| /* |
| * rtc-isl12057 - Driver for Intersil ISL12057 I2C Real Time Clock |
| * |
| * Copyright (C) 2013, Arnaud EBALARD <arno@natisbad.org> |
| * |
| * This work is largely based on Intersil ISL1208 driver developed by |
| * Hebert Valerio Riedel <hvr@gnu.org>. |
| * |
| * Detailed datasheet on which this development is based is available here: |
| * |
| * http://natisbad.org/NAS2/refs/ISL12057.pdf |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/mutex.h> |
| #include <linux/rtc.h> |
| #include <linux/i2c.h> |
| #include <linux/bcd.h> |
| #include <linux/of.h> |
| #include <linux/of_device.h> |
| #include <linux/regmap.h> |
| |
| #define DRV_NAME "rtc-isl12057" |
| |
| /* RTC section */ |
| #define ISL12057_REG_RTC_SC 0x00 /* Seconds */ |
| #define ISL12057_REG_RTC_MN 0x01 /* Minutes */ |
| #define ISL12057_REG_RTC_HR 0x02 /* Hours */ |
| #define ISL12057_REG_RTC_HR_PM BIT(5) /* AM/PM bit in 12h format */ |
| #define ISL12057_REG_RTC_HR_MIL BIT(6) /* 24h/12h format */ |
| #define ISL12057_REG_RTC_DW 0x03 /* Day of the Week */ |
| #define ISL12057_REG_RTC_DT 0x04 /* Date */ |
| #define ISL12057_REG_RTC_MO 0x05 /* Month */ |
| #define ISL12057_REG_RTC_MO_CEN BIT(7) /* Century bit */ |
| #define ISL12057_REG_RTC_YR 0x06 /* Year */ |
| #define ISL12057_RTC_SEC_LEN 7 |
| |
| /* Alarm 1 section */ |
| #define ISL12057_REG_A1_SC 0x07 /* Alarm 1 Seconds */ |
| #define ISL12057_REG_A1_MN 0x08 /* Alarm 1 Minutes */ |
| #define ISL12057_REG_A1_HR 0x09 /* Alarm 1 Hours */ |
| #define ISL12057_REG_A1_HR_PM BIT(5) /* AM/PM bit in 12h format */ |
| #define ISL12057_REG_A1_HR_MIL BIT(6) /* 24h/12h format */ |
| #define ISL12057_REG_A1_DWDT 0x0A /* Alarm 1 Date / Day of the week */ |
| #define ISL12057_REG_A1_DWDT_B BIT(6) /* DW / DT selection bit */ |
| #define ISL12057_A1_SEC_LEN 4 |
| |
| /* Alarm 2 section */ |
| #define ISL12057_REG_A2_MN 0x0B /* Alarm 2 Minutes */ |
| #define ISL12057_REG_A2_HR 0x0C /* Alarm 2 Hours */ |
| #define ISL12057_REG_A2_DWDT 0x0D /* Alarm 2 Date / Day of the week */ |
| #define ISL12057_A2_SEC_LEN 3 |
| |
| /* Control/Status registers */ |
| #define ISL12057_REG_INT 0x0E |
| #define ISL12057_REG_INT_A1IE BIT(0) /* Alarm 1 interrupt enable bit */ |
| #define ISL12057_REG_INT_A2IE BIT(1) /* Alarm 2 interrupt enable bit */ |
| #define ISL12057_REG_INT_INTCN BIT(2) /* Interrupt control enable bit */ |
| #define ISL12057_REG_INT_RS1 BIT(3) /* Freq out control bit 1 */ |
| #define ISL12057_REG_INT_RS2 BIT(4) /* Freq out control bit 2 */ |
| #define ISL12057_REG_INT_EOSC BIT(7) /* Oscillator enable bit */ |
| |
| #define ISL12057_REG_SR 0x0F |
| #define ISL12057_REG_SR_A1F BIT(0) /* Alarm 1 interrupt bit */ |
| #define ISL12057_REG_SR_A2F BIT(1) /* Alarm 2 interrupt bit */ |
| #define ISL12057_REG_SR_OSF BIT(7) /* Oscillator failure bit */ |
| |
| /* Register memory map length */ |
| #define ISL12057_MEM_MAP_LEN 0x10 |
| |
| struct isl12057_rtc_data { |
| struct rtc_device *rtc; |
| struct regmap *regmap; |
| struct mutex lock; |
| int irq; |
| }; |
| |
| static void isl12057_rtc_regs_to_tm(struct rtc_time *tm, u8 *regs) |
| { |
| tm->tm_sec = bcd2bin(regs[ISL12057_REG_RTC_SC]); |
| tm->tm_min = bcd2bin(regs[ISL12057_REG_RTC_MN]); |
| |
| if (regs[ISL12057_REG_RTC_HR] & ISL12057_REG_RTC_HR_MIL) { /* AM/PM */ |
| tm->tm_hour = bcd2bin(regs[ISL12057_REG_RTC_HR] & 0x1f); |
| if (regs[ISL12057_REG_RTC_HR] & ISL12057_REG_RTC_HR_PM) |
| tm->tm_hour += 12; |
| } else { /* 24 hour mode */ |
| tm->tm_hour = bcd2bin(regs[ISL12057_REG_RTC_HR] & 0x3f); |
| } |
| |
| tm->tm_mday = bcd2bin(regs[ISL12057_REG_RTC_DT]); |
| tm->tm_wday = bcd2bin(regs[ISL12057_REG_RTC_DW]) - 1; /* starts at 1 */ |
| tm->tm_mon = bcd2bin(regs[ISL12057_REG_RTC_MO] & 0x1f) - 1; /* ditto */ |
| tm->tm_year = bcd2bin(regs[ISL12057_REG_RTC_YR]) + 100; |
| |
| /* Check if years register has overflown from 99 to 00 */ |
| if (regs[ISL12057_REG_RTC_MO] & ISL12057_REG_RTC_MO_CEN) |
| tm->tm_year += 100; |
| } |
| |
| static int isl12057_rtc_tm_to_regs(u8 *regs, struct rtc_time *tm) |
| { |
| u8 century_bit; |
| |
| /* |
| * The clock has an 8 bit wide bcd-coded register for the year. |
| * It also has a century bit encoded in MO flag which provides |
| * information about overflow of year register from 99 to 00. |
| * tm_year is an offset from 1900 and we are interested in the |
| * 2000-2199 range, so any value less than 100 or larger than |
| * 299 is invalid. |
| */ |
| if (tm->tm_year < 100 || tm->tm_year > 299) |
| return -EINVAL; |
| |
| century_bit = (tm->tm_year > 199) ? ISL12057_REG_RTC_MO_CEN : 0; |
| |
| regs[ISL12057_REG_RTC_SC] = bin2bcd(tm->tm_sec); |
| regs[ISL12057_REG_RTC_MN] = bin2bcd(tm->tm_min); |
| regs[ISL12057_REG_RTC_HR] = bin2bcd(tm->tm_hour); /* 24-hour format */ |
| regs[ISL12057_REG_RTC_DT] = bin2bcd(tm->tm_mday); |
| regs[ISL12057_REG_RTC_MO] = bin2bcd(tm->tm_mon + 1) | century_bit; |
| regs[ISL12057_REG_RTC_YR] = bin2bcd(tm->tm_year % 100); |
| regs[ISL12057_REG_RTC_DW] = bin2bcd(tm->tm_wday + 1); |
| |
| return 0; |
| } |
| |
| /* |
| * Try and match register bits w/ fixed null values to see whether we |
| * are dealing with an ISL12057. Note: this function is called early |
| * during init and hence does need mutex protection. |
| */ |
| static int isl12057_i2c_validate_chip(struct regmap *regmap) |
| { |
| u8 regs[ISL12057_MEM_MAP_LEN]; |
| static const u8 mask[ISL12057_MEM_MAP_LEN] = { 0x80, 0x80, 0x80, 0xf8, |
| 0xc0, 0x60, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x60, 0x7c }; |
| int ret, i; |
| |
| ret = regmap_bulk_read(regmap, 0, regs, ISL12057_MEM_MAP_LEN); |
| if (ret) |
| return ret; |
| |
| for (i = 0; i < ISL12057_MEM_MAP_LEN; ++i) { |
| if (regs[i] & mask[i]) /* check if bits are cleared */ |
| return -ENODEV; |
| } |
| |
| return 0; |
| } |
| |
| static int _isl12057_rtc_clear_alarm(struct device *dev) |
| { |
| struct isl12057_rtc_data *data = dev_get_drvdata(dev); |
| int ret; |
| |
| ret = regmap_update_bits(data->regmap, ISL12057_REG_SR, |
| ISL12057_REG_SR_A1F, 0); |
| if (ret) |
| dev_err(dev, "%s: clearing alarm failed (%d)\n", __func__, ret); |
| |
| return ret; |
| } |
| |
| static int _isl12057_rtc_update_alarm(struct device *dev, int enable) |
| { |
| struct isl12057_rtc_data *data = dev_get_drvdata(dev); |
| int ret; |
| |
| ret = regmap_update_bits(data->regmap, ISL12057_REG_INT, |
| ISL12057_REG_INT_A1IE, |
| enable ? ISL12057_REG_INT_A1IE : 0); |
| if (ret) |
| dev_err(dev, "%s: changing alarm interrupt flag failed (%d)\n", |
| __func__, ret); |
| |
| return ret; |
| } |
| |
| /* |
| * Note: as we only read from device and do not perform any update, there is |
| * no need for an equivalent function which would try and get driver's main |
| * lock. Here, it is safe for everyone if we just use regmap internal lock |
| * on the device when reading. |
| */ |
| static int _isl12057_rtc_read_time(struct device *dev, struct rtc_time *tm) |
| { |
| struct isl12057_rtc_data *data = dev_get_drvdata(dev); |
| u8 regs[ISL12057_RTC_SEC_LEN]; |
| unsigned int sr; |
| int ret; |
| |
| ret = regmap_read(data->regmap, ISL12057_REG_SR, &sr); |
| if (ret) { |
| dev_err(dev, "%s: unable to read oscillator status flag (%d)\n", |
| __func__, ret); |
| goto out; |
| } else { |
| if (sr & ISL12057_REG_SR_OSF) { |
| ret = -ENODATA; |
| goto out; |
| } |
| } |
| |
| ret = regmap_bulk_read(data->regmap, ISL12057_REG_RTC_SC, regs, |
| ISL12057_RTC_SEC_LEN); |
| if (ret) |
| dev_err(dev, "%s: unable to read RTC time section (%d)\n", |
| __func__, ret); |
| |
| out: |
| if (ret) |
| return ret; |
| |
| isl12057_rtc_regs_to_tm(tm, regs); |
| |
| return rtc_valid_tm(tm); |
| } |
| |
| static int isl12057_rtc_update_alarm(struct device *dev, int enable) |
| { |
| struct isl12057_rtc_data *data = dev_get_drvdata(dev); |
| int ret; |
| |
| mutex_lock(&data->lock); |
| ret = _isl12057_rtc_update_alarm(dev, enable); |
| mutex_unlock(&data->lock); |
| |
| return ret; |
| } |
| |
| static int isl12057_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alarm) |
| { |
| struct isl12057_rtc_data *data = dev_get_drvdata(dev); |
| struct rtc_time rtc_tm, *alarm_tm = &alarm->time; |
| unsigned long rtc_secs, alarm_secs; |
| u8 regs[ISL12057_A1_SEC_LEN]; |
| unsigned int ir; |
| int ret; |
| |
| mutex_lock(&data->lock); |
| ret = regmap_bulk_read(data->regmap, ISL12057_REG_A1_SC, regs, |
| ISL12057_A1_SEC_LEN); |
| if (ret) { |
| dev_err(dev, "%s: reading alarm section failed (%d)\n", |
| __func__, ret); |
| goto err_unlock; |
| } |
| |
| alarm_tm->tm_sec = bcd2bin(regs[0] & 0x7f); |
| alarm_tm->tm_min = bcd2bin(regs[1] & 0x7f); |
| alarm_tm->tm_hour = bcd2bin(regs[2] & 0x3f); |
| alarm_tm->tm_mday = bcd2bin(regs[3] & 0x3f); |
| alarm_tm->tm_wday = -1; |
| |
| /* |
| * The alarm section does not store year/month. We use the ones in rtc |
| * section as a basis and increment month and then year if needed to get |
| * alarm after current time. |
| */ |
| ret = _isl12057_rtc_read_time(dev, &rtc_tm); |
| if (ret) |
| goto err_unlock; |
| |
| alarm_tm->tm_year = rtc_tm.tm_year; |
| alarm_tm->tm_mon = rtc_tm.tm_mon; |
| |
| ret = rtc_tm_to_time(&rtc_tm, &rtc_secs); |
| if (ret) |
| goto err_unlock; |
| |
| ret = rtc_tm_to_time(alarm_tm, &alarm_secs); |
| if (ret) |
| goto err_unlock; |
| |
| if (alarm_secs < rtc_secs) { |
| if (alarm_tm->tm_mon == 11) { |
| alarm_tm->tm_mon = 0; |
| alarm_tm->tm_year += 1; |
| } else { |
| alarm_tm->tm_mon += 1; |
| } |
| } |
| |
| ret = regmap_read(data->regmap, ISL12057_REG_INT, &ir); |
| if (ret) { |
| dev_err(dev, "%s: reading alarm interrupt flag failed (%d)\n", |
| __func__, ret); |
| goto err_unlock; |
| } |
| |
| alarm->enabled = !!(ir & ISL12057_REG_INT_A1IE); |
| |
| err_unlock: |
| mutex_unlock(&data->lock); |
| |
| return ret; |
| } |
| |
| static int isl12057_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm) |
| { |
| struct isl12057_rtc_data *data = dev_get_drvdata(dev); |
| struct rtc_time *alarm_tm = &alarm->time; |
| unsigned long rtc_secs, alarm_secs; |
| u8 regs[ISL12057_A1_SEC_LEN]; |
| struct rtc_time rtc_tm; |
| int ret, enable = 1; |
| |
| mutex_lock(&data->lock); |
| ret = _isl12057_rtc_read_time(dev, &rtc_tm); |
| if (ret) |
| goto err_unlock; |
| |
| ret = rtc_tm_to_time(&rtc_tm, &rtc_secs); |
| if (ret) |
| goto err_unlock; |
| |
| ret = rtc_tm_to_time(alarm_tm, &alarm_secs); |
| if (ret) |
| goto err_unlock; |
| |
| /* If alarm time is before current time, disable the alarm */ |
| if (!alarm->enabled || alarm_secs <= rtc_secs) { |
| enable = 0; |
| } else { |
| /* |
| * Chip only support alarms up to one month in the future. Let's |
| * return an error if we get something after that limit. |
| * Comparison is done by incrementing rtc_tm month field by one |
| * and checking alarm value is still below. |
| */ |
| if (rtc_tm.tm_mon == 11) { /* handle year wrapping */ |
| rtc_tm.tm_mon = 0; |
| rtc_tm.tm_year += 1; |
| } else { |
| rtc_tm.tm_mon += 1; |
| } |
| |
| ret = rtc_tm_to_time(&rtc_tm, &rtc_secs); |
| if (ret) |
| goto err_unlock; |
| |
| if (alarm_secs > rtc_secs) { |
| dev_err(dev, "%s: max for alarm is one month (%d)\n", |
| __func__, ret); |
| ret = -EINVAL; |
| goto err_unlock; |
| } |
| } |
| |
| /* Disable the alarm before modifying it */ |
| ret = _isl12057_rtc_update_alarm(dev, 0); |
| if (ret < 0) { |
| dev_err(dev, "%s: unable to disable the alarm (%d)\n", |
| __func__, ret); |
| goto err_unlock; |
| } |
| |
| /* Program alarm registers */ |
| regs[0] = bin2bcd(alarm_tm->tm_sec) & 0x7f; |
| regs[1] = bin2bcd(alarm_tm->tm_min) & 0x7f; |
| regs[2] = bin2bcd(alarm_tm->tm_hour) & 0x3f; |
| regs[3] = bin2bcd(alarm_tm->tm_mday) & 0x3f; |
| |
| ret = regmap_bulk_write(data->regmap, ISL12057_REG_A1_SC, regs, |
| ISL12057_A1_SEC_LEN); |
| if (ret < 0) { |
| dev_err(dev, "%s: writing alarm section failed (%d)\n", |
| __func__, ret); |
| goto err_unlock; |
| } |
| |
| /* Enable or disable alarm */ |
| ret = _isl12057_rtc_update_alarm(dev, enable); |
| |
| err_unlock: |
| mutex_unlock(&data->lock); |
| |
| return ret; |
| } |
| |
| static int isl12057_rtc_set_time(struct device *dev, struct rtc_time *tm) |
| { |
| struct isl12057_rtc_data *data = dev_get_drvdata(dev); |
| u8 regs[ISL12057_RTC_SEC_LEN]; |
| int ret; |
| |
| ret = isl12057_rtc_tm_to_regs(regs, tm); |
| if (ret) |
| return ret; |
| |
| mutex_lock(&data->lock); |
| ret = regmap_bulk_write(data->regmap, ISL12057_REG_RTC_SC, regs, |
| ISL12057_RTC_SEC_LEN); |
| if (ret) { |
| dev_err(dev, "%s: unable to write RTC time section (%d)\n", |
| __func__, ret); |
| goto out; |
| } |
| |
| /* |
| * Now that RTC time has been updated, let's clear oscillator |
| * failure flag, if needed. |
| */ |
| ret = regmap_update_bits(data->regmap, ISL12057_REG_SR, |
| ISL12057_REG_SR_OSF, 0); |
| if (ret < 0) |
| dev_err(dev, "%s: unable to clear osc. failure bit (%d)\n", |
| __func__, ret); |
| |
| out: |
| mutex_unlock(&data->lock); |
| |
| return ret; |
| } |
| |
| /* |
| * Check current RTC status and enable/disable what needs to be. Return 0 if |
| * everything went ok and a negative value upon error. Note: this function |
| * is called early during init and hence does need mutex protection. |
| */ |
| static int isl12057_check_rtc_status(struct device *dev, struct regmap *regmap) |
| { |
| int ret; |
| |
| /* Enable oscillator if not already running */ |
| ret = regmap_update_bits(regmap, ISL12057_REG_INT, |
| ISL12057_REG_INT_EOSC, 0); |
| if (ret < 0) { |
| dev_err(dev, "%s: unable to enable oscillator (%d)\n", |
| __func__, ret); |
| return ret; |
| } |
| |
| /* Clear alarm bit if needed */ |
| ret = regmap_update_bits(regmap, ISL12057_REG_SR, |
| ISL12057_REG_SR_A1F, 0); |
| if (ret < 0) { |
| dev_err(dev, "%s: unable to clear alarm bit (%d)\n", |
| __func__, ret); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_OF |
| /* |
| * One would expect the device to be marked as a wakeup source only |
| * when an IRQ pin of the RTC is routed to an interrupt line of the |
| * CPU. In practice, such an IRQ pin can be connected to a PMIC and |
| * this allows the device to be powered up when RTC alarm rings. This |
| * is for instance the case on ReadyNAS 102, 104 and 2120. On those |
| * devices with no IRQ driectly connected to the SoC, the RTC chip |
| * can be forced as a wakeup source by stating that explicitly in |
| * the device's .dts file using the "isil,irq2-can-wakeup-machine" |
| * boolean property. This will guarantee 'wakealarm' sysfs entry is |
| * available on the device. |
| * |
| * The function below returns 1, i.e. the capability of the chip to |
| * wakeup the device, based on IRQ availability or if the boolean |
| * property has been set in the .dts file. Otherwise, it returns 0. |
| */ |
| |
| static bool isl12057_can_wakeup_machine(struct device *dev) |
| { |
| struct isl12057_rtc_data *data = dev_get_drvdata(dev); |
| |
| return (data->irq || of_property_read_bool(dev->of_node, |
| "isil,irq2-can-wakeup-machine")); |
| } |
| #else |
| static bool isl12057_can_wakeup_machine(struct device *dev) |
| { |
| struct isl12057_rtc_data *data = dev_get_drvdata(dev); |
| |
| return !!data->irq; |
| } |
| #endif |
| |
| static int isl12057_rtc_alarm_irq_enable(struct device *dev, |
| unsigned int enable) |
| { |
| struct isl12057_rtc_data *rtc_data = dev_get_drvdata(dev); |
| int ret = -ENOTTY; |
| |
| if (rtc_data->irq) |
| ret = isl12057_rtc_update_alarm(dev, enable); |
| |
| return ret; |
| } |
| |
| static irqreturn_t isl12057_rtc_interrupt(int irq, void *data) |
| { |
| struct i2c_client *client = data; |
| struct isl12057_rtc_data *rtc_data = dev_get_drvdata(&client->dev); |
| struct rtc_device *rtc = rtc_data->rtc; |
| int ret, handled = IRQ_NONE; |
| unsigned int sr; |
| |
| ret = regmap_read(rtc_data->regmap, ISL12057_REG_SR, &sr); |
| if (!ret && (sr & ISL12057_REG_SR_A1F)) { |
| dev_dbg(&client->dev, "RTC alarm!\n"); |
| |
| rtc_update_irq(rtc, 1, RTC_IRQF | RTC_AF); |
| |
| /* Acknowledge and disable the alarm */ |
| _isl12057_rtc_clear_alarm(&client->dev); |
| _isl12057_rtc_update_alarm(&client->dev, 0); |
| |
| handled = IRQ_HANDLED; |
| } |
| |
| return handled; |
| } |
| |
| static const struct rtc_class_ops rtc_ops = { |
| .read_time = _isl12057_rtc_read_time, |
| .set_time = isl12057_rtc_set_time, |
| .read_alarm = isl12057_rtc_read_alarm, |
| .set_alarm = isl12057_rtc_set_alarm, |
| .alarm_irq_enable = isl12057_rtc_alarm_irq_enable, |
| }; |
| |
| static const struct regmap_config isl12057_rtc_regmap_config = { |
| .reg_bits = 8, |
| .val_bits = 8, |
| }; |
| |
| static int isl12057_probe(struct i2c_client *client, |
| const struct i2c_device_id *id) |
| { |
| struct device *dev = &client->dev; |
| struct isl12057_rtc_data *data; |
| struct regmap *regmap; |
| int ret; |
| |
| if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C | |
| I2C_FUNC_SMBUS_BYTE_DATA | |
| I2C_FUNC_SMBUS_I2C_BLOCK)) |
| return -ENODEV; |
| |
| regmap = devm_regmap_init_i2c(client, &isl12057_rtc_regmap_config); |
| if (IS_ERR(regmap)) { |
| ret = PTR_ERR(regmap); |
| dev_err(dev, "%s: regmap allocation failed (%d)\n", |
| __func__, ret); |
| return ret; |
| } |
| |
| ret = isl12057_i2c_validate_chip(regmap); |
| if (ret) |
| return ret; |
| |
| ret = isl12057_check_rtc_status(dev, regmap); |
| if (ret) |
| return ret; |
| |
| data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL); |
| if (!data) |
| return -ENOMEM; |
| |
| mutex_init(&data->lock); |
| data->regmap = regmap; |
| dev_set_drvdata(dev, data); |
| |
| if (client->irq > 0) { |
| ret = devm_request_threaded_irq(dev, client->irq, NULL, |
| isl12057_rtc_interrupt, |
| IRQF_SHARED|IRQF_ONESHOT, |
| DRV_NAME, client); |
| if (!ret) |
| data->irq = client->irq; |
| else |
| dev_err(dev, "%s: irq %d unavailable (%d)\n", __func__, |
| client->irq, ret); |
| } |
| |
| if (isl12057_can_wakeup_machine(dev)) |
| device_init_wakeup(dev, true); |
| |
| data->rtc = devm_rtc_device_register(dev, DRV_NAME, &rtc_ops, |
| THIS_MODULE); |
| ret = PTR_ERR_OR_ZERO(data->rtc); |
| if (ret) { |
| dev_err(dev, "%s: unable to register RTC device (%d)\n", |
| __func__, ret); |
| goto err; |
| } |
| |
| /* We cannot support UIE mode if we do not have an IRQ line */ |
| if (!data->irq) |
| data->rtc->uie_unsupported = 1; |
| |
| err: |
| return ret; |
| } |
| |
| static int isl12057_remove(struct i2c_client *client) |
| { |
| if (isl12057_can_wakeup_machine(&client->dev)) |
| device_init_wakeup(&client->dev, false); |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_PM_SLEEP |
| static int isl12057_rtc_suspend(struct device *dev) |
| { |
| struct isl12057_rtc_data *rtc_data = dev_get_drvdata(dev); |
| |
| if (rtc_data->irq && device_may_wakeup(dev)) |
| return enable_irq_wake(rtc_data->irq); |
| |
| return 0; |
| } |
| |
| static int isl12057_rtc_resume(struct device *dev) |
| { |
| struct isl12057_rtc_data *rtc_data = dev_get_drvdata(dev); |
| |
| if (rtc_data->irq && device_may_wakeup(dev)) |
| return disable_irq_wake(rtc_data->irq); |
| |
| return 0; |
| } |
| #endif |
| |
| static SIMPLE_DEV_PM_OPS(isl12057_rtc_pm_ops, isl12057_rtc_suspend, |
| isl12057_rtc_resume); |
| |
| #ifdef CONFIG_OF |
| static const struct of_device_id isl12057_dt_match[] = { |
| { .compatible = "isl,isl12057" }, |
| { }, |
| }; |
| #endif |
| |
| static const struct i2c_device_id isl12057_id[] = { |
| { "isl12057", 0 }, |
| { } |
| }; |
| MODULE_DEVICE_TABLE(i2c, isl12057_id); |
| |
| static struct i2c_driver isl12057_driver = { |
| .driver = { |
| .name = DRV_NAME, |
| .owner = THIS_MODULE, |
| .pm = &isl12057_rtc_pm_ops, |
| .of_match_table = of_match_ptr(isl12057_dt_match), |
| }, |
| .probe = isl12057_probe, |
| .remove = isl12057_remove, |
| .id_table = isl12057_id, |
| }; |
| module_i2c_driver(isl12057_driver); |
| |
| MODULE_AUTHOR("Arnaud EBALARD <arno@natisbad.org>"); |
| MODULE_DESCRIPTION("Intersil ISL12057 RTC driver"); |
| MODULE_LICENSE("GPL"); |