| /* |
| * linux/arch/m68k/atari/time.c |
| * |
| * Atari time and real time clock stuff |
| * |
| * Assembled of parts of former atari/config.c 97-12-18 by Roman Hodek |
| * |
| * This file is subject to the terms and conditions of the GNU General Public |
| * License. See the file COPYING in the main directory of this archive |
| * for more details. |
| */ |
| |
| #include <linux/types.h> |
| #include <linux/mc146818rtc.h> |
| #include <linux/interrupt.h> |
| #include <linux/init.h> |
| #include <linux/rtc.h> |
| #include <linux/bcd.h> |
| |
| #include <asm/atariints.h> |
| |
| void __init |
| atari_sched_init(irq_handler_t timer_routine) |
| { |
| /* set Timer C data Register */ |
| mfp.tim_dt_c = INT_TICKS; |
| /* start timer C, div = 1:100 */ |
| mfp.tim_ct_cd = (mfp.tim_ct_cd & 15) | 0x60; |
| /* install interrupt service routine for MFP Timer C */ |
| request_irq(IRQ_MFP_TIMC, timer_routine, IRQ_TYPE_SLOW, |
| "timer", timer_routine); |
| } |
| |
| /* ++andreas: gettimeoffset fixed to check for pending interrupt */ |
| |
| #define TICK_SIZE 10000 |
| |
| /* This is always executed with interrupts disabled. */ |
| unsigned long atari_gettimeoffset (void) |
| { |
| unsigned long ticks, offset = 0; |
| |
| /* read MFP timer C current value */ |
| ticks = mfp.tim_dt_c; |
| /* The probability of underflow is less than 2% */ |
| if (ticks > INT_TICKS - INT_TICKS / 50) |
| /* Check for pending timer interrupt */ |
| if (mfp.int_pn_b & (1 << 5)) |
| offset = TICK_SIZE; |
| |
| ticks = INT_TICKS - ticks; |
| ticks = ticks * 10000L / INT_TICKS; |
| |
| return ticks + offset; |
| } |
| |
| |
| static void mste_read(struct MSTE_RTC *val) |
| { |
| #define COPY(v) val->v=(mste_rtc.v & 0xf) |
| do { |
| COPY(sec_ones) ; COPY(sec_tens) ; COPY(min_ones) ; |
| COPY(min_tens) ; COPY(hr_ones) ; COPY(hr_tens) ; |
| COPY(weekday) ; COPY(day_ones) ; COPY(day_tens) ; |
| COPY(mon_ones) ; COPY(mon_tens) ; COPY(year_ones) ; |
| COPY(year_tens) ; |
| /* prevent from reading the clock while it changed */ |
| } while (val->sec_ones != (mste_rtc.sec_ones & 0xf)); |
| #undef COPY |
| } |
| |
| static void mste_write(struct MSTE_RTC *val) |
| { |
| #define COPY(v) mste_rtc.v=val->v |
| do { |
| COPY(sec_ones) ; COPY(sec_tens) ; COPY(min_ones) ; |
| COPY(min_tens) ; COPY(hr_ones) ; COPY(hr_tens) ; |
| COPY(weekday) ; COPY(day_ones) ; COPY(day_tens) ; |
| COPY(mon_ones) ; COPY(mon_tens) ; COPY(year_ones) ; |
| COPY(year_tens) ; |
| /* prevent from writing the clock while it changed */ |
| } while (val->sec_ones != (mste_rtc.sec_ones & 0xf)); |
| #undef COPY |
| } |
| |
| #define RTC_READ(reg) \ |
| ({ unsigned char __val; \ |
| (void) atari_writeb(reg,&tt_rtc.regsel); \ |
| __val = tt_rtc.data; \ |
| __val; \ |
| }) |
| |
| #define RTC_WRITE(reg,val) \ |
| do { \ |
| atari_writeb(reg,&tt_rtc.regsel); \ |
| tt_rtc.data = (val); \ |
| } while(0) |
| |
| |
| #define HWCLK_POLL_INTERVAL 5 |
| |
| int atari_mste_hwclk( int op, struct rtc_time *t ) |
| { |
| int hour, year; |
| int hr24=0; |
| struct MSTE_RTC val; |
| |
| mste_rtc.mode=(mste_rtc.mode | 1); |
| hr24=mste_rtc.mon_tens & 1; |
| mste_rtc.mode=(mste_rtc.mode & ~1); |
| |
| if (op) { |
| /* write: prepare values */ |
| |
| val.sec_ones = t->tm_sec % 10; |
| val.sec_tens = t->tm_sec / 10; |
| val.min_ones = t->tm_min % 10; |
| val.min_tens = t->tm_min / 10; |
| hour = t->tm_hour; |
| if (!hr24) { |
| if (hour > 11) |
| hour += 20 - 12; |
| if (hour == 0 || hour == 20) |
| hour += 12; |
| } |
| val.hr_ones = hour % 10; |
| val.hr_tens = hour / 10; |
| val.day_ones = t->tm_mday % 10; |
| val.day_tens = t->tm_mday / 10; |
| val.mon_ones = (t->tm_mon+1) % 10; |
| val.mon_tens = (t->tm_mon+1) / 10; |
| year = t->tm_year - 80; |
| val.year_ones = year % 10; |
| val.year_tens = year / 10; |
| val.weekday = t->tm_wday; |
| mste_write(&val); |
| mste_rtc.mode=(mste_rtc.mode | 1); |
| val.year_ones = (year % 4); /* leap year register */ |
| mste_rtc.mode=(mste_rtc.mode & ~1); |
| } |
| else { |
| mste_read(&val); |
| t->tm_sec = val.sec_ones + val.sec_tens * 10; |
| t->tm_min = val.min_ones + val.min_tens * 10; |
| hour = val.hr_ones + val.hr_tens * 10; |
| if (!hr24) { |
| if (hour == 12 || hour == 12 + 20) |
| hour -= 12; |
| if (hour >= 20) |
| hour += 12 - 20; |
| } |
| t->tm_hour = hour; |
| t->tm_mday = val.day_ones + val.day_tens * 10; |
| t->tm_mon = val.mon_ones + val.mon_tens * 10 - 1; |
| t->tm_year = val.year_ones + val.year_tens * 10 + 80; |
| t->tm_wday = val.weekday; |
| } |
| return 0; |
| } |
| |
| int atari_tt_hwclk( int op, struct rtc_time *t ) |
| { |
| int sec=0, min=0, hour=0, day=0, mon=0, year=0, wday=0; |
| unsigned long flags; |
| unsigned char ctrl; |
| int pm = 0; |
| |
| ctrl = RTC_READ(RTC_CONTROL); /* control registers are |
| * independent from the UIP */ |
| |
| if (op) { |
| /* write: prepare values */ |
| |
| sec = t->tm_sec; |
| min = t->tm_min; |
| hour = t->tm_hour; |
| day = t->tm_mday; |
| mon = t->tm_mon + 1; |
| year = t->tm_year - atari_rtc_year_offset; |
| wday = t->tm_wday + (t->tm_wday >= 0); |
| |
| if (!(ctrl & RTC_24H)) { |
| if (hour > 11) { |
| pm = 0x80; |
| if (hour != 12) |
| hour -= 12; |
| } |
| else if (hour == 0) |
| hour = 12; |
| } |
| |
| if (!(ctrl & RTC_DM_BINARY)) { |
| BIN_TO_BCD(sec); |
| BIN_TO_BCD(min); |
| BIN_TO_BCD(hour); |
| BIN_TO_BCD(day); |
| BIN_TO_BCD(mon); |
| BIN_TO_BCD(year); |
| if (wday >= 0) BIN_TO_BCD(wday); |
| } |
| } |
| |
| /* Reading/writing the clock registers is a bit critical due to |
| * the regular update cycle of the RTC. While an update is in |
| * progress, registers 0..9 shouldn't be touched. |
| * The problem is solved like that: If an update is currently in |
| * progress (the UIP bit is set), the process sleeps for a while |
| * (50ms). This really should be enough, since the update cycle |
| * normally needs 2 ms. |
| * If the UIP bit reads as 0, we have at least 244 usecs until the |
| * update starts. This should be enough... But to be sure, |
| * additionally the RTC_SET bit is set to prevent an update cycle. |
| */ |
| |
| while( RTC_READ(RTC_FREQ_SELECT) & RTC_UIP ) |
| schedule_timeout_interruptible(HWCLK_POLL_INTERVAL); |
| |
| local_irq_save(flags); |
| RTC_WRITE( RTC_CONTROL, ctrl | RTC_SET ); |
| if (!op) { |
| sec = RTC_READ( RTC_SECONDS ); |
| min = RTC_READ( RTC_MINUTES ); |
| hour = RTC_READ( RTC_HOURS ); |
| day = RTC_READ( RTC_DAY_OF_MONTH ); |
| mon = RTC_READ( RTC_MONTH ); |
| year = RTC_READ( RTC_YEAR ); |
| wday = RTC_READ( RTC_DAY_OF_WEEK ); |
| } |
| else { |
| RTC_WRITE( RTC_SECONDS, sec ); |
| RTC_WRITE( RTC_MINUTES, min ); |
| RTC_WRITE( RTC_HOURS, hour + pm); |
| RTC_WRITE( RTC_DAY_OF_MONTH, day ); |
| RTC_WRITE( RTC_MONTH, mon ); |
| RTC_WRITE( RTC_YEAR, year ); |
| if (wday >= 0) RTC_WRITE( RTC_DAY_OF_WEEK, wday ); |
| } |
| RTC_WRITE( RTC_CONTROL, ctrl & ~RTC_SET ); |
| local_irq_restore(flags); |
| |
| if (!op) { |
| /* read: adjust values */ |
| |
| if (hour & 0x80) { |
| hour &= ~0x80; |
| pm = 1; |
| } |
| |
| if (!(ctrl & RTC_DM_BINARY)) { |
| BCD_TO_BIN(sec); |
| BCD_TO_BIN(min); |
| BCD_TO_BIN(hour); |
| BCD_TO_BIN(day); |
| BCD_TO_BIN(mon); |
| BCD_TO_BIN(year); |
| BCD_TO_BIN(wday); |
| } |
| |
| if (!(ctrl & RTC_24H)) { |
| if (!pm && hour == 12) |
| hour = 0; |
| else if (pm && hour != 12) |
| hour += 12; |
| } |
| |
| t->tm_sec = sec; |
| t->tm_min = min; |
| t->tm_hour = hour; |
| t->tm_mday = day; |
| t->tm_mon = mon - 1; |
| t->tm_year = year + atari_rtc_year_offset; |
| t->tm_wday = wday - 1; |
| } |
| |
| return( 0 ); |
| } |
| |
| |
| int atari_mste_set_clock_mmss (unsigned long nowtime) |
| { |
| short real_seconds = nowtime % 60, real_minutes = (nowtime / 60) % 60; |
| struct MSTE_RTC val; |
| unsigned char rtc_minutes; |
| |
| mste_read(&val); |
| rtc_minutes= val.min_ones + val.min_tens * 10; |
| if ((rtc_minutes < real_minutes |
| ? real_minutes - rtc_minutes |
| : rtc_minutes - real_minutes) < 30) |
| { |
| val.sec_ones = real_seconds % 10; |
| val.sec_tens = real_seconds / 10; |
| val.min_ones = real_minutes % 10; |
| val.min_tens = real_minutes / 10; |
| mste_write(&val); |
| } |
| else |
| return -1; |
| return 0; |
| } |
| |
| int atari_tt_set_clock_mmss (unsigned long nowtime) |
| { |
| int retval = 0; |
| short real_seconds = nowtime % 60, real_minutes = (nowtime / 60) % 60; |
| unsigned char save_control, save_freq_select, rtc_minutes; |
| |
| save_control = RTC_READ (RTC_CONTROL); /* tell the clock it's being set */ |
| RTC_WRITE (RTC_CONTROL, save_control | RTC_SET); |
| |
| save_freq_select = RTC_READ (RTC_FREQ_SELECT); /* stop and reset prescaler */ |
| RTC_WRITE (RTC_FREQ_SELECT, save_freq_select | RTC_DIV_RESET2); |
| |
| rtc_minutes = RTC_READ (RTC_MINUTES); |
| if (!(save_control & RTC_DM_BINARY)) |
| BCD_TO_BIN (rtc_minutes); |
| |
| /* Since we're only adjusting minutes and seconds, don't interfere |
| with hour overflow. This avoids messing with unknown time zones |
| but requires your RTC not to be off by more than 30 minutes. */ |
| if ((rtc_minutes < real_minutes |
| ? real_minutes - rtc_minutes |
| : rtc_minutes - real_minutes) < 30) |
| { |
| if (!(save_control & RTC_DM_BINARY)) |
| { |
| BIN_TO_BCD (real_seconds); |
| BIN_TO_BCD (real_minutes); |
| } |
| RTC_WRITE (RTC_SECONDS, real_seconds); |
| RTC_WRITE (RTC_MINUTES, real_minutes); |
| } |
| else |
| retval = -1; |
| |
| RTC_WRITE (RTC_FREQ_SELECT, save_freq_select); |
| RTC_WRITE (RTC_CONTROL, save_control); |
| return retval; |
| } |
| |
| /* |
| * Local variables: |
| * c-indent-level: 4 |
| * tab-width: 8 |
| * End: |
| */ |