } |
| |
| clear_thread_flag(TIF_POLLING_NRFLAG); |
| smp_mb__after_clear_bit(); |
| |
| while (!need_resched() && !cpu_is_offline(cpu)) { |
| unsigned long pstate; |
| |
| /* Disable interrupts. */ |
| __asm__ __volatile__( |
| "rdpr %%pstate, %0\n\t" |
| "andn %0, %1, %0\n\t" |
| "wrpr %0, %%g0, %%pstate" |
| : "=&r" (pstate) |
| : "i" (PSTATE_IE)); |
| |
| if (!need_resched() && !cpu_is_offline(cpu)) |
| sun4v_cpu_yield(); |
| |
| /* Re-enable interrupts. */ |
| __asm__ __volatile__( |
| "rdpr %%pstate, %0\n\t" |
| "or %0, %1, %0\n\t" |
| "wrpr %0, %%g0, %%pstate" |
| : "=&r" (pstate) |
| : "i" (PSTATE_IE)); |
| } |
| |
| set_thread_flag(TIF_POLLING_NRFLAG); |
| } |
| |
| /* The idle loop on sparc64. */ |
| void cpu_idle(void) |
| { |
| int cpu = smp_processor_id(); |
| |
| set_thread_flag(TIF_POLLING_NRFLAG); |
| |
| while(1) { |
| tick_nohz_stop_sched_tick(1); |
| |
| while (!need_resched() && !cpu_is_offline(cpu)) |
| sparc64_yield(cpu); |
| |
| tick_nohz_restart_sched_tick(); |
| |
| preempt_enable_no_resched(); |
| |
| #ifdef CONFIG_HOTPLUG_CPU |
| if (cpu_is_offline(cpu)) |
| cpu_play_dead(); |
| #endif |
| |
| schedule(); |
| preempt_disable(); |
| } |
| } |
| |
| #ifdef CONFIG_COMPAT |
| static void show_regwindow32(struct pt_regs *regs) |
| { |
| struct reg_window32 __user *rw; |
| struct reg_window32 r_w; |
| mm_segment_t old_fs; |
| |
| __asm__ __volatile__ ("flushw"); |
| rw = compat_ptr((unsigned)regs->u_regs[14]); |
| old_fs = get_fs(); |
| set_fs (USER_DS); |
| if (copy_from_user (&r_w, rw, sizeof(r_w))) { |
| set_fs (old_fs); |
| return; |
| } |
| |
| set_fs (old_fs); |
| printk("l0: %08x l1: %08x l2: %08x l3: %08x " |
| "l4: %08x l5: %08x l6: %08x l7: %08x\n", |
| r_w.locals[0], r_w.locals[1], r_w.locals[2], r_w.locals[3], |
| r_w.locals[4], r_w.locals[5], r_w.locals[6], r_w.locals[7]); |
| printk("i0: %08x i1: %08x i2: %08x i3: %08x " |
| "i4: %08x i5: %08x i6: %08x i7: %08x\n", |
| r_w.ins[0], r_w.ins[1], r_w.ins[2], r_w.ins[3], |
| r_w.ins[4], r_w.ins[5], r_w.ins[6], r_w.ins[7]); |
| } |
| #else |
| #define show_regwindow32(regs) do { } while (0) |
| #endif |
| |
| static void show_regwindow(struct pt_regs *regs) |
| { |
| struct reg_window __user *rw; |
| struct reg_window *rwk; |
| struct reg_window r_w; |
| mm_segment_t old_fs; |
| |
| if ((regs->tstate & TSTATE_PRIV) || !(test_thread_flag(TIF_32BIT))) { |
| __asm__ __volatile__ ("flushw"); |
| rw = (struct reg_window __user *) |
| (regs->u_regs[14] + STACK_BIAS); |
| rwk = (struct reg_window *) |
| (regs->u_regs[14] + STACK_BIAS); |
| if (!(regs->tstate & TSTATE_PRIV)) { |
| old_fs = get_fs(); |
| set_fs (USER_DS); |
| if (copy_from_user (&r_w, rw, sizeof(r_w))) { |
| set_fs (old_fs); |
| return; |
| } |
| rwk = &r_w; |
| set_fs (old_fs); |
| } |
| } else { |
| show_regwindow32(regs); |
| return; |
| } |
| printk("l0: %016lx l1: %016lx l2: %016lx l3: %016lx\n", |
| rwk->locals[0], rwk->locals[1], rwk->locals[2], rwk->locals[3]); |
| printk("l4: %016lx l5: %016lx l6: %016lx l7: %016lx\n", |
| rwk->locals[4], rwk->locals[5], rwk->locals[6], rwk->locals[7]); |
| printk("i0: %016lx i1: %016lx i2: %016lx i3: %016lx\n", |
| rwk->ins[0], rwk->ins[1], rwk->ins[2], rwk->ins[3]); |
| printk("i4: %016lx i5: %016lx i6: %016lx i7: %016lx\n", |
| rwk->ins[4], rwk->ins[5], rwk->ins[6], rwk->ins[7]); |
| if (regs->tstate & TSTATE_PRIV) |
| printk("I7: <%pS>\n", (void *) rwk->ins[7]); |
| } |
| |
| void show_regs(struct pt_regs *regs) |
| { |
| printk("TSTATE: %016lx TPC: %016lx TNPC: %016lx Y: %08x %s\n", regs->tstate, |
| regs->tpc, regs->tnpc, regs->y, print_tainted()); |
| printk("TPC: <%pS>\n", (void *) regs->tpc); |
| printk("g0: %016lx g1: %016lx g2: %016lx g3: %016lx\n", |
| regs->u_regs[0], regs->u_regs[1], regs->u_regs[2], |
| regs->u_regs[3]); |
| printk("g4: %016lx g5: %016lx g6: %016lx g7: %016lx\n", |
| regs->u_regs[4], regs->u_regs[5], regs->u_regs[6], |
| regs->u_regs[7]); |
| printk("o0: %016lx o1: %016lx o2: %016lx o3: %016lx\n", |
| regs->u_regs[8], regs->u_regs[9], regs->u_regs[10], |
| regs->u_regs[11]); |
| printk("o4: %016lx o5: %016lx sp: %016lx ret_pc: %016lx\n", |
| regs->u_regs[12], regs->u_regs[13], regs->u_regs[14], |
| regs->u_regs[15]); |
| printk("RPC: <%pS>\n", (void *) regs->u_regs[15]); |
| show_regwindow(regs); |
| show_stack(current, (unsigned long *) regs->u_regs[UREG_FP]); |
| } |
| |
| struct global_reg_snapshot global_reg_snapshot[NR_CPUS]; |
| static DEFINE_SPINLOCK(global_reg_snapshot_lock); |
| |
| static void __global_reg_self(struct thread_info *tp, struct pt_regs *regs, |
| int this_cpu) |
| { |
| flushw_all(); |
| |
| global_reg_snapshot[this_cpu].tstate = regs->tstate; |
| global_reg_snapshot[this_cpu].tpc = regs->tpc; |
| global_reg_snapshot[this_cpu].tnpc = regs->tnpc; |
| global_reg_snapshot[this_cpu].o7 = regs->u_regs[UREG_I7]; |
| |
| if (regs->tstate & TSTATE_PRIV) { |
| struct reg_window *rw; |
| |
| rw = (struct reg_window *) |
| (regs->u_regs[UREG_FP] + STACK_BIAS); |
| if (kstack_valid(tp, (unsigned long) rw)) { |
| global_reg_snapshot[this_cpu].i7 = rw->ins[7]; |
| rw = (struct reg_window *) |
| (rw->ins[6] + STACK_BIAS); |
| if (kstack_valid(tp, (unsigned long) rw)) |
| global_reg_snapshot[this_cpu].rpc = rw->ins[7]; |
| } |
| } else { |
| global_reg_snapshot[this_cpu].i7 = 0; |
| global_reg_snapshot[this_cpu].rpc = 0; |
| } |
| global_reg_snapshot[this_cpu].thread = tp; |
| } |
| |
| /* In order to avoid hangs we do not try to synchronize with the |
| * global register dump client cpus. The last store they make is to |
| * the thread pointer, so do a short poll waiting for that to become |
| * non-NULL. |
| */ |
| static void __global_reg_poll(struct global_reg_snapshot *gp) |
| { |
| int limit = 0; |
| |
| while (!gp->thread && ++limit < 100) { |
| barrier(); |
| udelay(1); |
| } |
| } |
| |
| void arch_trigger_all_cpu_backtrace(void) |
| { |
| struct thread_info *tp = current_thread_info(); |
| struct pt_regs *regs = get_irq_regs(); |
| unsigned long flags; |
| int this_cpu, cpu; |
| |
| if (!regs) |
| regs = tp->kregs; |
| |
| spin_lock_irqsave(&global_reg_snapshot_lock, flags); |
| |
| memset(global_reg_snapshot, 0, sizeof(global_reg_snapshot)); |
| |
| this_cpu = raw_smp_processor_id(); |
| |
| __global_reg_self(tp, regs, this_cpu); |
| |
| smp_fetch_global_regs(); |
| |
| for_each_online_cpu(cpu) { |
| struct global_reg_snapshot *gp = &global_reg_snapshot[cpu]; |
| |
| __global_reg_poll(gp); |
| |
| tp = gp->thread; |
| printk("%c CPU[%3d]: TSTATE[%016lx] TPC[%016lx] TNPC[%016lx] TASK[%s:%d]\n", |
| (cpu == this_cpu ? '*' : ' '), cpu, |
| gp->tstate, gp->tpc, gp->tnpc, |
| ((tp && tp->task) ? tp->task->comm : "NULL"), |
| ((tp && tp->task) ? tp->task->pid : -1)); |
| |
| if (gp->tstate & TSTATE_PRIV) { |
| printk(" TPC[%pS] O7[%pS] I7[%pS] RPC[%pS]\n", |
| (void *) gp->tpc, |
| (void *) gp->o7, |
| (void *) gp->i7, |
| (void *) gp->rpc); |
| } else { |
| printk(" TPC[%lx] O7[%lx] I7[%lx] RPC[%lx]\n", |
| gp->tpc, gp->o7, gp->i7, gp->rpc); |
| } |
| } |
| |
| memset(global_reg_snapshot, 0, sizeof(global_reg_snapshot)); |
| |
| spin_unlock_irqrestore(&global_reg_snapshot_lock, flags); |
| } |
| |
| #ifdef CONFIG_MAGIC_SYSRQ |
| |
| static void sysrq_handle_globreg(int key, struct tty_struct *tty) |
| { |
| arch_trigger_all_cpu_backtrace(); |
| } |
| |
| static struct sysrq_key_op sparc_globalreg_op = { |
| .handler = sysrq_handle_globreg, |
| .help_msg = "Globalregs", |
| .action_msg = "Show Global CPU Regs", |
| }; |
| |
| static int __init sparc_globreg_init(void) |
| { |
| return register_sysrq_key('y', &sparc_globalreg_op); |
| } |
| |
| core_initcall(sparc_globreg_init); |
| |
| #endif |
| |
| unsigned long thread_saved_pc(struct task_struct *tsk) |
| { |
| struct thread_info *ti = task_thread_info(tsk); |
| unsigned long ret = 0xdeadbeefUL; |
| |
| if (ti && ti->ksp) { |
| unsigned long *sp; |
| sp = (unsigned long *)(ti->ksp + STACK_BIAS); |
| if (((unsigned long)sp & (sizeof(long) - 1)) == 0UL && |
| sp[14]) { |
| unsigned long *fp; |
| fp = (unsigned long *)(sp[14] + STACK_BIAS); |
| if (((unsigned long)fp & (sizeof(long) - 1)) == 0UL) |
| ret = fp[15]; |
| } |
| } |
| return ret; |
| } |
| |
| /* Free current thread data structures etc.. */ |
| void exit_thread(void) |
| { |
| struct thread_info *t = current_thread_info(); |
| |
| if (t->utraps) { |
| if (t->utraps[0] < 2) |
| kfree (t->utraps); |
| else |
| t->utraps[0]--; |
| } |
| } |
| |
| void flush_thread(void) |
| { |
| struct thread_info *t = current_thread_info(); |
| struct mm_struct *mm; |
| |
| mm = t->task->mm; |
| if (mm) |
| tsb_context_switch(mm); |
| |
| set_thread_wsaved(0); |
| |
| /* Clear FPU register state. */ |
| t->fpsaved[0] = 0; |
| |
| if (get_thread_current_ds() != ASI_AIUS) |
| set_fs(USER_DS); |
| } |
| |
| /* It's a bit more tricky when 64-bit tasks are involved... */ |
| static unsigned long clone_stackframe(unsigned long csp, unsigned long psp) |
| { |
| unsigned long fp, distance, rval; |
| |
| if (!(test_thread_flag(TIF_32BIT))) { |
| csp += STACK_BIAS; |
| psp += STACK_BIAS; |
| __get_user(fp, &(((struct reg_window __user *)psp)->ins[6])); |
| fp += STACK_BIAS; |
| } else |
| __get_user(fp, &(((struct reg_window32 __user *)psp)->ins[6])); |
| |
| /* Now align the stack as this is mandatory in the Sparc ABI |
| * due to how register windows work. This hides the |
| * restriction from thread libraries etc. |
| */ |
| csp &= ~15UL; |
| |
| distance = fp - psp; |
| rval = (csp - distance); |
| if (copy_in_user((void __user *) rval, (void __user *) psp, distance)) |
| rval = 0; |
| else if (test_thread_flag(TIF_32BIT)) { |
| if (put_user(((u32)csp), |
| &(((struct reg_window32 __user *)rval)->ins[6]))) |
| rval = 0; |
| } else { |
| if (put_user(((u64)csp - STACK_BIAS), |
| &(((struct reg_window __user *)rval)->ins[6]))) |
| rval = 0; |
| else |
| rval = rval - STACK_BIAS; |
| } |
| |
| return rval; |
| } |
| |
| /* Standard stuff. */ |
| static inline void shift_window_buffer(int first_win, int last_win, |
| struct thread_info *t) |
| { |
| int i; |
| |
| for (i = first_win; i < last_win; i++) { |
| t->rwbuf_stkptrs[i] = t->rwbuf_stkptrs[i+1]; |
| memcpy(&t->reg_window[i], &t->reg_window[i+1], |
| sizeof(struct reg_window)); |
| } |
| } |
| |
| void synchronize_user_stack(void) |
| { |
| struct thread_info *t = current_thread_info(); |
| unsigned long window; |
| |
| flush_user_windows(); |
| if ((window = get_thread_wsaved()) != 0) { |
| int winsize = sizeof(struct reg_window); |
| int bias = 0; |
| |
| if (test_thread_flag(TIF_32BIT)) |
| winsize = sizeof(struct reg_window32); |
| else |
| bias = STACK_BIAS; |
| |
| window -= 1; |
| do { |
| unsigned long sp = (t->rwbuf_stkptrs[window] + bias); |
| struct reg_window *rwin = &t->reg_window[window]; |
| |
| if (!copy_to_user((char __user *)sp, rwin, winsize)) { |
| shift_window_buffer(window, get_thread_wsaved() - 1, t); |
| set_thread_wsaved(get_thread_wsaved() - 1); |
| } |
| } while (window--); |
| } |
| } |
| |
| static void stack_unaligned(unsigned long sp) |
| { |
| siginfo_t info; |
| |
| info.si_signo = SIGBUS; |
| info.si_errno = 0; |
| info.si_code = BUS_ADRALN; |
| info.si_addr = (void __user *) sp; |
| info.si_trapno = 0; |
| force_sig_info(SIGBUS, &info, current); |
| } |
| |
| void fault_in_user_windows(void) |
| { |
| struct thread_info *t = current_thread_info(); |
| unsigned long window; |
| int winsize = sizeof(struct reg_window); |
| int bias = 0; |
| |
| if (test_thread_flag(TIF_32BIT)) |
| winsize = sizeof(struct reg_window32); |
| else |
| bias = STACK_BIAS; |
| |
| flush_user_windows(); |
| window = get_thread_wsaved(); |
| |
| if (likely(window != 0)) { |
| window -= 1; |
| do { |
| unsigned long sp = (t->rwbuf_stkptrs[window] + bias); |
| struct reg_window *rwin = &t->reg_window[window]; |
| |
| if (unlikely(sp & 0x7UL)) |
| stack_unaligned(sp); |
| |
| if (unlikely(copy_to_user((char __user *)sp, |
| rwin, winsize))) |
| goto barf; |
| } while (window--); |
| } |
| set_thread_wsaved(0); |
| return; |
| |
| barf: |
| set_thread_wsaved(window + 1); |
| do_exit(SIGILL); |
| } |
| |
| asmlinkage long sparc_do_fork(unsigned long clone_flags, |
| unsigned long stack_start, |
| struct pt_regs *regs, |
| unsigned long stack_size) |
| { |
| int __user *parent_tid_ptr, *child_tid_ptr; |
| unsigned long orig_i1 = regs->u_regs[UREG_I1]; |
| long ret; |
| |
| #ifdef CONFIG_COMPAT |
| if (test_thread_flag(TIF_32BIT)) { |
| parent_tid_ptr = compat_ptr(regs->u_regs[UREG_I2]); |
| child_tid_ptr = compat_ptr(regs->u_regs[UREG_I4]); |
| } else |
| #endif |
| { |
| parent_tid_ptr = (int __user *) regs->u_regs[UREG_I2]; |
| child_tid_ptr = (int __user *) regs->u_regs[UREG_I4]; |
| } |
| |
| ret = do_fork(clone_flags, stack_start, |
| regs, stack_size, |
| parent_tid_ptr, child_tid_ptr); |
| |
| /* If we get an error and potentially restart the system |
| * call, we're screwed because copy_thread() clobbered |
| * the parent's %o1. So detect that case and restore it |
| * here. |
| */ |
| if ((unsigned long)ret >= -ERESTART_RESTARTBLOCK) |
| regs->u_regs[UREG_I1] = orig_i1; |
| |
| return ret; |
| } |
| |
| /* Copy a Sparc thread. The fork() return value conventions |
| * under SunOS are nothing short of bletcherous: |
| * Parent --> %o0 == childs pid, %o1 == 0 |
| * Child --> %o0 == parents pid, %o1 == 1 |
| */ |
| int copy_thread(unsigned long clone_flags, unsigned long sp, |
| unsigned long unused, |
| struct task_struct *p, struct pt_regs *regs) |
| { |
| struct thread_info *t = task_thread_info(p); |
| struct sparc_stackf *parent_sf; |
| unsigned long child_stack_sz; |
| char *child_trap_frame; |
| int kernel_thread; |
| |
| kernel_thread = (regs->tstate & TSTATE_PRIV) ? 1 : 0; |
| parent_sf = ((struct sparc_stackf *) regs) - 1; |
| |
| /* Calculate offset to stack_frame & pt_regs */ |
| child_stack_sz = ((STACKFRAME_SZ + TRACEREG_SZ) + |
| (kernel_thread ? STACKFRAME_SZ : 0)); |
| child_trap_frame = (task_stack_page(p) + |
| (THREAD_SIZE - child_stack_sz)); |
| memcpy(child_trap_frame, parent_sf, child_stack_sz); |
| |
| t->flags = (t->flags & ~((0xffUL << TI_FLAG_CWP_SHIFT) | |
| (0xffUL << TI_FLAG_CURRENT_DS_SHIFT))) | |
| (((regs->tstate + 1) & TSTATE_CWP) << TI_FLAG_CWP_SHIFT); |
| t->new_child = 1; |
| t->ksp = ((unsigned long) child_trap_frame) - STACK_BIAS; |
| t->kregs = (struct pt_regs *) (child_trap_frame + |
| sizeof(struct sparc_stackf)); |
| t->fpsaved[0] = 0; |
| |
| if (kernel_thread) { |
| struct sparc_stackf *child_sf = (struct sparc_stackf *) |
| (child_trap_frame + (STACKFRAME_SZ + TRACEREG_SZ)); |
| |
| /* Zero terminate the stack backtrace. */ |
| child_sf->fp = NULL; |
| t->kregs->u_regs[UREG_FP] = |
| ((unsigned long) child_sf) - STACK_BIAS; |
| |
| t->flags |= ((long)ASI_P << TI_FLAG_CURRENT_DS_SHIFT); |
| t->kregs->u_regs[UREG_G6] = (unsigned long) t; |
| t->kregs->u_regs[UREG_G4] = (unsigned long) t->task; |
| } else { |
| if (t->flags & _TIF_32BIT) { |
| sp &= 0x00000000ffffffffUL; |
| regs->u_regs[UREG_FP] &= 0x00000000ffffffffUL; |
| } |
| t->kregs->u_regs[UREG_FP] = sp; |
| t->flags |= ((long)ASI_AIUS << TI_FLAG_CURRENT_DS_SHIFT); |
| if (sp != regs->u_regs[UREG_FP]) { |
| unsigned long csp; |
| |
| csp = clone_stackframe(sp, regs->u_regs[UREG_FP]); |
| if (!csp) |
| return -EFAULT; |
| t->kregs->u_regs[UREG_FP] = csp; |
| } |
| if (t->utraps) |
| t->utraps[0]++; |
| } |
| |
| /* Set the return value for the child. */ |
| t->kregs->u_regs[UREG_I0] = current->pid; |
| t->kregs->u_regs[UREG_I1] = 1; |
| |
| /* Set the second return value for the parent. */ |
| regs->u_regs[UREG_I1] = 0; |
| |
| if (clone_flags & CLONE_SETTLS) |
| t->kregs->u_regs[UREG_G7] = regs->u_regs[UREG_I3]; |
| |
| return 0; |
| } |
| |
| /* |
| * This is the mechanism for creating a new kernel thread. |
| * |
| * NOTE! Only a kernel-only process(ie the swapper or direct descendants |
| * who haven't done an "execve()") should use this: it will work within |
| * a system call from a "real" process, but the process memory space will |
| * not be freed until both the parent and the child have exited. |
| */ |
| pid_t kernel_thread(int (*fn)(void *), void * arg, unsigned long flags) |
| { |
| long retval; |
| |
| /* If the parent runs before fn(arg) is called by the child, |
| * the input registers of this function can be clobbered. |
| * So we stash 'fn' and 'arg' into global registers which |
| * will not be modified by the parent. |
| */ |
| __asm__ __volatile__("mov %4, %%g2\n\t" /* Save FN into global */ |
| "mov %5, %%g3\n\t" /* Save ARG into global */ |
| "mov %1, %%g1\n\t" /* Clone syscall nr. */ |
| "mov %2, %%o0\n\t" /* Clone flags. */ |
| "mov 0, %%o1\n\t" /* usp arg == 0 */ |
| "t 0x6d\n\t" /* Linux/Sparc clone(). */ |
| "brz,a,pn %%o1, 1f\n\t" /* Parent, just return. */ |
| " mov %%o0, %0\n\t" |
| "jmpl %%g2, %%o7\n\t" /* Call the function. */ |
| " mov %%g3, %%o0\n\t" /* Set arg in delay. */ |
| "mov %3, %%g1\n\t" |
| "t 0x6d\n\t" /* Linux/Sparc exit(). */ |
| /* Notreached by child. */ |
| "1:" : |
| "=r" (retval) : |
| "i" (__NR_clone), "r" (flags | CLONE_VM | CLONE_UNTRACED), |
| "i" (__NR_exit), "r" (fn), "r" (arg) : |
| "g1", "g2", "g3", "o0", "o1", "memory", "cc"); |
| return retval; |
| } |
| EXPORT_SYMBOL(kernel_thread); |
| |
| typedef struct { |
| union { |
| unsigned int pr_regs[32]; |
| unsigned long pr_dregs[16]; |
| } pr_fr; |
| unsigned int __unused; |
| unsigned int pr_fsr; |
| unsigned char pr_qcnt; |
| unsigned char pr_q_entrysize; |
| unsigned char pr_en; |
| unsigned int pr_q[64]; |
| } elf_fpregset_t32; |
| |
| /* |
| * fill in the fpu structure for a core dump. |
| */ |
| int dump_fpu (struct pt_regs * regs, elf_fpregset_t * fpregs) |
| { |
| unsigned long *kfpregs = current_thread_info()->fpregs; |
| unsigned long fprs = current_thread_info()->fpsaved[0]; |
| |
| if (test_thread_flag(TIF_32BIT)) { |
| elf_fpregset_t32 *fpregs32 = (elf_fpregset_t32 *)fpregs; |
| |
| if (fprs & FPRS_DL) |
| memcpy(&fpregs32->pr_fr.pr_regs[0], kfpregs, |
| sizeof(unsigned int) * 32); |
| else |
| memset(&fpregs32->pr_fr.pr_regs[0], 0, |
| sizeof(unsigned int) * 32); |
| fpregs32->pr_qcnt = 0; |
| fpregs32->pr_q_entrysize = 8; |
| memset(&fpregs32->pr_q[0], 0, |
| (sizeof(unsigned int) * 64)); |
| if (fprs & FPRS_FEF) { |
| fpregs32->pr_fsr = (unsigned int) current_thread_info()->xfsr[0]; |
| fpregs32->pr_en = 1; |
| } else { |
| fpregs32->pr_fsr = 0; |
| fpregs32->pr_en = 0; |
| } |
| } else { |
| if(fprs & FPRS_DL) |
| memcpy(&fpregs->pr_regs[0], kfpregs, |
| sizeof(unsigned int) * 32); |
| else |
| memset(&fpregs->pr_regs[0], 0, |
| sizeof(unsigned int) * 32); |
| if(fprs & FPRS_DU) |
| memcpy(&fpregs->pr_regs[16], kfpregs+16, |
| sizeof(unsigned int) * 32); |
| else |
| memset(&fpregs->pr_regs[16], 0, |
| sizeof(unsigned int) * 32); |
| if(fprs & FPRS_FEF) { |
| fpregs->pr_fsr = current_thread_info()->xfsr[0]; |
| fpregs->pr_gsr = current_thread_info()->gsr[0]; |
| } else { |
| fpregs->pr_fsr = fpregs->pr_gsr = 0; |
| } |
| fpregs->pr_fprs = fprs; |
| } |
| return 1; |
| } |
| EXPORT_SYMBOL(dump_fpu); |
| |
| /* |
| * sparc_execve() executes a new program after the asm stub has set |
| * things up for us. This should basically do what I want it to. |
| */ |
| asmlinkage int sparc_execve(struct pt_regs *regs) |
| { |
| int error, base = 0; |
| char *filename; |
| |
| /* User register window flush is done by entry.S */ |
| |
| /* Check for indirect call. */ |
| if (regs->u_regs[UREG_G1] == 0) |
| base = 1; |
| |
| filename = getname((char __user *)regs->u_regs[base + UREG_I0]); |
| error = PTR_ERR(filename); |
| if (IS_ERR(filename)) |
| goto out; |
| error = do_execve(filename, |
| (const char __user *const __user *) |
| regs->u_regs[base + UREG_I1], |
| (const char __user *const __user *) |
| regs->u_regs[base + UREG_I2], regs); |
| putname(filename); |
| if (!error) { |
| fprs_write(0); |
| current_thread_info()->xfsr[0] = 0; |
| current_thread_info()->fpsaved[0] = 0; |
| regs->tstate &= ~TSTATE_PEF; |
| } |
| out: |
| return error; |
| } |
| |
| unsigned long get_wchan(struct task_struct *task) |
| { |
| unsigned long pc, fp, bias = 0; |
| struct thread_info *tp; |
| struct reg_window *rw; |
| unsigned long ret = 0; |
| int count = 0; |
| |
| if (!task || task == current || |
| task->state == TASK_RUNNING) |
| goto out; |
| |
| tp = task_thread_info(task); |
| bias = STACK_BIAS; |
| fp = task_thread_info(task)->ksp + bias; |
| |
| do { |
| if (!kstack_valid(tp, fp)) |
| break; |
| rw = (struct reg_window *) fp; |
| pc = rw->ins[7]; |
| if (!in_sched_functions(pc)) { |
| ret = pc; |
| goto out; |
| } |
| fp = rw->ins[6] + bias; |
| } while (++count < 16); |
| |
| out: |
| return ret; |
| } |