| /* |
| * Copyright 2008 Advanced Micro Devices, Inc. |
| * Copyright 2008 Red Hat Inc. |
| * Copyright 2009 Jerome Glisse. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR |
| * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, |
| * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
| * OTHER DEALINGS IN THE SOFTWARE. |
| * |
| * Authors: Dave Airlie |
| * Alex Deucher |
| * Jerome Glisse |
| */ |
| #include "drmP.h" |
| #include "radeon.h" |
| #include "radeon_asic.h" |
| #include "atom.h" |
| #include "rs690d.h" |
| |
| int rs690_mc_wait_for_idle(struct radeon_device *rdev) |
| { |
| unsigned i; |
| uint32_t tmp; |
| |
| for (i = 0; i < rdev->usec_timeout; i++) { |
| /* read MC_STATUS */ |
| tmp = RREG32_MC(R_000090_MC_SYSTEM_STATUS); |
| if (G_000090_MC_SYSTEM_IDLE(tmp)) |
| return 0; |
| udelay(1); |
| } |
| return -1; |
| } |
| |
| static void rs690_gpu_init(struct radeon_device *rdev) |
| { |
| /* FIXME: is this correct ? */ |
| r420_pipes_init(rdev); |
| if (rs690_mc_wait_for_idle(rdev)) { |
| printk(KERN_WARNING "Failed to wait MC idle while " |
| "programming pipes. Bad things might happen.\n"); |
| } |
| } |
| |
| union igp_info { |
| struct _ATOM_INTEGRATED_SYSTEM_INFO info; |
| struct _ATOM_INTEGRATED_SYSTEM_INFO_V2 info_v2; |
| }; |
| |
| void rs690_pm_info(struct radeon_device *rdev) |
| { |
| int index = GetIndexIntoMasterTable(DATA, IntegratedSystemInfo); |
| union igp_info *info; |
| uint16_t data_offset; |
| uint8_t frev, crev; |
| fixed20_12 tmp; |
| |
| if (atom_parse_data_header(rdev->mode_info.atom_context, index, NULL, |
| &frev, &crev, &data_offset)) { |
| info = (union igp_info *)(rdev->mode_info.atom_context->bios + data_offset); |
| |
| /* Get various system informations from bios */ |
| switch (crev) { |
| case 1: |
| tmp.full = dfixed_const(100); |
| rdev->pm.igp_sideport_mclk.full = dfixed_const(le32_to_cpu(info->info.ulBootUpMemoryClock)); |
| rdev->pm.igp_sideport_mclk.full = dfixed_div(rdev->pm.igp_sideport_mclk, tmp); |
| if (le16_to_cpu(info->info.usK8MemoryClock)) |
| rdev->pm.igp_system_mclk.full = dfixed_const(le16_to_cpu(info->info.usK8MemoryClock)); |
| else if (rdev->clock.default_mclk) { |
| rdev->pm.igp_system_mclk.full = dfixed_const(rdev->clock.default_mclk); |
| rdev->pm.igp_system_mclk.full = dfixed_div(rdev->pm.igp_system_mclk, tmp); |
| } else |
| rdev->pm.igp_system_mclk.full = dfixed_const(400); |
| rdev->pm.igp_ht_link_clk.full = dfixed_const(le16_to_cpu(info->info.usFSBClock)); |
| rdev->pm.igp_ht_link_width.full = dfixed_const(info->info.ucHTLinkWidth); |
| break; |
| case 2: |
| tmp.full = dfixed_const(100); |
| rdev->pm.igp_sideport_mclk.full = dfixed_const(le32_to_cpu(info->info_v2.ulBootUpSidePortClock)); |
| rdev->pm.igp_sideport_mclk.full = dfixed_div(rdev->pm.igp_sideport_mclk, tmp); |
| if (le32_to_cpu(info->info_v2.ulBootUpUMAClock)) |
| rdev->pm.igp_system_mclk.full = dfixed_const(le32_to_cpu(info->info_v2.ulBootUpUMAClock)); |
| else if (rdev->clock.default_mclk) |
| rdev->pm.igp_system_mclk.full = dfixed_const(rdev->clock.default_mclk); |
| else |
| rdev->pm.igp_system_mclk.full = dfixed_const(66700); |
| rdev->pm.igp_system_mclk.full = dfixed_div(rdev->pm.igp_system_mclk, tmp); |
| rdev->pm.igp_ht_link_clk.full = dfixed_const(le32_to_cpu(info->info_v2.ulHTLinkFreq)); |
| rdev->pm.igp_ht_link_clk.full = dfixed_div(rdev->pm.igp_ht_link_clk, tmp); |
| rdev->pm.igp_ht_link_width.full = dfixed_const(le16_to_cpu(info->info_v2.usMinHTLinkWidth)); |
| break; |
| default: |
| /* We assume the slower possible clock ie worst case */ |
| rdev->pm.igp_sideport_mclk.full = dfixed_const(200); |
| rdev->pm.igp_system_mclk.full = dfixed_const(200); |
| rdev->pm.igp_ht_link_clk.full = dfixed_const(1000); |
| rdev->pm.igp_ht_link_width.full = dfixed_const(8); |
| DRM_ERROR("No integrated system info for your GPU, using safe default\n"); |
| break; |
| } |
| } else { |
| /* We assume the slower possible clock ie worst case */ |
| rdev->pm.igp_sideport_mclk.full = dfixed_const(200); |
| rdev->pm.igp_system_mclk.full = dfixed_const(200); |
| rdev->pm.igp_ht_link_clk.full = dfixed_const(1000); |
| rdev->pm.igp_ht_link_width.full = dfixed_const(8); |
| DRM_ERROR("No integrated system info for your GPU, using safe default\n"); |
| } |
| /* Compute various bandwidth */ |
| /* k8_bandwidth = (memory_clk / 2) * 2 * 8 * 0.5 = memory_clk * 4 */ |
| tmp.full = dfixed_const(4); |
| rdev->pm.k8_bandwidth.full = dfixed_mul(rdev->pm.igp_system_mclk, tmp); |
| /* ht_bandwidth = ht_clk * 2 * ht_width / 8 * 0.8 |
| * = ht_clk * ht_width / 5 |
| */ |
| tmp.full = dfixed_const(5); |
| rdev->pm.ht_bandwidth.full = dfixed_mul(rdev->pm.igp_ht_link_clk, |
| rdev->pm.igp_ht_link_width); |
| rdev->pm.ht_bandwidth.full = dfixed_div(rdev->pm.ht_bandwidth, tmp); |
| if (tmp.full < rdev->pm.max_bandwidth.full) { |
| /* HT link is a limiting factor */ |
| rdev->pm.max_bandwidth.full = tmp.full; |
| } |
| /* sideport_bandwidth = (sideport_clk / 2) * 2 * 2 * 0.7 |
| * = (sideport_clk * 14) / 10 |
| */ |
| tmp.full = dfixed_const(14); |
| rdev->pm.sideport_bandwidth.full = dfixed_mul(rdev->pm.igp_sideport_mclk, tmp); |
| tmp.full = dfixed_const(10); |
| rdev->pm.sideport_bandwidth.full = dfixed_div(rdev->pm.sideport_bandwidth, tmp); |
| } |
| |
| void rs690_mc_init(struct radeon_device *rdev) |
| { |
| u64 base; |
| |
| rs400_gart_adjust_size(rdev); |
| rdev->mc.vram_is_ddr = true; |
| rdev->mc.vram_width = 128; |
| rdev->mc.real_vram_size = RREG32(RADEON_CONFIG_MEMSIZE); |
| rdev->mc.mc_vram_size = rdev->mc.real_vram_size; |
| rdev->mc.aper_base = pci_resource_start(rdev->pdev, 0); |
| rdev->mc.aper_size = pci_resource_len(rdev->pdev, 0); |
| rdev->mc.visible_vram_size = rdev->mc.aper_size; |
| base = RREG32_MC(R_000100_MCCFG_FB_LOCATION); |
| base = G_000100_MC_FB_START(base) << 16; |
| rdev->mc.igp_sideport_enabled = radeon_atombios_sideport_present(rdev); |
| rs690_pm_info(rdev); |
| radeon_vram_location(rdev, &rdev->mc, base); |
| rdev->mc.gtt_base_align = rdev->mc.gtt_size - 1; |
| radeon_gtt_location(rdev, &rdev->mc); |
| radeon_update_bandwidth_info(rdev); |
| } |
| |
| void rs690_line_buffer_adjust(struct radeon_device *rdev, |
| struct drm_display_mode *mode1, |
| struct drm_display_mode *mode2) |
| { |
| u32 tmp; |
| |
| /* |
| * Line Buffer Setup |
| * There is a single line buffer shared by both display controllers. |
| * R_006520_DC_LB_MEMORY_SPLIT controls how that line buffer is shared between |
| * the display controllers. The paritioning can either be done |
| * manually or via one of four preset allocations specified in bits 1:0: |
| * 0 - line buffer is divided in half and shared between crtc |
| * 1 - D1 gets 3/4 of the line buffer, D2 gets 1/4 |
| * 2 - D1 gets the whole buffer |
| * 3 - D1 gets 1/4 of the line buffer, D2 gets 3/4 |
| * Setting bit 2 of R_006520_DC_LB_MEMORY_SPLIT controls switches to manual |
| * allocation mode. In manual allocation mode, D1 always starts at 0, |
| * D1 end/2 is specified in bits 14:4; D2 allocation follows D1. |
| */ |
| tmp = RREG32(R_006520_DC_LB_MEMORY_SPLIT) & C_006520_DC_LB_MEMORY_SPLIT; |
| tmp &= ~C_006520_DC_LB_MEMORY_SPLIT_MODE; |
| /* auto */ |
| if (mode1 && mode2) { |
| if (mode1->hdisplay > mode2->hdisplay) { |
| if (mode1->hdisplay > 2560) |
| tmp |= V_006520_DC_LB_MEMORY_SPLIT_D1_3Q_D2_1Q; |
| else |
| tmp |= V_006520_DC_LB_MEMORY_SPLIT_D1HALF_D2HALF; |
| } else if (mode2->hdisplay > mode1->hdisplay) { |
| if (mode2->hdisplay > 2560) |
| tmp |= V_006520_DC_LB_MEMORY_SPLIT_D1_1Q_D2_3Q; |
| else |
| tmp |= V_006520_DC_LB_MEMORY_SPLIT_D1HALF_D2HALF; |
| } else |
| tmp |= V_006520_DC_LB_MEMORY_SPLIT_D1HALF_D2HALF; |
| } else if (mode1) { |
| tmp |= V_006520_DC_LB_MEMORY_SPLIT_D1_ONLY; |
| } else if (mode2) { |
| tmp |= V_006520_DC_LB_MEMORY_SPLIT_D1_1Q_D2_3Q; |
| } |
| WREG32(R_006520_DC_LB_MEMORY_SPLIT, tmp); |
| } |
| |
| struct rs690_watermark { |
| u32 lb_request_fifo_depth; |
| fixed20_12 num_line_pair; |
| fixed20_12 estimated_width; |
| fixed20_12 worst_case_latency; |
| fixed20_12 consumption_rate; |
| fixed20_12 active_time; |
| fixed20_12 dbpp; |
| fixed20_12 priority_mark_max; |
| fixed20_12 priority_mark; |
| fixed20_12 sclk; |
| }; |
| |
| void rs690_crtc_bandwidth_compute(struct radeon_device *rdev, |
| struct radeon_crtc *crtc, |
| struct rs690_watermark *wm) |
| { |
| struct drm_display_mode *mode = &crtc->base.mode; |
| fixed20_12 a, b, c; |
| fixed20_12 pclk, request_fifo_depth, tolerable_latency, estimated_width; |
| fixed20_12 consumption_time, line_time, chunk_time, read_delay_latency; |
| |
| if (!crtc->base.enabled) { |
| /* FIXME: wouldn't it better to set priority mark to maximum */ |
| wm->lb_request_fifo_depth = 4; |
| return; |
| } |
| |
| if (crtc->vsc.full > dfixed_const(2)) |
| wm->num_line_pair.full = dfixed_const(2); |
| else |
| wm->num_line_pair.full = dfixed_const(1); |
| |
| b.full = dfixed_const(mode->crtc_hdisplay); |
| c.full = dfixed_const(256); |
| a.full = dfixed_div(b, c); |
| request_fifo_depth.full = dfixed_mul(a, wm->num_line_pair); |
| request_fifo_depth.full = dfixed_ceil(request_fifo_depth); |
| if (a.full < dfixed_const(4)) { |
| wm->lb_request_fifo_depth = 4; |
| } else { |
| wm->lb_request_fifo_depth = dfixed_trunc(request_fifo_depth); |
| } |
| |
| /* Determine consumption rate |
| * pclk = pixel clock period(ns) = 1000 / (mode.clock / 1000) |
| * vtaps = number of vertical taps, |
| * vsc = vertical scaling ratio, defined as source/destination |
| * hsc = horizontal scaling ration, defined as source/destination |
| */ |
| a.full = dfixed_const(mode->clock); |
| b.full = dfixed_const(1000); |
| a.full = dfixed_div(a, b); |
| pclk.full = dfixed_div(b, a); |
| if (crtc->rmx_type != RMX_OFF) { |
| b.full = dfixed_const(2); |
| if (crtc->vsc.full > b.full) |
| b.full = crtc->vsc.full; |
| b.full = dfixed_mul(b, crtc->hsc); |
| c.full = dfixed_const(2); |
| b.full = dfixed_div(b, c); |
| consumption_time.full = dfixed_div(pclk, b); |
| } else { |
| consumption_time.full = pclk.full; |
| } |
| a.full = dfixed_const(1); |
| wm->consumption_rate.full = dfixed_div(a, consumption_time); |
| |
| |
| /* Determine line time |
| * LineTime = total time for one line of displayhtotal |
| * LineTime = total number of horizontal pixels |
| * pclk = pixel clock period(ns) |
| */ |
| a.full = dfixed_const(crtc->base.mode.crtc_htotal); |
| line_time.full = dfixed_mul(a, pclk); |
| |
| /* Determine active time |
| * ActiveTime = time of active region of display within one line, |
| * hactive = total number of horizontal active pixels |
| * htotal = total number of horizontal pixels |
| */ |
| a.full = dfixed_const(crtc->base.mode.crtc_htotal); |
| b.full = dfixed_const(crtc->base.mode.crtc_hdisplay); |
| wm->active_time.full = dfixed_mul(line_time, b); |
| wm->active_time.full = dfixed_div(wm->active_time, a); |
| |
| /* Maximun bandwidth is the minimun bandwidth of all component */ |
| rdev->pm.max_bandwidth = rdev->pm.core_bandwidth; |
| if (rdev->mc.igp_sideport_enabled) { |
| if (rdev->pm.max_bandwidth.full > rdev->pm.sideport_bandwidth.full && |
| rdev->pm.sideport_bandwidth.full) |
| rdev->pm.max_bandwidth = rdev->pm.sideport_bandwidth; |
| read_delay_latency.full = dfixed_const(370 * 800 * 1000); |
| read_delay_latency.full = dfixed_div(read_delay_latency, |
| rdev->pm.igp_sideport_mclk); |
| } else { |
| if (rdev->pm.max_bandwidth.full > rdev->pm.k8_bandwidth.full && |
| rdev->pm.k8_bandwidth.full) |
| rdev->pm.max_bandwidth = rdev->pm.k8_bandwidth; |
| if (rdev->pm.max_bandwidth.full > rdev->pm.ht_bandwidth.full && |
| rdev->pm.ht_bandwidth.full) |
| rdev->pm.max_bandwidth = rdev->pm.ht_bandwidth; |
| read_delay_latency.full = dfixed_const(5000); |
| } |
| |
| /* sclk = system clocks(ns) = 1000 / max_bandwidth / 16 */ |
| a.full = dfixed_const(16); |
| rdev->pm.sclk.full = dfixed_mul(rdev->pm.max_bandwidth, a); |
| a.full = dfixed_const(1000); |
| rdev->pm.sclk.full = dfixed_div(a, rdev->pm.sclk); |
| /* Determine chunk time |
| * ChunkTime = the time it takes the DCP to send one chunk of data |
| * to the LB which consists of pipeline delay and inter chunk gap |
| * sclk = system clock(ns) |
| */ |
| a.full = dfixed_const(256 * 13); |
| chunk_time.full = dfixed_mul(rdev->pm.sclk, a); |
| a.full = dfixed_const(10); |
| chunk_time.full = dfixed_div(chunk_time, a); |
| |
| /* Determine the worst case latency |
| * NumLinePair = Number of line pairs to request(1=2 lines, 2=4 lines) |
| * WorstCaseLatency = worst case time from urgent to when the MC starts |
| * to return data |
| * READ_DELAY_IDLE_MAX = constant of 1us |
| * ChunkTime = time it takes the DCP to send one chunk of data to the LB |
| * which consists of pipeline delay and inter chunk gap |
| */ |
| if (dfixed_trunc(wm->num_line_pair) > 1) { |
| a.full = dfixed_const(3); |
| wm->worst_case_latency.full = dfixed_mul(a, chunk_time); |
| wm->worst_case_latency.full += read_delay_latency.full; |
| } else { |
| a.full = dfixed_const(2); |
| wm->worst_case_latency.full = dfixed_mul(a, chunk_time); |
| wm->worst_case_latency.full += read_delay_latency.full; |
| } |
| |
| /* Determine the tolerable latency |
| * TolerableLatency = Any given request has only 1 line time |
| * for the data to be returned |
| * LBRequestFifoDepth = Number of chunk requests the LB can |
| * put into the request FIFO for a display |
| * LineTime = total time for one line of display |
| * ChunkTime = the time it takes the DCP to send one chunk |
| * of data to the LB which consists of |
| * pipeline delay and inter chunk gap |
| */ |
| if ((2+wm->lb_request_fifo_depth) >= dfixed_trunc(request_fifo_depth)) { |
| tolerable_latency.full = line_time.full; |
| } else { |
| tolerable_latency.full = dfixed_const(wm->lb_request_fifo_depth - 2); |
| tolerable_latency.full = request_fifo_depth.full - tolerable_latency.full; |
| tolerable_latency.full = dfixed_mul(tolerable_latency, chunk_time); |
| tolerable_latency.full = line_time.full - tolerable_latency.full; |
| } |
| /* We assume worst case 32bits (4 bytes) */ |
| wm->dbpp.full = dfixed_const(4 * 8); |
| |
| /* Determine the maximum priority mark |
| * width = viewport width in pixels |
| */ |
| a.full = dfixed_const(16); |
| wm->priority_mark_max.full = dfixed_const(crtc->base.mode.crtc_hdisplay); |
| wm->priority_mark_max.full = dfixed_div(wm->priority_mark_max, a); |
| wm->priority_mark_max.full = dfixed_ceil(wm->priority_mark_max); |
| |
| /* Determine estimated width */ |
| estimated_width.full = tolerable_latency.full - wm->worst_case_latency.full; |
| estimated_width.full = dfixed_div(estimated_width, consumption_time); |
| if (dfixed_trunc(estimated_width) > crtc->base.mode.crtc_hdisplay) { |
| wm->priority_mark.full = dfixed_const(10); |
| } else { |
| a.full = dfixed_const(16); |
| wm->priority_mark.full = dfixed_div(estimated_width, a); |
| wm->priority_mark.full = dfixed_ceil(wm->priority_mark); |
| wm->priority_mark.full = wm->priority_mark_max.full - wm->priority_mark.full; |
| } |
| } |
| |
| void rs690_bandwidth_update(struct radeon_device *rdev) |
| { |
| struct drm_display_mode *mode0 = NULL; |
| struct drm_display_mode *mode1 = NULL; |
| struct rs690_watermark wm0; |
| struct rs690_watermark wm1; |
| u32 tmp; |
| u32 d1mode_priority_a_cnt = S_006548_D1MODE_PRIORITY_A_OFF(1); |
| u32 d2mode_priority_a_cnt = S_006548_D1MODE_PRIORITY_A_OFF(1); |
| fixed20_12 priority_mark02, priority_mark12, fill_rate; |
| fixed20_12 a, b; |
| |
| radeon_update_display_priority(rdev); |
| |
| if (rdev->mode_info.crtcs[0]->base.enabled) |
| mode0 = &rdev->mode_info.crtcs[0]->base.mode; |
| if (rdev->mode_info.crtcs[1]->base.enabled) |
| mode1 = &rdev->mode_info.crtcs[1]->base.mode; |
| /* |
| * Set display0/1 priority up in the memory controller for |
| * modes if the user specifies HIGH for displaypriority |
| * option. |
| */ |
| if ((rdev->disp_priority == 2) && |
| ((rdev->family == CHIP_RS690) || (rdev->family == CHIP_RS740))) { |
| tmp = RREG32_MC(R_000104_MC_INIT_MISC_LAT_TIMER); |
| tmp &= C_000104_MC_DISP0R_INIT_LAT; |
| tmp &= C_000104_MC_DISP1R_INIT_LAT; |
| if (mode0) |
| tmp |= S_000104_MC_DISP0R_INIT_LAT(1); |
| if (mode1) |
| tmp |= S_000104_MC_DISP1R_INIT_LAT(1); |
| WREG32_MC(R_000104_MC_INIT_MISC_LAT_TIMER, tmp); |
| } |
| rs690_line_buffer_adjust(rdev, mode0, mode1); |
| |
| if ((rdev->family == CHIP_RS690) || (rdev->family == CHIP_RS740)) |
| WREG32(R_006C9C_DCP_CONTROL, 0); |
| if ((rdev->family == CHIP_RS780) || (rdev->family == CHIP_RS880)) |
| WREG32(R_006C9C_DCP_CONTROL, 2); |
| |
| rs690_crtc_bandwidth_compute(rdev, rdev->mode_info.crtcs[0], &wm0); |
| rs690_crtc_bandwidth_compute(rdev, rdev->mode_info.crtcs[1], &wm1); |
| |
| tmp = (wm0.lb_request_fifo_depth - 1); |
| tmp |= (wm1.lb_request_fifo_depth - 1) << 16; |
| WREG32(R_006D58_LB_MAX_REQ_OUTSTANDING, tmp); |
| |
| if (mode0 && mode1) { |
| if (dfixed_trunc(wm0.dbpp) > 64) |
| a.full = dfixed_mul(wm0.dbpp, wm0.num_line_pair); |
| else |
| a.full = wm0.num_line_pair.full; |
| if (dfixed_trunc(wm1.dbpp) > 64) |
| b.full = dfixed_mul(wm1.dbpp, wm1.num_line_pair); |
| else |
| b.full = wm1.num_line_pair.full; |
| a.full += b.full; |
| fill_rate.full = dfixed_div(wm0.sclk, a); |
| if (wm0.consumption_rate.full > fill_rate.full) { |
| b.full = wm0.consumption_rate.full - fill_rate.full; |
| b.full = dfixed_mul(b, wm0.active_time); |
| a.full = dfixed_mul(wm0.worst_case_latency, |
| wm0.consumption_rate); |
| a.full = a.full + b.full; |
| b.full = dfixed_const(16 * 1000); |
| priority_mark02.full = dfixed_div(a, b); |
| } else { |
| a.full = dfixed_mul(wm0.worst_case_latency, |
| wm0.consumption_rate); |
| b.full = dfixed_const(16 * 1000); |
| priority_mark02.full = dfixed_div(a, b); |
| } |
| if (wm1.consumption_rate.full > fill_rate.full) { |
| b.full = wm1.consumption_rate.full - fill_rate.full; |
| b.full = dfixed_mul(b, wm1.active_time); |
| a.full = dfixed_mul(wm1.worst_case_latency, |
| wm1.consumption_rate); |
| a.full = a.full + b.full; |
| b.full = dfixed_const(16 * 1000); |
| priority_mark12.full = dfixed_div(a, b); |
| } else { |
| a.full = dfixed_mul(wm1.worst_case_latency, |
| wm1.consumption_rate); |
| b.full = dfixed_const(16 * 1000); |
| priority_mark12.full = dfixed_div(a, b); |
| } |
| if (wm0.priority_mark.full > priority_mark02.full) |
| priority_mark02.full = wm0.priority_mark.full; |
| if (dfixed_trunc(priority_mark02) < 0) |
| priority_mark02.full = 0; |
| if (wm0.priority_mark_max.full > priority_mark02.full) |
| priority_mark02.full = wm0.priority_mark_max.full; |
| if (wm1.priority_mark.full > priority_mark12.full) |
| priority_mark12.full = wm1.priority_mark.full; |
| if (dfixed_trunc(priority_mark12) < 0) |
| priority_mark12.full = 0; |
| if (wm1.priority_mark_max.full > priority_mark12.full) |
| priority_mark12.full = wm1.priority_mark_max.full; |
| d1mode_priority_a_cnt = dfixed_trunc(priority_mark02); |
| d2mode_priority_a_cnt = dfixed_trunc(priority_mark12); |
| if (rdev->disp_priority == 2) { |
| d1mode_priority_a_cnt |= S_006548_D1MODE_PRIORITY_A_ALWAYS_ON(1); |
| d2mode_priority_a_cnt |= S_006D48_D2MODE_PRIORITY_A_ALWAYS_ON(1); |
| } |
| } else if (mode0) { |
| if (dfixed_trunc(wm0.dbpp) > 64) |
| a.full = dfixed_mul(wm0.dbpp, wm0.num_line_pair); |
| else |
| a.full = wm0.num_line_pair.full; |
| fill_rate.full = dfixed_div(wm0.sclk, a); |
| if (wm0.consumption_rate.full > fill_rate.full) { |
| b.full = wm0.consumption_rate.full - fill_rate.full; |
| b.full = dfixed_mul(b, wm0.active_time); |
| a.full = dfixed_mul(wm0.worst_case_latency, |
| wm0.consumption_rate); |
| a.full = a.full + b.full; |
| b.full = dfixed_const(16 * 1000); |
| priority_mark02.full = dfixed_div(a, b); |
| } else { |
| a.full = dfixed_mul(wm0.worst_case_latency, |
| wm0.consumption_rate); |
| b.full = dfixed_const(16 * 1000); |
| priority_mark02.full = dfixed_div(a, b); |
| } |
| if (wm0.priority_mark.full > priority_mark02.full) |
| priority_mark02.full = wm0.priority_mark.full; |
| if (dfixed_trunc(priority_mark02) < 0) |
| priority_mark02.full = 0; |
| if (wm0.priority_mark_max.full > priority_mark02.full) |
| priority_mark02.full = wm0.priority_mark_max.full; |
| d1mode_priority_a_cnt = dfixed_trunc(priority_mark02); |
| if (rdev->disp_priority == 2) |
| d1mode_priority_a_cnt |= S_006548_D1MODE_PRIORITY_A_ALWAYS_ON(1); |
| } else if (mode1) { |
| if (dfixed_trunc(wm1.dbpp) > 64) |
| a.full = dfixed_mul(wm1.dbpp, wm1.num_line_pair); |
| else |
| a.full = wm1.num_line_pair.full; |
| fill_rate.full = dfixed_div(wm1.sclk, a); |
| if (wm1.consumption_rate.full > fill_rate.full) { |
| b.full = wm1.consumption_rate.full - fill_rate.full; |
| b.full = dfixed_mul(b, wm1.active_time); |
| a.full = dfixed_mul(wm1.worst_case_latency, |
| wm1.consumption_rate); |
| a.full = a.full + b.full; |
| b.full = dfixed_const(16 * 1000); |
| priority_mark12.full = dfixed_div(a, b); |
| } else { |
| a.full = dfixed_mul(wm1.worst_case_latency, |
| wm1.consumption_rate); |
| b.full = dfixed_const(16 * 1000); |
| priority_mark12.full = dfixed_div(a, b); |
| } |
| if (wm1.priority_mark.full > priority_mark12.full) |
| priority_mark12.full = wm1.priority_mark.full; |
| if (dfixed_trunc(priority_mark12) < 0) |
| priority_mark12.full = 0; |
| if (wm1.priority_mark_max.full > priority_mark12.full) |
| priority_mark12.full = wm1.priority_mark_max.full; |
| d2mode_priority_a_cnt = dfixed_trunc(priority_mark12); |
| if (rdev->disp_priority == 2) |
| d2mode_priority_a_cnt |= S_006D48_D2MODE_PRIORITY_A_ALWAYS_ON(1); |
| } |
| |
| WREG32(R_006548_D1MODE_PRIORITY_A_CNT, d1mode_priority_a_cnt); |
| WREG32(R_00654C_D1MODE_PRIORITY_B_CNT, d1mode_priority_a_cnt); |
| WREG32(R_006D48_D2MODE_PRIORITY_A_CNT, d2mode_priority_a_cnt); |
| WREG32(R_006D4C_D2MODE_PRIORITY_B_CNT, d2mode_priority_a_cnt); |
| } |
| |
| uint32_t rs690_mc_rreg(struct radeon_device *rdev, uint32_t reg) |
| { |
| uint32_t r; |
| |
| WREG32(R_000078_MC_INDEX, S_000078_MC_IND_ADDR(reg)); |
| r = RREG32(R_00007C_MC_DATA); |
| WREG32(R_000078_MC_INDEX, ~C_000078_MC_IND_ADDR); |
| return r; |
| } |
| |
| void rs690_mc_wreg(struct radeon_device *rdev, uint32_t reg, uint32_t v) |
| { |
| WREG32(R_000078_MC_INDEX, S_000078_MC_IND_ADDR(reg) | |
| S_000078_MC_IND_WR_EN(1)); |
| WREG32(R_00007C_MC_DATA, v); |
| WREG32(R_000078_MC_INDEX, 0x7F); |
| } |
| |
| void rs690_mc_program(struct radeon_device *rdev) |
| { |
| struct rv515_mc_save save; |
| |
| /* Stops all mc clients */ |
| rv515_mc_stop(rdev, &save); |
| |
| /* Wait for mc idle */ |
| if (rs690_mc_wait_for_idle(rdev)) |
| dev_warn(rdev->dev, "Wait MC idle timeout before updating MC.\n"); |
| /* Program MC, should be a 32bits limited address space */ |
| WREG32_MC(R_000100_MCCFG_FB_LOCATION, |
| S_000100_MC_FB_START(rdev->mc.vram_start >> 16) | |
| S_000100_MC_FB_TOP(rdev->mc.vram_end >> 16)); |
| WREG32(R_000134_HDP_FB_LOCATION, |
| S_000134_HDP_FB_START(rdev->mc.vram_start >> 16)); |
| |
| rv515_mc_resume(rdev, &save); |
| } |
| |
| static int rs690_startup(struct radeon_device *rdev) |
| { |
| int r; |
| |
| rs690_mc_program(rdev); |
| /* Resume clock */ |
| rv515_clock_startup(rdev); |
| /* Initialize GPU configuration (# pipes, ...) */ |
| rs690_gpu_init(rdev); |
| /* Initialize GART (initialize after TTM so we can allocate |
| * memory through TTM but finalize after TTM) */ |
| r = rs400_gart_enable(rdev); |
| if (r) |
| return r; |
| |
| /* allocate wb buffer */ |
| r = radeon_wb_init(rdev); |
| if (r) |
| return r; |
| |
| r = radeon_fence_driver_start_ring(rdev, RADEON_RING_TYPE_GFX_INDEX); |
| if (r) { |
| dev_err(rdev->dev, "failed initializing CP fences (%d).\n", r); |
| return r; |
| } |
| |
| /* Enable IRQ */ |
| rs600_irq_set(rdev); |
| rdev->config.r300.hdp_cntl = RREG32(RADEON_HOST_PATH_CNTL); |
| /* 1M ring buffer */ |
| r = r100_cp_init(rdev, 1024 * 1024); |
| if (r) { |
| dev_err(rdev->dev, "failed initializing CP (%d).\n", r); |
| return r; |
| } |
| |
| r = radeon_ib_pool_start(rdev); |
| if (r) |
| return r; |
| |
| r = radeon_ib_ring_tests(rdev); |
| if (r) |
| return r; |
| |
| r = r600_audio_init(rdev); |
| if (r) { |
| dev_err(rdev->dev, "failed initializing audio\n"); |
| return r; |
| } |
| |
| return 0; |
| } |
| |
| int rs690_resume(struct radeon_device *rdev) |
| { |
| int r; |
| |
| /* Make sur GART are not working */ |
| rs400_gart_disable(rdev); |
| /* Resume clock before doing reset */ |
| rv515_clock_startup(rdev); |
| /* Reset gpu before posting otherwise ATOM will enter infinite loop */ |
| if (radeon_asic_reset(rdev)) { |
| dev_warn(rdev->dev, "GPU reset failed ! (0xE40=0x%08X, 0x7C0=0x%08X)\n", |
| RREG32(R_000E40_RBBM_STATUS), |
| RREG32(R_0007C0_CP_STAT)); |
| } |
| /* post */ |
| atom_asic_init(rdev->mode_info.atom_context); |
| /* Resume clock after posting */ |
| rv515_clock_startup(rdev); |
| /* Initialize surface registers */ |
| radeon_surface_init(rdev); |
| |
| rdev->accel_working = true; |
| r = rs690_startup(rdev); |
| if (r) { |
| rdev->accel_working = false; |
| } |
| return r; |
| } |
| |
| int rs690_suspend(struct radeon_device *rdev) |
| { |
| radeon_ib_pool_suspend(rdev); |
| r600_audio_fini(rdev); |
| r100_cp_disable(rdev); |
| radeon_wb_disable(rdev); |
| rs600_irq_disable(rdev); |
| rs400_gart_disable(rdev); |
| return 0; |
| } |
| |
| void rs690_fini(struct radeon_device *rdev) |
| { |
| r600_audio_fini(rdev); |
| r100_cp_fini(rdev); |
| radeon_wb_fini(rdev); |
| r100_ib_fini(rdev); |
| radeon_gem_fini(rdev); |
| rs400_gart_fini(rdev); |
| radeon_irq_kms_fini(rdev); |
| radeon_fence_driver_fini(rdev); |
| radeon_bo_fini(rdev); |
| radeon_atombios_fini(rdev); |
| kfree(rdev->bios); |
| rdev->bios = NULL; |
| } |
| |
| int rs690_init(struct radeon_device *rdev) |
| { |
| int r; |
| |
| /* Disable VGA */ |
| rv515_vga_render_disable(rdev); |
| /* Initialize scratch registers */ |
| radeon_scratch_init(rdev); |
| /* Initialize surface registers */ |
| radeon_surface_init(rdev); |
| /* restore some register to sane defaults */ |
| r100_restore_sanity(rdev); |
| /* TODO: disable VGA need to use VGA request */ |
| /* BIOS*/ |
| if (!radeon_get_bios(rdev)) { |
| if (ASIC_IS_AVIVO(rdev)) |
| return -EINVAL; |
| } |
| if (rdev->is_atom_bios) { |
| r = radeon_atombios_init(rdev); |
| if (r) |
| return r; |
| } else { |
| dev_err(rdev->dev, "Expecting atombios for RV515 GPU\n"); |
| return -EINVAL; |
| } |
| /* Reset gpu before posting otherwise ATOM will enter infinite loop */ |
| if (radeon_asic_reset(rdev)) { |
| dev_warn(rdev->dev, |
| "GPU reset failed ! (0xE40=0x%08X, 0x7C0=0x%08X)\n", |
| RREG32(R_000E40_RBBM_STATUS), |
| RREG32(R_0007C0_CP_STAT)); |
| } |
| /* check if cards are posted or not */ |
| if (radeon_boot_test_post_card(rdev) == false) |
| return -EINVAL; |
| |
| /* Initialize clocks */ |
| radeon_get_clock_info(rdev->ddev); |
| /* initialize memory controller */ |
| rs690_mc_init(rdev); |
| rv515_debugfs(rdev); |
| /* Fence driver */ |
| r = radeon_fence_driver_init(rdev); |
| if (r) |
| return r; |
| r = radeon_irq_kms_init(rdev); |
| if (r) |
| return r; |
| /* Memory manager */ |
| r = radeon_bo_init(rdev); |
| if (r) |
| return r; |
| r = rs400_gart_init(rdev); |
| if (r) |
| return r; |
| rs600_set_safe_registers(rdev); |
| |
| r = radeon_ib_pool_init(rdev); |
| rdev->accel_working = true; |
| if (r) { |
| dev_err(rdev->dev, "IB initialization failed (%d).\n", r); |
| rdev->accel_working = false; |
| } |
| |
| r = rs690_startup(rdev); |
| if (r) { |
| /* Somethings want wront with the accel init stop accel */ |
| dev_err(rdev->dev, "Disabling GPU acceleration\n"); |
| r100_cp_fini(rdev); |
| radeon_wb_fini(rdev); |
| r100_ib_fini(rdev); |
| rs400_gart_fini(rdev); |
| radeon_irq_kms_fini(rdev); |
| rdev->accel_working = false; |
| } |
| return 0; |
| } |