| /* |
| * arch/sh/kernel/time_64.c |
| * |
| * Copyright (C) 2000, 2001 Paolo Alberelli |
| * Copyright (C) 2003 - 2007 Paul Mundt |
| * Copyright (C) 2003 Richard Curnow |
| * |
| * Original TMU/RTC code taken from sh version. |
| * Copyright (C) 1999 Tetsuya Okada & Niibe Yutaka |
| * Some code taken from i386 version. |
| * Copyright (C) 1991, 1992, 1995 Linus Torvalds |
| * |
| * This file is subject to the terms and conditions of the GNU General Public |
| * License. See the file "COPYING" in the main directory of this archive |
| * for more details. |
| */ |
| #include <linux/errno.h> |
| #include <linux/rwsem.h> |
| #include <linux/sched.h> |
| #include <linux/kernel.h> |
| #include <linux/param.h> |
| #include <linux/string.h> |
| #include <linux/mm.h> |
| #include <linux/interrupt.h> |
| #include <linux/time.h> |
| #include <linux/delay.h> |
| #include <linux/init.h> |
| #include <linux/profile.h> |
| #include <linux/smp.h> |
| #include <linux/module.h> |
| #include <linux/bcd.h> |
| #include <linux/timex.h> |
| #include <linux/irq.h> |
| #include <linux/io.h> |
| #include <linux/platform_device.h> |
| #include <cpu/registers.h> /* required by inline __asm__ stmt. */ |
| #include <cpu/irq.h> |
| #include <asm/addrspace.h> |
| #include <asm/processor.h> |
| #include <asm/uaccess.h> |
| #include <asm/delay.h> |
| #include <asm/clock.h> |
| |
| #define TMU_TOCR_INIT 0x00 |
| #define TMU0_TCR_INIT 0x0020 |
| #define TMU_TSTR_INIT 1 |
| #define TMU_TSTR_OFF 0 |
| |
| /* Real Time Clock */ |
| #define RTC_BLOCK_OFF 0x01040000 |
| #define RTC_BASE PHYS_PERIPHERAL_BLOCK + RTC_BLOCK_OFF |
| #define RTC_RCR1_CIE 0x10 /* Carry Interrupt Enable */ |
| #define RTC_RCR1 (rtc_base + 0x38) |
| |
| /* Time Management Unit */ |
| #define TMU_BLOCK_OFF 0x01020000 |
| #define TMU_BASE PHYS_PERIPHERAL_BLOCK + TMU_BLOCK_OFF |
| #define TMU0_BASE tmu_base + 0x8 + (0xc * 0x0) |
| #define TMU1_BASE tmu_base + 0x8 + (0xc * 0x1) |
| #define TMU2_BASE tmu_base + 0x8 + (0xc * 0x2) |
| |
| #define TMU_TOCR tmu_base+0x0 /* Byte access */ |
| #define TMU_TSTR tmu_base+0x4 /* Byte access */ |
| |
| #define TMU0_TCOR TMU0_BASE+0x0 /* Long access */ |
| #define TMU0_TCNT TMU0_BASE+0x4 /* Long access */ |
| #define TMU0_TCR TMU0_BASE+0x8 /* Word access */ |
| |
| #define TICK_SIZE (tick_nsec / 1000) |
| |
| static unsigned long tmu_base, rtc_base; |
| unsigned long cprc_base; |
| |
| /* Variables to allow interpolation of time of day to resolution better than a |
| * jiffy. */ |
| |
| /* This is effectively protected by xtime_lock */ |
| static unsigned long ctc_last_interrupt; |
| static unsigned long long usecs_per_jiffy = 1000000/HZ; /* Approximation */ |
| |
| #define CTC_JIFFY_SCALE_SHIFT 40 |
| |
| /* 2**CTC_JIFFY_SCALE_SHIFT / ctc_ticks_per_jiffy */ |
| static unsigned long long scaled_recip_ctc_ticks_per_jiffy; |
| |
| /* Estimate number of microseconds that have elapsed since the last timer tick, |
| by scaling the delta that has occurred in the CTC register. |
| |
| WARNING WARNING WARNING : This algorithm relies on the CTC decrementing at |
| the CPU clock rate. If the CPU sleeps, the CTC stops counting. Bear this |
| in mind if enabling SLEEP_WORKS in process.c. In that case, this algorithm |
| probably needs to use TMU.TCNT0 instead. This will work even if the CPU is |
| sleeping, though will be coarser. |
| |
| FIXME : What if usecs_per_tick is moving around too much, e.g. if an adjtime |
| is running or if the freq or tick arguments of adjtimex are modified after |
| we have calibrated the scaling factor? This will result in either a jump at |
| the end of a tick period, or a wrap backwards at the start of the next one, |
| if the application is reading the time of day often enough. I think we |
| ought to do better than this. For this reason, usecs_per_jiffy is left |
| separated out in the calculation below. This allows some future hook into |
| the adjtime-related stuff in kernel/timer.c to remove this hazard. |
| |
| */ |
| |
| static unsigned long usecs_since_tick(void) |
| { |
| unsigned long long current_ctc; |
| long ctc_ticks_since_interrupt; |
| unsigned long long ull_ctc_ticks_since_interrupt; |
| unsigned long result; |
| |
| unsigned long long mul1_out; |
| unsigned long long mul1_out_high; |
| unsigned long long mul2_out_low, mul2_out_high; |
| |
| /* Read CTC register */ |
| asm ("getcon cr62, %0" : "=r" (current_ctc)); |
| /* Note, the CTC counts down on each CPU clock, not up. |
| Note(2), use long type to get correct wraparound arithmetic when |
| the counter crosses zero. */ |
| ctc_ticks_since_interrupt = (long) ctc_last_interrupt - (long) current_ctc; |
| ull_ctc_ticks_since_interrupt = (unsigned long long) ctc_ticks_since_interrupt; |
| |
| /* Inline assembly to do 32x32x32->64 multiplier */ |
| asm volatile ("mulu.l %1, %2, %0" : |
| "=r" (mul1_out) : |
| "r" (ull_ctc_ticks_since_interrupt), "r" (usecs_per_jiffy)); |
| |
| mul1_out_high = mul1_out >> 32; |
| |
| asm volatile ("mulu.l %1, %2, %0" : |
| "=r" (mul2_out_low) : |
| "r" (mul1_out), "r" (scaled_recip_ctc_ticks_per_jiffy)); |
| |
| #if 1 |
| asm volatile ("mulu.l %1, %2, %0" : |
| "=r" (mul2_out_high) : |
| "r" (mul1_out_high), "r" (scaled_recip_ctc_ticks_per_jiffy)); |
| #endif |
| |
| result = (unsigned long) (((mul2_out_high << 32) + mul2_out_low) >> CTC_JIFFY_SCALE_SHIFT); |
| |
| return result; |
| } |
| |
| u32 arch_gettimeoffset(void) |
| { |
| return usecs_since_tick() * 1000; |
| } |
| |
| /* Dummy RTC ops */ |
| static void null_rtc_get_time(struct timespec *tv) |
| { |
| tv->tv_sec = mktime(2000, 1, 1, 0, 0, 0); |
| tv->tv_nsec = 0; |
| } |
| |
| static int null_rtc_set_time(const time_t secs) |
| { |
| return 0; |
| } |
| |
| void (*rtc_sh_get_time)(struct timespec *) = null_rtc_get_time; |
| int (*rtc_sh_set_time)(const time_t) = null_rtc_set_time; |
| |
| /* last time the RTC clock got updated */ |
| static long last_rtc_update; |
| |
| /* |
| * timer_interrupt() needs to keep up the real-time clock, |
| * as well as call the "do_timer()" routine every clocktick |
| */ |
| static inline void do_timer_interrupt(void) |
| { |
| unsigned long long current_ctc; |
| |
| if (current->pid) |
| profile_tick(CPU_PROFILING); |
| |
| /* |
| * Here we are in the timer irq handler. We just have irqs locally |
| * disabled but we don't know if the timer_bh is running on the other |
| * CPU. We need to avoid to SMP race with it. NOTE: we don' t need |
| * the irq version of write_lock because as just said we have irq |
| * locally disabled. -arca |
| */ |
| write_seqlock(&xtime_lock); |
| asm ("getcon cr62, %0" : "=r" (current_ctc)); |
| ctc_last_interrupt = (unsigned long) current_ctc; |
| |
| do_timer(1); |
| |
| /* |
| * If we have an externally synchronized Linux clock, then update |
| * RTC clock accordingly every ~11 minutes. Set_rtc_mmss() has to be |
| * called as close as possible to 500 ms before the new second starts. |
| */ |
| if (ntp_synced() && |
| xtime.tv_sec > last_rtc_update + 660 && |
| (xtime.tv_nsec / 1000) >= 500000 - ((unsigned) TICK_SIZE) / 2 && |
| (xtime.tv_nsec / 1000) <= 500000 + ((unsigned) TICK_SIZE) / 2) { |
| if (rtc_sh_set_time(xtime.tv_sec) == 0) |
| last_rtc_update = xtime.tv_sec; |
| else |
| /* do it again in 60 s */ |
| last_rtc_update = xtime.tv_sec - 600; |
| } |
| write_sequnlock(&xtime_lock); |
| |
| #ifndef CONFIG_SMP |
| update_process_times(user_mode(get_irq_regs())); |
| #endif |
| } |
| |
| /* |
| * This is the same as the above, except we _also_ save the current |
| * Time Stamp Counter value at the time of the timer interrupt, so that |
| * we later on can estimate the time of day more exactly. |
| */ |
| static irqreturn_t timer_interrupt(int irq, void *dev_id) |
| { |
| unsigned long timer_status; |
| |
| /* Clear UNF bit */ |
| timer_status = ctrl_inw(TMU0_TCR); |
| timer_status &= ~0x100; |
| ctrl_outw(timer_status, TMU0_TCR); |
| |
| do_timer_interrupt(); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static struct irqaction irq0 = { |
| .handler = timer_interrupt, |
| .flags = IRQF_DISABLED, |
| .name = "timer", |
| }; |
| |
| void __init time_init(void) |
| { |
| unsigned long interval; |
| struct clk *clk; |
| |
| tmu_base = onchip_remap(TMU_BASE, 1024, "TMU"); |
| if (!tmu_base) { |
| panic("Unable to remap TMU\n"); |
| } |
| |
| rtc_base = onchip_remap(RTC_BASE, 1024, "RTC"); |
| if (!rtc_base) { |
| panic("Unable to remap RTC\n"); |
| } |
| |
| clk = clk_get(NULL, "cpu_clk"); |
| scaled_recip_ctc_ticks_per_jiffy = ((1ULL << CTC_JIFFY_SCALE_SHIFT) / |
| (unsigned long long)(clk_get_rate(clk) / HZ)); |
| |
| rtc_sh_get_time(&xtime); |
| |
| setup_irq(TIMER_IRQ, &irq0); |
| |
| clk = clk_get(NULL, "module_clk"); |
| interval = (clk_get_rate(clk)/(HZ*4)); |
| |
| printk("Interval = %ld\n", interval); |
| |
| /* Start TMU0 */ |
| ctrl_outb(TMU_TSTR_OFF, TMU_TSTR); |
| ctrl_outb(TMU_TOCR_INIT, TMU_TOCR); |
| ctrl_outw(TMU0_TCR_INIT, TMU0_TCR); |
| ctrl_outl(interval, TMU0_TCOR); |
| ctrl_outl(interval, TMU0_TCNT); |
| ctrl_outb(TMU_TSTR_INIT, TMU_TSTR); |
| } |
| |
| static struct resource rtc_resources[] = { |
| [0] = { |
| /* RTC base, filled in by rtc_init */ |
| .flags = IORESOURCE_IO, |
| }, |
| [1] = { |
| /* Period IRQ */ |
| .start = IRQ_PRI, |
| .flags = IORESOURCE_IRQ, |
| }, |
| [2] = { |
| /* Carry IRQ */ |
| .start = IRQ_CUI, |
| .flags = IORESOURCE_IRQ, |
| }, |
| [3] = { |
| /* Alarm IRQ */ |
| .start = IRQ_ATI, |
| .flags = IORESOURCE_IRQ, |
| }, |
| }; |
| |
| static struct platform_device rtc_device = { |
| .name = "sh-rtc", |
| .id = -1, |
| .num_resources = ARRAY_SIZE(rtc_resources), |
| .resource = rtc_resources, |
| }; |
| |
| static int __init rtc_init(void) |
| { |
| rtc_resources[0].start = rtc_base; |
| rtc_resources[0].end = rtc_resources[0].start + 0x58 - 1; |
| |
| return platform_device_register(&rtc_device); |
| } |
| device_initcall(rtc_init); |