| #ifndef __ASM_SPINLOCK_H |
| #define __ASM_SPINLOCK_H |
| |
| #if __LINUX_ARM_ARCH__ < 6 |
| #error SMP not supported on pre-ARMv6 CPUs |
| #endif |
| |
| /* |
| * ARMv6 Spin-locking. |
| * |
| * We exclusively read the old value. If it is zero, we may have |
| * won the lock, so we try exclusively storing it. A memory barrier |
| * is required after we get a lock, and before we release it, because |
| * V6 CPUs are assumed to have weakly ordered memory. |
| * |
| * Unlocked value: 0 |
| * Locked value: 1 |
| */ |
| |
| #define __raw_spin_is_locked(x) ((x)->lock != 0) |
| #define __raw_spin_unlock_wait(lock) \ |
| do { while (__raw_spin_is_locked(lock)) cpu_relax(); } while (0) |
| |
| #define __raw_spin_lock_flags(lock, flags) __raw_spin_lock(lock) |
| |
| static inline void __raw_spin_lock(arch_spinlock_t *lock) |
| { |
| unsigned long tmp; |
| |
| __asm__ __volatile__( |
| "1: ldrex %0, [%1]\n" |
| " teq %0, #0\n" |
| #ifdef CONFIG_CPU_32v6K |
| " wfene\n" |
| #endif |
| " strexeq %0, %2, [%1]\n" |
| " teqeq %0, #0\n" |
| " bne 1b" |
| : "=&r" (tmp) |
| : "r" (&lock->lock), "r" (1) |
| : "cc"); |
| |
| smp_mb(); |
| } |
| |
| static inline int __raw_spin_trylock(arch_spinlock_t *lock) |
| { |
| unsigned long tmp; |
| |
| __asm__ __volatile__( |
| " ldrex %0, [%1]\n" |
| " teq %0, #0\n" |
| " strexeq %0, %2, [%1]" |
| : "=&r" (tmp) |
| : "r" (&lock->lock), "r" (1) |
| : "cc"); |
| |
| if (tmp == 0) { |
| smp_mb(); |
| return 1; |
| } else { |
| return 0; |
| } |
| } |
| |
| static inline void __raw_spin_unlock(arch_spinlock_t *lock) |
| { |
| smp_mb(); |
| |
| __asm__ __volatile__( |
| " str %1, [%0]\n" |
| #ifdef CONFIG_CPU_32v6K |
| " mcr p15, 0, %1, c7, c10, 4\n" /* DSB */ |
| " sev" |
| #endif |
| : |
| : "r" (&lock->lock), "r" (0) |
| : "cc"); |
| } |
| |
| /* |
| * RWLOCKS |
| * |
| * |
| * Write locks are easy - we just set bit 31. When unlocking, we can |
| * just write zero since the lock is exclusively held. |
| */ |
| |
| static inline void __raw_write_lock(raw_rwlock_t *rw) |
| { |
| unsigned long tmp; |
| |
| __asm__ __volatile__( |
| "1: ldrex %0, [%1]\n" |
| " teq %0, #0\n" |
| #ifdef CONFIG_CPU_32v6K |
| " wfene\n" |
| #endif |
| " strexeq %0, %2, [%1]\n" |
| " teq %0, #0\n" |
| " bne 1b" |
| : "=&r" (tmp) |
| : "r" (&rw->lock), "r" (0x80000000) |
| : "cc"); |
| |
| smp_mb(); |
| } |
| |
| static inline int __raw_write_trylock(raw_rwlock_t *rw) |
| { |
| unsigned long tmp; |
| |
| __asm__ __volatile__( |
| "1: ldrex %0, [%1]\n" |
| " teq %0, #0\n" |
| " strexeq %0, %2, [%1]" |
| : "=&r" (tmp) |
| : "r" (&rw->lock), "r" (0x80000000) |
| : "cc"); |
| |
| if (tmp == 0) { |
| smp_mb(); |
| return 1; |
| } else { |
| return 0; |
| } |
| } |
| |
| static inline void __raw_write_unlock(raw_rwlock_t *rw) |
| { |
| smp_mb(); |
| |
| __asm__ __volatile__( |
| "str %1, [%0]\n" |
| #ifdef CONFIG_CPU_32v6K |
| " mcr p15, 0, %1, c7, c10, 4\n" /* DSB */ |
| " sev\n" |
| #endif |
| : |
| : "r" (&rw->lock), "r" (0) |
| : "cc"); |
| } |
| |
| /* write_can_lock - would write_trylock() succeed? */ |
| #define __raw_write_can_lock(x) ((x)->lock == 0) |
| |
| /* |
| * Read locks are a bit more hairy: |
| * - Exclusively load the lock value. |
| * - Increment it. |
| * - Store new lock value if positive, and we still own this location. |
| * If the value is negative, we've already failed. |
| * - If we failed to store the value, we want a negative result. |
| * - If we failed, try again. |
| * Unlocking is similarly hairy. We may have multiple read locks |
| * currently active. However, we know we won't have any write |
| * locks. |
| */ |
| static inline void __raw_read_lock(raw_rwlock_t *rw) |
| { |
| unsigned long tmp, tmp2; |
| |
| __asm__ __volatile__( |
| "1: ldrex %0, [%2]\n" |
| " adds %0, %0, #1\n" |
| " strexpl %1, %0, [%2]\n" |
| #ifdef CONFIG_CPU_32v6K |
| " wfemi\n" |
| #endif |
| " rsbpls %0, %1, #0\n" |
| " bmi 1b" |
| : "=&r" (tmp), "=&r" (tmp2) |
| : "r" (&rw->lock) |
| : "cc"); |
| |
| smp_mb(); |
| } |
| |
| static inline void __raw_read_unlock(raw_rwlock_t *rw) |
| { |
| unsigned long tmp, tmp2; |
| |
| smp_mb(); |
| |
| __asm__ __volatile__( |
| "1: ldrex %0, [%2]\n" |
| " sub %0, %0, #1\n" |
| " strex %1, %0, [%2]\n" |
| " teq %1, #0\n" |
| " bne 1b" |
| #ifdef CONFIG_CPU_32v6K |
| "\n cmp %0, #0\n" |
| " mcreq p15, 0, %0, c7, c10, 4\n" |
| " seveq" |
| #endif |
| : "=&r" (tmp), "=&r" (tmp2) |
| : "r" (&rw->lock) |
| : "cc"); |
| } |
| |
| static inline int __raw_read_trylock(raw_rwlock_t *rw) |
| { |
| unsigned long tmp, tmp2 = 1; |
| |
| __asm__ __volatile__( |
| "1: ldrex %0, [%2]\n" |
| " adds %0, %0, #1\n" |
| " strexpl %1, %0, [%2]\n" |
| : "=&r" (tmp), "+r" (tmp2) |
| : "r" (&rw->lock) |
| : "cc"); |
| |
| smp_mb(); |
| return tmp2 == 0; |
| } |
| |
| /* read_can_lock - would read_trylock() succeed? */ |
| #define __raw_read_can_lock(x) ((x)->lock < 0x80000000) |
| |
| #define __raw_read_lock_flags(lock, flags) __raw_read_lock(lock) |
| #define __raw_write_lock_flags(lock, flags) __raw_write_lock(lock) |
| |
| #define _raw_spin_relax(lock) cpu_relax() |
| #define _raw_read_relax(lock) cpu_relax() |
| #define _raw_write_relax(lock) cpu_relax() |
| |
| #endif /* __ASM_SPINLOCK_H */ |