| /* |
| * INET An implementation of the TCP/IP protocol suite for the LINUX |
| * operating system. INET is implemented using the BSD Socket |
| * interface as the means of communication with the user level. |
| * |
| * Implementation of the Transmission Control Protocol(TCP). |
| * |
| * Authors: Ross Biro |
| * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> |
| * Mark Evans, <evansmp@uhura.aston.ac.uk> |
| * Corey Minyard <wf-rch!minyard@relay.EU.net> |
| * Florian La Roche, <flla@stud.uni-sb.de> |
| * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> |
| * Linus Torvalds, <torvalds@cs.helsinki.fi> |
| * Alan Cox, <gw4pts@gw4pts.ampr.org> |
| * Matthew Dillon, <dillon@apollo.west.oic.com> |
| * Arnt Gulbrandsen, <agulbra@nvg.unit.no> |
| * Jorge Cwik, <jorge@laser.satlink.net> |
| */ |
| |
| #include <linux/mm.h> |
| #include <linux/module.h> |
| #include <linux/slab.h> |
| #include <linux/sysctl.h> |
| #include <linux/workqueue.h> |
| #include <net/tcp.h> |
| #include <net/inet_common.h> |
| #include <net/xfrm.h> |
| |
| int sysctl_tcp_syncookies __read_mostly = 1; |
| EXPORT_SYMBOL(sysctl_tcp_syncookies); |
| |
| int sysctl_tcp_abort_on_overflow __read_mostly; |
| |
| struct inet_timewait_death_row tcp_death_row = { |
| .sysctl_max_tw_buckets = NR_FILE * 2, |
| .period = TCP_TIMEWAIT_LEN / INET_TWDR_TWKILL_SLOTS, |
| .death_lock = __SPIN_LOCK_UNLOCKED(tcp_death_row.death_lock), |
| .hashinfo = &tcp_hashinfo, |
| .tw_timer = TIMER_INITIALIZER(inet_twdr_hangman, 0, |
| (unsigned long)&tcp_death_row), |
| .twkill_work = __WORK_INITIALIZER(tcp_death_row.twkill_work, |
| inet_twdr_twkill_work), |
| /* Short-time timewait calendar */ |
| |
| .twcal_hand = -1, |
| .twcal_timer = TIMER_INITIALIZER(inet_twdr_twcal_tick, 0, |
| (unsigned long)&tcp_death_row), |
| }; |
| EXPORT_SYMBOL_GPL(tcp_death_row); |
| |
| /* VJ's idea. Save last timestamp seen from this destination |
| * and hold it at least for normal timewait interval to use for duplicate |
| * segment detection in subsequent connections, before they enter synchronized |
| * state. |
| */ |
| |
| static int tcp_remember_stamp(struct sock *sk) |
| { |
| const struct inet_connection_sock *icsk = inet_csk(sk); |
| struct tcp_sock *tp = tcp_sk(sk); |
| struct inet_peer *peer; |
| bool release_it; |
| |
| peer = icsk->icsk_af_ops->get_peer(sk, &release_it); |
| if (peer) { |
| if ((s32)(peer->tcp_ts - tp->rx_opt.ts_recent) <= 0 || |
| ((u32)get_seconds() - peer->tcp_ts_stamp > TCP_PAWS_MSL && |
| peer->tcp_ts_stamp <= (u32)tp->rx_opt.ts_recent_stamp)) { |
| peer->tcp_ts_stamp = (u32)tp->rx_opt.ts_recent_stamp; |
| peer->tcp_ts = tp->rx_opt.ts_recent; |
| } |
| if (release_it) |
| inet_putpeer(peer); |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| static int tcp_tw_remember_stamp(struct inet_timewait_sock *tw) |
| { |
| struct sock *sk = (struct sock *) tw; |
| struct inet_peer *peer; |
| |
| peer = twsk_getpeer(sk); |
| if (peer) { |
| const struct tcp_timewait_sock *tcptw = tcp_twsk(sk); |
| |
| if ((s32)(peer->tcp_ts - tcptw->tw_ts_recent) <= 0 || |
| ((u32)get_seconds() - peer->tcp_ts_stamp > TCP_PAWS_MSL && |
| peer->tcp_ts_stamp <= (u32)tcptw->tw_ts_recent_stamp)) { |
| peer->tcp_ts_stamp = (u32)tcptw->tw_ts_recent_stamp; |
| peer->tcp_ts = tcptw->tw_ts_recent; |
| } |
| inet_putpeer(peer); |
| return 1; |
| } |
| return 0; |
| } |
| |
| static __inline__ int tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win) |
| { |
| if (seq == s_win) |
| return 1; |
| if (after(end_seq, s_win) && before(seq, e_win)) |
| return 1; |
| return seq == e_win && seq == end_seq; |
| } |
| |
| /* |
| * * Main purpose of TIME-WAIT state is to close connection gracefully, |
| * when one of ends sits in LAST-ACK or CLOSING retransmitting FIN |
| * (and, probably, tail of data) and one or more our ACKs are lost. |
| * * What is TIME-WAIT timeout? It is associated with maximal packet |
| * lifetime in the internet, which results in wrong conclusion, that |
| * it is set to catch "old duplicate segments" wandering out of their path. |
| * It is not quite correct. This timeout is calculated so that it exceeds |
| * maximal retransmission timeout enough to allow to lose one (or more) |
| * segments sent by peer and our ACKs. This time may be calculated from RTO. |
| * * When TIME-WAIT socket receives RST, it means that another end |
| * finally closed and we are allowed to kill TIME-WAIT too. |
| * * Second purpose of TIME-WAIT is catching old duplicate segments. |
| * Well, certainly it is pure paranoia, but if we load TIME-WAIT |
| * with this semantics, we MUST NOT kill TIME-WAIT state with RSTs. |
| * * If we invented some more clever way to catch duplicates |
| * (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs. |
| * |
| * The algorithm below is based on FORMAL INTERPRETATION of RFCs. |
| * When you compare it to RFCs, please, read section SEGMENT ARRIVES |
| * from the very beginning. |
| * |
| * NOTE. With recycling (and later with fin-wait-2) TW bucket |
| * is _not_ stateless. It means, that strictly speaking we must |
| * spinlock it. I do not want! Well, probability of misbehaviour |
| * is ridiculously low and, seems, we could use some mb() tricks |
| * to avoid misread sequence numbers, states etc. --ANK |
| */ |
| enum tcp_tw_status |
| tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb, |
| const struct tcphdr *th) |
| { |
| struct tcp_options_received tmp_opt; |
| const u8 *hash_location; |
| struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw); |
| int paws_reject = 0; |
| |
| tmp_opt.saw_tstamp = 0; |
| if (th->doff > (sizeof(*th) >> 2) && tcptw->tw_ts_recent_stamp) { |
| tcp_parse_options(skb, &tmp_opt, &hash_location, 0); |
| |
| if (tmp_opt.saw_tstamp) { |
| tmp_opt.ts_recent = tcptw->tw_ts_recent; |
| tmp_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp; |
| paws_reject = tcp_paws_reject(&tmp_opt, th->rst); |
| } |
| } |
| |
| if (tw->tw_substate == TCP_FIN_WAIT2) { |
| /* Just repeat all the checks of tcp_rcv_state_process() */ |
| |
| /* Out of window, send ACK */ |
| if (paws_reject || |
| !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq, |
| tcptw->tw_rcv_nxt, |
| tcptw->tw_rcv_nxt + tcptw->tw_rcv_wnd)) |
| return TCP_TW_ACK; |
| |
| if (th->rst) |
| goto kill; |
| |
| if (th->syn && !before(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt)) |
| goto kill_with_rst; |
| |
| /* Dup ACK? */ |
| if (!th->ack || |
| !after(TCP_SKB_CB(skb)->end_seq, tcptw->tw_rcv_nxt) || |
| TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) { |
| inet_twsk_put(tw); |
| return TCP_TW_SUCCESS; |
| } |
| |
| /* New data or FIN. If new data arrive after half-duplex close, |
| * reset. |
| */ |
| if (!th->fin || |
| TCP_SKB_CB(skb)->end_seq != tcptw->tw_rcv_nxt + 1) { |
| kill_with_rst: |
| inet_twsk_deschedule(tw, &tcp_death_row); |
| inet_twsk_put(tw); |
| return TCP_TW_RST; |
| } |
| |
| /* FIN arrived, enter true time-wait state. */ |
| tw->tw_substate = TCP_TIME_WAIT; |
| tcptw->tw_rcv_nxt = TCP_SKB_CB(skb)->end_seq; |
| if (tmp_opt.saw_tstamp) { |
| tcptw->tw_ts_recent_stamp = get_seconds(); |
| tcptw->tw_ts_recent = tmp_opt.rcv_tsval; |
| } |
| |
| if (tcp_death_row.sysctl_tw_recycle && |
| tcptw->tw_ts_recent_stamp && |
| tcp_tw_remember_stamp(tw)) |
| inet_twsk_schedule(tw, &tcp_death_row, tw->tw_timeout, |
| TCP_TIMEWAIT_LEN); |
| else |
| inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN, |
| TCP_TIMEWAIT_LEN); |
| return TCP_TW_ACK; |
| } |
| |
| /* |
| * Now real TIME-WAIT state. |
| * |
| * RFC 1122: |
| * "When a connection is [...] on TIME-WAIT state [...] |
| * [a TCP] MAY accept a new SYN from the remote TCP to |
| * reopen the connection directly, if it: |
| * |
| * (1) assigns its initial sequence number for the new |
| * connection to be larger than the largest sequence |
| * number it used on the previous connection incarnation, |
| * and |
| * |
| * (2) returns to TIME-WAIT state if the SYN turns out |
| * to be an old duplicate". |
| */ |
| |
| if (!paws_reject && |
| (TCP_SKB_CB(skb)->seq == tcptw->tw_rcv_nxt && |
| (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) { |
| /* In window segment, it may be only reset or bare ack. */ |
| |
| if (th->rst) { |
| /* This is TIME_WAIT assassination, in two flavors. |
| * Oh well... nobody has a sufficient solution to this |
| * protocol bug yet. |
| */ |
| if (sysctl_tcp_rfc1337 == 0) { |
| kill: |
| inet_twsk_deschedule(tw, &tcp_death_row); |
| inet_twsk_put(tw); |
| return TCP_TW_SUCCESS; |
| } |
| } |
| inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN, |
| TCP_TIMEWAIT_LEN); |
| |
| if (tmp_opt.saw_tstamp) { |
| tcptw->tw_ts_recent = tmp_opt.rcv_tsval; |
| tcptw->tw_ts_recent_stamp = get_seconds(); |
| } |
| |
| inet_twsk_put(tw); |
| return TCP_TW_SUCCESS; |
| } |
| |
| /* Out of window segment. |
| |
| All the segments are ACKed immediately. |
| |
| The only exception is new SYN. We accept it, if it is |
| not old duplicate and we are not in danger to be killed |
| by delayed old duplicates. RFC check is that it has |
| newer sequence number works at rates <40Mbit/sec. |
| However, if paws works, it is reliable AND even more, |
| we even may relax silly seq space cutoff. |
| |
| RED-PEN: we violate main RFC requirement, if this SYN will appear |
| old duplicate (i.e. we receive RST in reply to SYN-ACK), |
| we must return socket to time-wait state. It is not good, |
| but not fatal yet. |
| */ |
| |
| if (th->syn && !th->rst && !th->ack && !paws_reject && |
| (after(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt) || |
| (tmp_opt.saw_tstamp && |
| (s32)(tcptw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) { |
| u32 isn = tcptw->tw_snd_nxt + 65535 + 2; |
| if (isn == 0) |
| isn++; |
| TCP_SKB_CB(skb)->when = isn; |
| return TCP_TW_SYN; |
| } |
| |
| if (paws_reject) |
| NET_INC_STATS_BH(twsk_net(tw), LINUX_MIB_PAWSESTABREJECTED); |
| |
| if (!th->rst) { |
| /* In this case we must reset the TIMEWAIT timer. |
| * |
| * If it is ACKless SYN it may be both old duplicate |
| * and new good SYN with random sequence number <rcv_nxt. |
| * Do not reschedule in the last case. |
| */ |
| if (paws_reject || th->ack) |
| inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN, |
| TCP_TIMEWAIT_LEN); |
| |
| /* Send ACK. Note, we do not put the bucket, |
| * it will be released by caller. |
| */ |
| return TCP_TW_ACK; |
| } |
| inet_twsk_put(tw); |
| return TCP_TW_SUCCESS; |
| } |
| EXPORT_SYMBOL(tcp_timewait_state_process); |
| |
| /* |
| * Move a socket to time-wait or dead fin-wait-2 state. |
| */ |
| void tcp_time_wait(struct sock *sk, int state, int timeo) |
| { |
| struct inet_timewait_sock *tw = NULL; |
| const struct inet_connection_sock *icsk = inet_csk(sk); |
| const struct tcp_sock *tp = tcp_sk(sk); |
| int recycle_ok = 0; |
| |
| if (tcp_death_row.sysctl_tw_recycle && tp->rx_opt.ts_recent_stamp) |
| recycle_ok = tcp_remember_stamp(sk); |
| |
| if (tcp_death_row.tw_count < tcp_death_row.sysctl_max_tw_buckets) |
| tw = inet_twsk_alloc(sk, state); |
| |
| if (tw != NULL) { |
| struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw); |
| const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1); |
| |
| tw->tw_transparent = inet_sk(sk)->transparent; |
| tw->tw_rcv_wscale = tp->rx_opt.rcv_wscale; |
| tcptw->tw_rcv_nxt = tp->rcv_nxt; |
| tcptw->tw_snd_nxt = tp->snd_nxt; |
| tcptw->tw_rcv_wnd = tcp_receive_window(tp); |
| tcptw->tw_ts_recent = tp->rx_opt.ts_recent; |
| tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp; |
| |
| #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) |
| if (tw->tw_family == PF_INET6) { |
| struct ipv6_pinfo *np = inet6_sk(sk); |
| struct inet6_timewait_sock *tw6; |
| |
| tw->tw_ipv6_offset = inet6_tw_offset(sk->sk_prot); |
| tw6 = inet6_twsk((struct sock *)tw); |
| ipv6_addr_copy(&tw6->tw_v6_daddr, &np->daddr); |
| ipv6_addr_copy(&tw6->tw_v6_rcv_saddr, &np->rcv_saddr); |
| tw->tw_tclass = np->tclass; |
| tw->tw_ipv6only = np->ipv6only; |
| } |
| #endif |
| |
| #ifdef CONFIG_TCP_MD5SIG |
| /* |
| * The timewait bucket does not have the key DB from the |
| * sock structure. We just make a quick copy of the |
| * md5 key being used (if indeed we are using one) |
| * so the timewait ack generating code has the key. |
| */ |
| do { |
| struct tcp_md5sig_key *key; |
| memset(tcptw->tw_md5_key, 0, sizeof(tcptw->tw_md5_key)); |
| tcptw->tw_md5_keylen = 0; |
| key = tp->af_specific->md5_lookup(sk, sk); |
| if (key != NULL) { |
| memcpy(&tcptw->tw_md5_key, key->key, key->keylen); |
| tcptw->tw_md5_keylen = key->keylen; |
| if (tcp_alloc_md5sig_pool(sk) == NULL) |
| BUG(); |
| } |
| } while (0); |
| #endif |
| |
| /* Linkage updates. */ |
| __inet_twsk_hashdance(tw, sk, &tcp_hashinfo); |
| |
| /* Get the TIME_WAIT timeout firing. */ |
| if (timeo < rto) |
| timeo = rto; |
| |
| if (recycle_ok) { |
| tw->tw_timeout = rto; |
| } else { |
| tw->tw_timeout = TCP_TIMEWAIT_LEN; |
| if (state == TCP_TIME_WAIT) |
| timeo = TCP_TIMEWAIT_LEN; |
| } |
| |
| inet_twsk_schedule(tw, &tcp_death_row, timeo, |
| TCP_TIMEWAIT_LEN); |
| inet_twsk_put(tw); |
| } else { |
| /* Sorry, if we're out of memory, just CLOSE this |
| * socket up. We've got bigger problems than |
| * non-graceful socket closings. |
| */ |
| NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPTIMEWAITOVERFLOW); |
| } |
| |
| tcp_update_metrics(sk); |
| tcp_done(sk); |
| } |
| |
| void tcp_twsk_destructor(struct sock *sk) |
| { |
| #ifdef CONFIG_TCP_MD5SIG |
| struct tcp_timewait_sock *twsk = tcp_twsk(sk); |
| if (twsk->tw_md5_keylen) |
| tcp_free_md5sig_pool(); |
| #endif |
| } |
| EXPORT_SYMBOL_GPL(tcp_twsk_destructor); |
| |
| static inline void TCP_ECN_openreq_child(struct tcp_sock *tp, |
| struct request_sock *req) |
| { |
| tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0; |
| } |
| |
| /* This is not only more efficient than what we used to do, it eliminates |
| * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM |
| * |
| * Actually, we could lots of memory writes here. tp of listening |
| * socket contains all necessary default parameters. |
| */ |
| struct sock *tcp_create_openreq_child(struct sock *sk, struct request_sock *req, struct sk_buff *skb) |
| { |
| struct sock *newsk = inet_csk_clone_lock(sk, req, GFP_ATOMIC); |
| |
| if (newsk != NULL) { |
| const struct inet_request_sock *ireq = inet_rsk(req); |
| struct tcp_request_sock *treq = tcp_rsk(req); |
| struct inet_connection_sock *newicsk = inet_csk(newsk); |
| struct tcp_sock *newtp = tcp_sk(newsk); |
| struct tcp_sock *oldtp = tcp_sk(sk); |
| struct tcp_cookie_values *oldcvp = oldtp->cookie_values; |
| |
| /* TCP Cookie Transactions require space for the cookie pair, |
| * as it differs for each connection. There is no need to |
| * copy any s_data_payload stored at the original socket. |
| * Failure will prevent resuming the connection. |
| * |
| * Presumed copied, in order of appearance: |
| * cookie_in_always, cookie_out_never |
| */ |
| if (oldcvp != NULL) { |
| struct tcp_cookie_values *newcvp = |
| kzalloc(sizeof(*newtp->cookie_values), |
| GFP_ATOMIC); |
| |
| if (newcvp != NULL) { |
| kref_init(&newcvp->kref); |
| newcvp->cookie_desired = |
| oldcvp->cookie_desired; |
| newtp->cookie_values = newcvp; |
| } else { |
| /* Not Yet Implemented */ |
| newtp->cookie_values = NULL; |
| } |
| } |
| |
| /* Now setup tcp_sock */ |
| newtp->pred_flags = 0; |
| |
| newtp->rcv_wup = newtp->copied_seq = |
| newtp->rcv_nxt = treq->rcv_isn + 1; |
| |
| newtp->snd_sml = newtp->snd_una = |
| newtp->snd_nxt = newtp->snd_up = |
| treq->snt_isn + 1 + tcp_s_data_size(oldtp); |
| |
| tcp_prequeue_init(newtp); |
| |
| tcp_init_wl(newtp, treq->rcv_isn); |
| |
| newtp->srtt = 0; |
| newtp->mdev = TCP_TIMEOUT_INIT; |
| newicsk->icsk_rto = TCP_TIMEOUT_INIT; |
| |
| newtp->packets_out = 0; |
| newtp->retrans_out = 0; |
| newtp->sacked_out = 0; |
| newtp->fackets_out = 0; |
| newtp->snd_ssthresh = TCP_INFINITE_SSTHRESH; |
| |
| /* So many TCP implementations out there (incorrectly) count the |
| * initial SYN frame in their delayed-ACK and congestion control |
| * algorithms that we must have the following bandaid to talk |
| * efficiently to them. -DaveM |
| */ |
| newtp->snd_cwnd = TCP_INIT_CWND; |
| newtp->snd_cwnd_cnt = 0; |
| newtp->bytes_acked = 0; |
| |
| newtp->frto_counter = 0; |
| newtp->frto_highmark = 0; |
| |
| newicsk->icsk_ca_ops = &tcp_init_congestion_ops; |
| |
| tcp_set_ca_state(newsk, TCP_CA_Open); |
| tcp_init_xmit_timers(newsk); |
| skb_queue_head_init(&newtp->out_of_order_queue); |
| newtp->write_seq = newtp->pushed_seq = |
| treq->snt_isn + 1 + tcp_s_data_size(oldtp); |
| |
| newtp->rx_opt.saw_tstamp = 0; |
| |
| newtp->rx_opt.dsack = 0; |
| newtp->rx_opt.num_sacks = 0; |
| |
| newtp->urg_data = 0; |
| |
| if (sock_flag(newsk, SOCK_KEEPOPEN)) |
| inet_csk_reset_keepalive_timer(newsk, |
| keepalive_time_when(newtp)); |
| |
| newtp->rx_opt.tstamp_ok = ireq->tstamp_ok; |
| if ((newtp->rx_opt.sack_ok = ireq->sack_ok) != 0) { |
| if (sysctl_tcp_fack) |
| tcp_enable_fack(newtp); |
| } |
| newtp->window_clamp = req->window_clamp; |
| newtp->rcv_ssthresh = req->rcv_wnd; |
| newtp->rcv_wnd = req->rcv_wnd; |
| newtp->rx_opt.wscale_ok = ireq->wscale_ok; |
| if (newtp->rx_opt.wscale_ok) { |
| newtp->rx_opt.snd_wscale = ireq->snd_wscale; |
| newtp->rx_opt.rcv_wscale = ireq->rcv_wscale; |
| } else { |
| newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0; |
| newtp->window_clamp = min(newtp->window_clamp, 65535U); |
| } |
| newtp->snd_wnd = (ntohs(tcp_hdr(skb)->window) << |
| newtp->rx_opt.snd_wscale); |
| newtp->max_window = newtp->snd_wnd; |
| |
| if (newtp->rx_opt.tstamp_ok) { |
| newtp->rx_opt.ts_recent = req->ts_recent; |
| newtp->rx_opt.ts_recent_stamp = get_seconds(); |
| newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; |
| } else { |
| newtp->rx_opt.ts_recent_stamp = 0; |
| newtp->tcp_header_len = sizeof(struct tcphdr); |
| } |
| #ifdef CONFIG_TCP_MD5SIG |
| newtp->md5sig_info = NULL; /*XXX*/ |
| if (newtp->af_specific->md5_lookup(sk, newsk)) |
| newtp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED; |
| #endif |
| if (skb->len >= TCP_MSS_DEFAULT + newtp->tcp_header_len) |
| newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len; |
| newtp->rx_opt.mss_clamp = req->mss; |
| TCP_ECN_openreq_child(newtp, req); |
| |
| TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_PASSIVEOPENS); |
| } |
| return newsk; |
| } |
| EXPORT_SYMBOL(tcp_create_openreq_child); |
| |
| /* |
| * Process an incoming packet for SYN_RECV sockets represented |
| * as a request_sock. |
| */ |
| |
| struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb, |
| struct request_sock *req, |
| struct request_sock **prev) |
| { |
| struct tcp_options_received tmp_opt; |
| const u8 *hash_location; |
| struct sock *child; |
| const struct tcphdr *th = tcp_hdr(skb); |
| __be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK); |
| int paws_reject = 0; |
| |
| tmp_opt.saw_tstamp = 0; |
| if (th->doff > (sizeof(struct tcphdr)>>2)) { |
| tcp_parse_options(skb, &tmp_opt, &hash_location, 0); |
| |
| if (tmp_opt.saw_tstamp) { |
| tmp_opt.ts_recent = req->ts_recent; |
| /* We do not store true stamp, but it is not required, |
| * it can be estimated (approximately) |
| * from another data. |
| */ |
| tmp_opt.ts_recent_stamp = get_seconds() - ((TCP_TIMEOUT_INIT/HZ)<<req->retrans); |
| paws_reject = tcp_paws_reject(&tmp_opt, th->rst); |
| } |
| } |
| |
| /* Check for pure retransmitted SYN. */ |
| if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn && |
| flg == TCP_FLAG_SYN && |
| !paws_reject) { |
| /* |
| * RFC793 draws (Incorrectly! It was fixed in RFC1122) |
| * this case on figure 6 and figure 8, but formal |
| * protocol description says NOTHING. |
| * To be more exact, it says that we should send ACK, |
| * because this segment (at least, if it has no data) |
| * is out of window. |
| * |
| * CONCLUSION: RFC793 (even with RFC1122) DOES NOT |
| * describe SYN-RECV state. All the description |
| * is wrong, we cannot believe to it and should |
| * rely only on common sense and implementation |
| * experience. |
| * |
| * Enforce "SYN-ACK" according to figure 8, figure 6 |
| * of RFC793, fixed by RFC1122. |
| */ |
| req->rsk_ops->rtx_syn_ack(sk, req, NULL); |
| return NULL; |
| } |
| |
| /* Further reproduces section "SEGMENT ARRIVES" |
| for state SYN-RECEIVED of RFC793. |
| It is broken, however, it does not work only |
| when SYNs are crossed. |
| |
| You would think that SYN crossing is impossible here, since |
| we should have a SYN_SENT socket (from connect()) on our end, |
| but this is not true if the crossed SYNs were sent to both |
| ends by a malicious third party. We must defend against this, |
| and to do that we first verify the ACK (as per RFC793, page |
| 36) and reset if it is invalid. Is this a true full defense? |
| To convince ourselves, let us consider a way in which the ACK |
| test can still pass in this 'malicious crossed SYNs' case. |
| Malicious sender sends identical SYNs (and thus identical sequence |
| numbers) to both A and B: |
| |
| A: gets SYN, seq=7 |
| B: gets SYN, seq=7 |
| |
| By our good fortune, both A and B select the same initial |
| send sequence number of seven :-) |
| |
| A: sends SYN|ACK, seq=7, ack_seq=8 |
| B: sends SYN|ACK, seq=7, ack_seq=8 |
| |
| So we are now A eating this SYN|ACK, ACK test passes. So |
| does sequence test, SYN is truncated, and thus we consider |
| it a bare ACK. |
| |
| If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this |
| bare ACK. Otherwise, we create an established connection. Both |
| ends (listening sockets) accept the new incoming connection and try |
| to talk to each other. 8-) |
| |
| Note: This case is both harmless, and rare. Possibility is about the |
| same as us discovering intelligent life on another plant tomorrow. |
| |
| But generally, we should (RFC lies!) to accept ACK |
| from SYNACK both here and in tcp_rcv_state_process(). |
| tcp_rcv_state_process() does not, hence, we do not too. |
| |
| Note that the case is absolutely generic: |
| we cannot optimize anything here without |
| violating protocol. All the checks must be made |
| before attempt to create socket. |
| */ |
| |
| /* RFC793 page 36: "If the connection is in any non-synchronized state ... |
| * and the incoming segment acknowledges something not yet |
| * sent (the segment carries an unacceptable ACK) ... |
| * a reset is sent." |
| * |
| * Invalid ACK: reset will be sent by listening socket |
| */ |
| if ((flg & TCP_FLAG_ACK) && |
| (TCP_SKB_CB(skb)->ack_seq != |
| tcp_rsk(req)->snt_isn + 1 + tcp_s_data_size(tcp_sk(sk)))) |
| return sk; |
| |
| /* Also, it would be not so bad idea to check rcv_tsecr, which |
| * is essentially ACK extension and too early or too late values |
| * should cause reset in unsynchronized states. |
| */ |
| |
| /* RFC793: "first check sequence number". */ |
| |
| if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq, |
| tcp_rsk(req)->rcv_isn + 1, tcp_rsk(req)->rcv_isn + 1 + req->rcv_wnd)) { |
| /* Out of window: send ACK and drop. */ |
| if (!(flg & TCP_FLAG_RST)) |
| req->rsk_ops->send_ack(sk, skb, req); |
| if (paws_reject) |
| NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); |
| return NULL; |
| } |
| |
| /* In sequence, PAWS is OK. */ |
| |
| if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_isn + 1)) |
| req->ts_recent = tmp_opt.rcv_tsval; |
| |
| if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) { |
| /* Truncate SYN, it is out of window starting |
| at tcp_rsk(req)->rcv_isn + 1. */ |
| flg &= ~TCP_FLAG_SYN; |
| } |
| |
| /* RFC793: "second check the RST bit" and |
| * "fourth, check the SYN bit" |
| */ |
| if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) { |
| TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS); |
| goto embryonic_reset; |
| } |
| |
| /* ACK sequence verified above, just make sure ACK is |
| * set. If ACK not set, just silently drop the packet. |
| */ |
| if (!(flg & TCP_FLAG_ACK)) |
| return NULL; |
| |
| /* While TCP_DEFER_ACCEPT is active, drop bare ACK. */ |
| if (req->retrans < inet_csk(sk)->icsk_accept_queue.rskq_defer_accept && |
| TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) { |
| inet_rsk(req)->acked = 1; |
| NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDEFERACCEPTDROP); |
| return NULL; |
| } |
| if (tmp_opt.saw_tstamp && tmp_opt.rcv_tsecr) |
| tcp_rsk(req)->snt_synack = tmp_opt.rcv_tsecr; |
| else if (req->retrans) /* don't take RTT sample if retrans && ~TS */ |
| tcp_rsk(req)->snt_synack = 0; |
| |
| /* OK, ACK is valid, create big socket and |
| * feed this segment to it. It will repeat all |
| * the tests. THIS SEGMENT MUST MOVE SOCKET TO |
| * ESTABLISHED STATE. If it will be dropped after |
| * socket is created, wait for troubles. |
| */ |
| child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL); |
| if (child == NULL) |
| goto listen_overflow; |
| |
| inet_csk_reqsk_queue_unlink(sk, req, prev); |
| inet_csk_reqsk_queue_removed(sk, req); |
| |
| inet_csk_reqsk_queue_add(sk, req, child); |
| return child; |
| |
| listen_overflow: |
| if (!sysctl_tcp_abort_on_overflow) { |
| inet_rsk(req)->acked = 1; |
| return NULL; |
| } |
| |
| embryonic_reset: |
| NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_EMBRYONICRSTS); |
| if (!(flg & TCP_FLAG_RST)) |
| req->rsk_ops->send_reset(sk, skb); |
| |
| inet_csk_reqsk_queue_drop(sk, req, prev); |
| return NULL; |
| } |
| EXPORT_SYMBOL(tcp_check_req); |
| |
| /* |
| * Queue segment on the new socket if the new socket is active, |
| * otherwise we just shortcircuit this and continue with |
| * the new socket. |
| */ |
| |
| int tcp_child_process(struct sock *parent, struct sock *child, |
| struct sk_buff *skb) |
| { |
| int ret = 0; |
| int state = child->sk_state; |
| |
| if (!sock_owned_by_user(child)) { |
| ret = tcp_rcv_state_process(child, skb, tcp_hdr(skb), |
| skb->len); |
| /* Wakeup parent, send SIGIO */ |
| if (state == TCP_SYN_RECV && child->sk_state != state) |
| parent->sk_data_ready(parent, 0); |
| } else { |
| /* Alas, it is possible again, because we do lookup |
| * in main socket hash table and lock on listening |
| * socket does not protect us more. |
| */ |
| __sk_add_backlog(child, skb); |
| } |
| |
| bh_unlock_sock(child); |
| sock_put(child); |
| return ret; |
| } |
| EXPORT_SYMBOL(tcp_child_process); |