| /* |
| * Machine check handler. |
| * |
| * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs. |
| * Rest from unknown author(s). |
| * 2004 Andi Kleen. Rewrote most of it. |
| * Copyright 2008 Intel Corporation |
| * Author: Andi Kleen |
| */ |
| |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <linux/thread_info.h> |
| #include <linux/capability.h> |
| #include <linux/miscdevice.h> |
| #include <linux/ratelimit.h> |
| #include <linux/kallsyms.h> |
| #include <linux/rcupdate.h> |
| #include <linux/kobject.h> |
| #include <linux/uaccess.h> |
| #include <linux/kdebug.h> |
| #include <linux/kernel.h> |
| #include <linux/percpu.h> |
| #include <linux/string.h> |
| #include <linux/device.h> |
| #include <linux/syscore_ops.h> |
| #include <linux/delay.h> |
| #include <linux/ctype.h> |
| #include <linux/sched.h> |
| #include <linux/sysfs.h> |
| #include <linux/types.h> |
| #include <linux/slab.h> |
| #include <linux/init.h> |
| #include <linux/kmod.h> |
| #include <linux/poll.h> |
| #include <linux/nmi.h> |
| #include <linux/cpu.h> |
| #include <linux/ras.h> |
| #include <linux/smp.h> |
| #include <linux/fs.h> |
| #include <linux/mm.h> |
| #include <linux/debugfs.h> |
| #include <linux/irq_work.h> |
| #include <linux/export.h> |
| #include <linux/jump_label.h> |
| |
| #include <asm/intel-family.h> |
| #include <asm/processor.h> |
| #include <asm/traps.h> |
| #include <asm/tlbflush.h> |
| #include <asm/mce.h> |
| #include <asm/msr.h> |
| #include <asm/reboot.h> |
| #include <asm/set_memory.h> |
| |
| #include "mce-internal.h" |
| |
| static DEFINE_MUTEX(mce_log_mutex); |
| |
| /* sysfs synchronization */ |
| static DEFINE_MUTEX(mce_sysfs_mutex); |
| |
| #define CREATE_TRACE_POINTS |
| #include <trace/events/mce.h> |
| |
| #define SPINUNIT 100 /* 100ns */ |
| |
| DEFINE_PER_CPU(unsigned, mce_exception_count); |
| |
| struct mce_bank *mce_banks __read_mostly; |
| struct mce_vendor_flags mce_flags __read_mostly; |
| |
| struct mca_config mca_cfg __read_mostly = { |
| .bootlog = -1, |
| /* |
| * Tolerant levels: |
| * 0: always panic on uncorrected errors, log corrected errors |
| * 1: panic or SIGBUS on uncorrected errors, log corrected errors |
| * 2: SIGBUS or log uncorrected errors (if possible), log corr. errors |
| * 3: never panic or SIGBUS, log all errors (for testing only) |
| */ |
| .tolerant = 1, |
| .monarch_timeout = -1 |
| }; |
| |
| static DEFINE_PER_CPU(struct mce, mces_seen); |
| static unsigned long mce_need_notify; |
| static int cpu_missing; |
| |
| /* |
| * MCA banks polled by the period polling timer for corrected events. |
| * With Intel CMCI, this only has MCA banks which do not support CMCI (if any). |
| */ |
| DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = { |
| [0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL |
| }; |
| |
| /* |
| * MCA banks controlled through firmware first for corrected errors. |
| * This is a global list of banks for which we won't enable CMCI and we |
| * won't poll. Firmware controls these banks and is responsible for |
| * reporting corrected errors through GHES. Uncorrected/recoverable |
| * errors are still notified through a machine check. |
| */ |
| mce_banks_t mce_banks_ce_disabled; |
| |
| static struct work_struct mce_work; |
| static struct irq_work mce_irq_work; |
| |
| static void (*quirk_no_way_out)(int bank, struct mce *m, struct pt_regs *regs); |
| |
| #ifndef mce_unmap_kpfn |
| static void mce_unmap_kpfn(unsigned long pfn); |
| #endif |
| |
| /* |
| * CPU/chipset specific EDAC code can register a notifier call here to print |
| * MCE errors in a human-readable form. |
| */ |
| BLOCKING_NOTIFIER_HEAD(x86_mce_decoder_chain); |
| |
| /* Do initial initialization of a struct mce */ |
| void mce_setup(struct mce *m) |
| { |
| memset(m, 0, sizeof(struct mce)); |
| m->cpu = m->extcpu = smp_processor_id(); |
| /* We hope get_seconds stays lockless */ |
| m->time = get_seconds(); |
| m->cpuvendor = boot_cpu_data.x86_vendor; |
| m->cpuid = cpuid_eax(1); |
| m->socketid = cpu_data(m->extcpu).phys_proc_id; |
| m->apicid = cpu_data(m->extcpu).initial_apicid; |
| rdmsrl(MSR_IA32_MCG_CAP, m->mcgcap); |
| |
| if (this_cpu_has(X86_FEATURE_INTEL_PPIN)) |
| rdmsrl(MSR_PPIN, m->ppin); |
| |
| m->microcode = boot_cpu_data.microcode; |
| } |
| |
| DEFINE_PER_CPU(struct mce, injectm); |
| EXPORT_PER_CPU_SYMBOL_GPL(injectm); |
| |
| void mce_log(struct mce *m) |
| { |
| if (!mce_gen_pool_add(m)) |
| irq_work_queue(&mce_irq_work); |
| } |
| |
| void mce_inject_log(struct mce *m) |
| { |
| mutex_lock(&mce_log_mutex); |
| mce_log(m); |
| mutex_unlock(&mce_log_mutex); |
| } |
| EXPORT_SYMBOL_GPL(mce_inject_log); |
| |
| static struct notifier_block mce_srao_nb; |
| |
| /* |
| * We run the default notifier if we have only the SRAO, the first and the |
| * default notifier registered. I.e., the mandatory NUM_DEFAULT_NOTIFIERS |
| * notifiers registered on the chain. |
| */ |
| #define NUM_DEFAULT_NOTIFIERS 3 |
| static atomic_t num_notifiers; |
| |
| void mce_register_decode_chain(struct notifier_block *nb) |
| { |
| if (WARN_ON(nb->priority > MCE_PRIO_MCELOG && nb->priority < MCE_PRIO_EDAC)) |
| return; |
| |
| atomic_inc(&num_notifiers); |
| |
| blocking_notifier_chain_register(&x86_mce_decoder_chain, nb); |
| } |
| EXPORT_SYMBOL_GPL(mce_register_decode_chain); |
| |
| void mce_unregister_decode_chain(struct notifier_block *nb) |
| { |
| atomic_dec(&num_notifiers); |
| |
| blocking_notifier_chain_unregister(&x86_mce_decoder_chain, nb); |
| } |
| EXPORT_SYMBOL_GPL(mce_unregister_decode_chain); |
| |
| static inline u32 ctl_reg(int bank) |
| { |
| return MSR_IA32_MCx_CTL(bank); |
| } |
| |
| static inline u32 status_reg(int bank) |
| { |
| return MSR_IA32_MCx_STATUS(bank); |
| } |
| |
| static inline u32 addr_reg(int bank) |
| { |
| return MSR_IA32_MCx_ADDR(bank); |
| } |
| |
| static inline u32 misc_reg(int bank) |
| { |
| return MSR_IA32_MCx_MISC(bank); |
| } |
| |
| static inline u32 smca_ctl_reg(int bank) |
| { |
| return MSR_AMD64_SMCA_MCx_CTL(bank); |
| } |
| |
| static inline u32 smca_status_reg(int bank) |
| { |
| return MSR_AMD64_SMCA_MCx_STATUS(bank); |
| } |
| |
| static inline u32 smca_addr_reg(int bank) |
| { |
| return MSR_AMD64_SMCA_MCx_ADDR(bank); |
| } |
| |
| static inline u32 smca_misc_reg(int bank) |
| { |
| return MSR_AMD64_SMCA_MCx_MISC(bank); |
| } |
| |
| struct mca_msr_regs msr_ops = { |
| .ctl = ctl_reg, |
| .status = status_reg, |
| .addr = addr_reg, |
| .misc = misc_reg |
| }; |
| |
| static void __print_mce(struct mce *m) |
| { |
| pr_emerg(HW_ERR "CPU %d: Machine Check%s: %Lx Bank %d: %016Lx\n", |
| m->extcpu, |
| (m->mcgstatus & MCG_STATUS_MCIP ? " Exception" : ""), |
| m->mcgstatus, m->bank, m->status); |
| |
| if (m->ip) { |
| pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ", |
| !(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "", |
| m->cs, m->ip); |
| |
| if (m->cs == __KERNEL_CS) |
| print_symbol("{%s}", m->ip); |
| pr_cont("\n"); |
| } |
| |
| pr_emerg(HW_ERR "TSC %llx ", m->tsc); |
| if (m->addr) |
| pr_cont("ADDR %llx ", m->addr); |
| if (m->misc) |
| pr_cont("MISC %llx ", m->misc); |
| |
| if (mce_flags.smca) { |
| if (m->synd) |
| pr_cont("SYND %llx ", m->synd); |
| if (m->ipid) |
| pr_cont("IPID %llx ", m->ipid); |
| } |
| |
| pr_cont("\n"); |
| /* |
| * Note this output is parsed by external tools and old fields |
| * should not be changed. |
| */ |
| pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x microcode %x\n", |
| m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid, |
| m->microcode); |
| } |
| |
| static void print_mce(struct mce *m) |
| { |
| __print_mce(m); |
| pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n"); |
| } |
| |
| #define PANIC_TIMEOUT 5 /* 5 seconds */ |
| |
| static atomic_t mce_panicked; |
| |
| static int fake_panic; |
| static atomic_t mce_fake_panicked; |
| |
| /* Panic in progress. Enable interrupts and wait for final IPI */ |
| static void wait_for_panic(void) |
| { |
| long timeout = PANIC_TIMEOUT*USEC_PER_SEC; |
| |
| preempt_disable(); |
| local_irq_enable(); |
| while (timeout-- > 0) |
| udelay(1); |
| if (panic_timeout == 0) |
| panic_timeout = mca_cfg.panic_timeout; |
| panic("Panicing machine check CPU died"); |
| } |
| |
| static void mce_panic(const char *msg, struct mce *final, char *exp) |
| { |
| int apei_err = 0; |
| struct llist_node *pending; |
| struct mce_evt_llist *l; |
| |
| if (!fake_panic) { |
| /* |
| * Make sure only one CPU runs in machine check panic |
| */ |
| if (atomic_inc_return(&mce_panicked) > 1) |
| wait_for_panic(); |
| barrier(); |
| |
| bust_spinlocks(1); |
| console_verbose(); |
| } else { |
| /* Don't log too much for fake panic */ |
| if (atomic_inc_return(&mce_fake_panicked) > 1) |
| return; |
| } |
| pending = mce_gen_pool_prepare_records(); |
| /* First print corrected ones that are still unlogged */ |
| llist_for_each_entry(l, pending, llnode) { |
| struct mce *m = &l->mce; |
| if (!(m->status & MCI_STATUS_UC)) { |
| print_mce(m); |
| if (!apei_err) |
| apei_err = apei_write_mce(m); |
| } |
| } |
| /* Now print uncorrected but with the final one last */ |
| llist_for_each_entry(l, pending, llnode) { |
| struct mce *m = &l->mce; |
| if (!(m->status & MCI_STATUS_UC)) |
| continue; |
| if (!final || mce_cmp(m, final)) { |
| print_mce(m); |
| if (!apei_err) |
| apei_err = apei_write_mce(m); |
| } |
| } |
| if (final) { |
| print_mce(final); |
| if (!apei_err) |
| apei_err = apei_write_mce(final); |
| } |
| if (cpu_missing) |
| pr_emerg(HW_ERR "Some CPUs didn't answer in synchronization\n"); |
| if (exp) |
| pr_emerg(HW_ERR "Machine check: %s\n", exp); |
| if (!fake_panic) { |
| if (panic_timeout == 0) |
| panic_timeout = mca_cfg.panic_timeout; |
| panic(msg); |
| } else |
| pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg); |
| } |
| |
| /* Support code for software error injection */ |
| |
| static int msr_to_offset(u32 msr) |
| { |
| unsigned bank = __this_cpu_read(injectm.bank); |
| |
| if (msr == mca_cfg.rip_msr) |
| return offsetof(struct mce, ip); |
| if (msr == msr_ops.status(bank)) |
| return offsetof(struct mce, status); |
| if (msr == msr_ops.addr(bank)) |
| return offsetof(struct mce, addr); |
| if (msr == msr_ops.misc(bank)) |
| return offsetof(struct mce, misc); |
| if (msr == MSR_IA32_MCG_STATUS) |
| return offsetof(struct mce, mcgstatus); |
| return -1; |
| } |
| |
| /* MSR access wrappers used for error injection */ |
| static u64 mce_rdmsrl(u32 msr) |
| { |
| u64 v; |
| |
| if (__this_cpu_read(injectm.finished)) { |
| int offset = msr_to_offset(msr); |
| |
| if (offset < 0) |
| return 0; |
| return *(u64 *)((char *)this_cpu_ptr(&injectm) + offset); |
| } |
| |
| if (rdmsrl_safe(msr, &v)) { |
| WARN_ONCE(1, "mce: Unable to read MSR 0x%x!\n", msr); |
| /* |
| * Return zero in case the access faulted. This should |
| * not happen normally but can happen if the CPU does |
| * something weird, or if the code is buggy. |
| */ |
| v = 0; |
| } |
| |
| return v; |
| } |
| |
| static void mce_wrmsrl(u32 msr, u64 v) |
| { |
| if (__this_cpu_read(injectm.finished)) { |
| int offset = msr_to_offset(msr); |
| |
| if (offset >= 0) |
| *(u64 *)((char *)this_cpu_ptr(&injectm) + offset) = v; |
| return; |
| } |
| wrmsrl(msr, v); |
| } |
| |
| /* |
| * Collect all global (w.r.t. this processor) status about this machine |
| * check into our "mce" struct so that we can use it later to assess |
| * the severity of the problem as we read per-bank specific details. |
| */ |
| static inline void mce_gather_info(struct mce *m, struct pt_regs *regs) |
| { |
| mce_setup(m); |
| |
| m->mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS); |
| if (regs) { |
| /* |
| * Get the address of the instruction at the time of |
| * the machine check error. |
| */ |
| if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) { |
| m->ip = regs->ip; |
| m->cs = regs->cs; |
| |
| /* |
| * When in VM86 mode make the cs look like ring 3 |
| * always. This is a lie, but it's better than passing |
| * the additional vm86 bit around everywhere. |
| */ |
| if (v8086_mode(regs)) |
| m->cs |= 3; |
| } |
| /* Use accurate RIP reporting if available. */ |
| if (mca_cfg.rip_msr) |
| m->ip = mce_rdmsrl(mca_cfg.rip_msr); |
| } |
| } |
| |
| int mce_available(struct cpuinfo_x86 *c) |
| { |
| if (mca_cfg.disabled) |
| return 0; |
| return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA); |
| } |
| |
| static void mce_schedule_work(void) |
| { |
| if (!mce_gen_pool_empty()) |
| schedule_work(&mce_work); |
| } |
| |
| static void mce_irq_work_cb(struct irq_work *entry) |
| { |
| mce_schedule_work(); |
| } |
| |
| static void mce_report_event(struct pt_regs *regs) |
| { |
| if (regs->flags & (X86_VM_MASK|X86_EFLAGS_IF)) { |
| mce_notify_irq(); |
| /* |
| * Triggering the work queue here is just an insurance |
| * policy in case the syscall exit notify handler |
| * doesn't run soon enough or ends up running on the |
| * wrong CPU (can happen when audit sleeps) |
| */ |
| mce_schedule_work(); |
| return; |
| } |
| |
| irq_work_queue(&mce_irq_work); |
| } |
| |
| /* |
| * Check if the address reported by the CPU is in a format we can parse. |
| * It would be possible to add code for most other cases, but all would |
| * be somewhat complicated (e.g. segment offset would require an instruction |
| * parser). So only support physical addresses up to page granuality for now. |
| */ |
| static int mce_usable_address(struct mce *m) |
| { |
| if (!(m->status & MCI_STATUS_ADDRV)) |
| return 0; |
| |
| /* Checks after this one are Intel-specific: */ |
| if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) |
| return 1; |
| |
| if (!(m->status & MCI_STATUS_MISCV)) |
| return 0; |
| |
| if (MCI_MISC_ADDR_LSB(m->misc) > PAGE_SHIFT) |
| return 0; |
| |
| if (MCI_MISC_ADDR_MODE(m->misc) != MCI_MISC_ADDR_PHYS) |
| return 0; |
| |
| return 1; |
| } |
| |
| bool mce_is_memory_error(struct mce *m) |
| { |
| if (m->cpuvendor == X86_VENDOR_AMD) { |
| return amd_mce_is_memory_error(m); |
| |
| } else if (m->cpuvendor == X86_VENDOR_INTEL) { |
| /* |
| * Intel SDM Volume 3B - 15.9.2 Compound Error Codes |
| * |
| * Bit 7 of the MCACOD field of IA32_MCi_STATUS is used for |
| * indicating a memory error. Bit 8 is used for indicating a |
| * cache hierarchy error. The combination of bit 2 and bit 3 |
| * is used for indicating a `generic' cache hierarchy error |
| * But we can't just blindly check the above bits, because if |
| * bit 11 is set, then it is a bus/interconnect error - and |
| * either way the above bits just gives more detail on what |
| * bus/interconnect error happened. Note that bit 12 can be |
| * ignored, as it's the "filter" bit. |
| */ |
| return (m->status & 0xef80) == BIT(7) || |
| (m->status & 0xef00) == BIT(8) || |
| (m->status & 0xeffc) == 0xc; |
| } |
| |
| return false; |
| } |
| EXPORT_SYMBOL_GPL(mce_is_memory_error); |
| |
| static bool cec_add_mce(struct mce *m) |
| { |
| if (!m) |
| return false; |
| |
| /* We eat only correctable DRAM errors with usable addresses. */ |
| if (mce_is_memory_error(m) && |
| !(m->status & MCI_STATUS_UC) && |
| mce_usable_address(m)) |
| if (!cec_add_elem(m->addr >> PAGE_SHIFT)) |
| return true; |
| |
| return false; |
| } |
| |
| static int mce_first_notifier(struct notifier_block *nb, unsigned long val, |
| void *data) |
| { |
| struct mce *m = (struct mce *)data; |
| |
| if (!m) |
| return NOTIFY_DONE; |
| |
| if (cec_add_mce(m)) |
| return NOTIFY_STOP; |
| |
| /* Emit the trace record: */ |
| trace_mce_record(m); |
| |
| set_bit(0, &mce_need_notify); |
| |
| mce_notify_irq(); |
| |
| return NOTIFY_DONE; |
| } |
| |
| static struct notifier_block first_nb = { |
| .notifier_call = mce_first_notifier, |
| .priority = MCE_PRIO_FIRST, |
| }; |
| |
| static int srao_decode_notifier(struct notifier_block *nb, unsigned long val, |
| void *data) |
| { |
| struct mce *mce = (struct mce *)data; |
| unsigned long pfn; |
| |
| if (!mce) |
| return NOTIFY_DONE; |
| |
| if (mce_usable_address(mce) && (mce->severity == MCE_AO_SEVERITY)) { |
| pfn = mce->addr >> PAGE_SHIFT; |
| if (!memory_failure(pfn, MCE_VECTOR, 0)) |
| mce_unmap_kpfn(pfn); |
| } |
| |
| return NOTIFY_OK; |
| } |
| static struct notifier_block mce_srao_nb = { |
| .notifier_call = srao_decode_notifier, |
| .priority = MCE_PRIO_SRAO, |
| }; |
| |
| static int mce_default_notifier(struct notifier_block *nb, unsigned long val, |
| void *data) |
| { |
| struct mce *m = (struct mce *)data; |
| |
| if (!m) |
| return NOTIFY_DONE; |
| |
| if (atomic_read(&num_notifiers) > NUM_DEFAULT_NOTIFIERS) |
| return NOTIFY_DONE; |
| |
| __print_mce(m); |
| |
| return NOTIFY_DONE; |
| } |
| |
| static struct notifier_block mce_default_nb = { |
| .notifier_call = mce_default_notifier, |
| /* lowest prio, we want it to run last. */ |
| .priority = MCE_PRIO_LOWEST, |
| }; |
| |
| /* |
| * Read ADDR and MISC registers. |
| */ |
| static void mce_read_aux(struct mce *m, int i) |
| { |
| if (m->status & MCI_STATUS_MISCV) |
| m->misc = mce_rdmsrl(msr_ops.misc(i)); |
| |
| if (m->status & MCI_STATUS_ADDRV) { |
| m->addr = mce_rdmsrl(msr_ops.addr(i)); |
| |
| /* |
| * Mask the reported address by the reported granularity. |
| */ |
| if (mca_cfg.ser && (m->status & MCI_STATUS_MISCV)) { |
| u8 shift = MCI_MISC_ADDR_LSB(m->misc); |
| m->addr >>= shift; |
| m->addr <<= shift; |
| } |
| |
| /* |
| * Extract [55:<lsb>] where lsb is the least significant |
| * *valid* bit of the address bits. |
| */ |
| if (mce_flags.smca) { |
| u8 lsb = (m->addr >> 56) & 0x3f; |
| |
| m->addr &= GENMASK_ULL(55, lsb); |
| } |
| } |
| |
| if (mce_flags.smca) { |
| m->ipid = mce_rdmsrl(MSR_AMD64_SMCA_MCx_IPID(i)); |
| |
| if (m->status & MCI_STATUS_SYNDV) |
| m->synd = mce_rdmsrl(MSR_AMD64_SMCA_MCx_SYND(i)); |
| } |
| } |
| |
| DEFINE_PER_CPU(unsigned, mce_poll_count); |
| |
| /* |
| * Poll for corrected events or events that happened before reset. |
| * Those are just logged through /dev/mcelog. |
| * |
| * This is executed in standard interrupt context. |
| * |
| * Note: spec recommends to panic for fatal unsignalled |
| * errors here. However this would be quite problematic -- |
| * we would need to reimplement the Monarch handling and |
| * it would mess up the exclusion between exception handler |
| * and poll hander -- * so we skip this for now. |
| * These cases should not happen anyways, or only when the CPU |
| * is already totally * confused. In this case it's likely it will |
| * not fully execute the machine check handler either. |
| */ |
| bool machine_check_poll(enum mcp_flags flags, mce_banks_t *b) |
| { |
| bool error_seen = false; |
| struct mce m; |
| int i; |
| |
| this_cpu_inc(mce_poll_count); |
| |
| mce_gather_info(&m, NULL); |
| |
| if (flags & MCP_TIMESTAMP) |
| m.tsc = rdtsc(); |
| |
| for (i = 0; i < mca_cfg.banks; i++) { |
| if (!mce_banks[i].ctl || !test_bit(i, *b)) |
| continue; |
| |
| m.misc = 0; |
| m.addr = 0; |
| m.bank = i; |
| |
| barrier(); |
| m.status = mce_rdmsrl(msr_ops.status(i)); |
| |
| /* If this entry is not valid, ignore it */ |
| if (!(m.status & MCI_STATUS_VAL)) |
| continue; |
| |
| /* |
| * If we are logging everything (at CPU online) or this |
| * is a corrected error, then we must log it. |
| */ |
| if ((flags & MCP_UC) || !(m.status & MCI_STATUS_UC)) |
| goto log_it; |
| |
| /* |
| * Newer Intel systems that support software error |
| * recovery need to make additional checks. Other |
| * CPUs should skip over uncorrected errors, but log |
| * everything else. |
| */ |
| if (!mca_cfg.ser) { |
| if (m.status & MCI_STATUS_UC) |
| continue; |
| goto log_it; |
| } |
| |
| /* Log "not enabled" (speculative) errors */ |
| if (!(m.status & MCI_STATUS_EN)) |
| goto log_it; |
| |
| /* |
| * Log UCNA (SDM: 15.6.3 "UCR Error Classification") |
| * UC == 1 && PCC == 0 && S == 0 |
| */ |
| if (!(m.status & MCI_STATUS_PCC) && !(m.status & MCI_STATUS_S)) |
| goto log_it; |
| |
| /* |
| * Skip anything else. Presumption is that our read of this |
| * bank is racing with a machine check. Leave the log alone |
| * for do_machine_check() to deal with it. |
| */ |
| continue; |
| |
| log_it: |
| error_seen = true; |
| |
| mce_read_aux(&m, i); |
| |
| m.severity = mce_severity(&m, mca_cfg.tolerant, NULL, false); |
| |
| /* |
| * Don't get the IP here because it's unlikely to |
| * have anything to do with the actual error location. |
| */ |
| if (!(flags & MCP_DONTLOG) && !mca_cfg.dont_log_ce) |
| mce_log(&m); |
| else if (mce_usable_address(&m)) { |
| /* |
| * Although we skipped logging this, we still want |
| * to take action. Add to the pool so the registered |
| * notifiers will see it. |
| */ |
| if (!mce_gen_pool_add(&m)) |
| mce_schedule_work(); |
| } |
| |
| /* |
| * Clear state for this bank. |
| */ |
| mce_wrmsrl(msr_ops.status(i), 0); |
| } |
| |
| /* |
| * Don't clear MCG_STATUS here because it's only defined for |
| * exceptions. |
| */ |
| |
| sync_core(); |
| |
| return error_seen; |
| } |
| EXPORT_SYMBOL_GPL(machine_check_poll); |
| |
| /* |
| * Do a quick check if any of the events requires a panic. |
| * This decides if we keep the events around or clear them. |
| */ |
| static int mce_no_way_out(struct mce *m, char **msg, unsigned long *validp, |
| struct pt_regs *regs) |
| { |
| char *tmp; |
| int i; |
| |
| for (i = 0; i < mca_cfg.banks; i++) { |
| m->status = mce_rdmsrl(msr_ops.status(i)); |
| if (!(m->status & MCI_STATUS_VAL)) |
| continue; |
| |
| __set_bit(i, validp); |
| if (quirk_no_way_out) |
| quirk_no_way_out(i, m, regs); |
| |
| m->bank = i; |
| if (mce_severity(m, mca_cfg.tolerant, &tmp, true) >= MCE_PANIC_SEVERITY) { |
| mce_read_aux(m, i); |
| *msg = tmp; |
| return 1; |
| } |
| } |
| return 0; |
| } |
| |
| /* |
| * Variable to establish order between CPUs while scanning. |
| * Each CPU spins initially until executing is equal its number. |
| */ |
| static atomic_t mce_executing; |
| |
| /* |
| * Defines order of CPUs on entry. First CPU becomes Monarch. |
| */ |
| static atomic_t mce_callin; |
| |
| /* |
| * Check if a timeout waiting for other CPUs happened. |
| */ |
| static int mce_timed_out(u64 *t, const char *msg) |
| { |
| /* |
| * The others already did panic for some reason. |
| * Bail out like in a timeout. |
| * rmb() to tell the compiler that system_state |
| * might have been modified by someone else. |
| */ |
| rmb(); |
| if (atomic_read(&mce_panicked)) |
| wait_for_panic(); |
| if (!mca_cfg.monarch_timeout) |
| goto out; |
| if ((s64)*t < SPINUNIT) { |
| if (mca_cfg.tolerant <= 1) |
| mce_panic(msg, NULL, NULL); |
| cpu_missing = 1; |
| return 1; |
| } |
| *t -= SPINUNIT; |
| out: |
| touch_nmi_watchdog(); |
| return 0; |
| } |
| |
| /* |
| * The Monarch's reign. The Monarch is the CPU who entered |
| * the machine check handler first. It waits for the others to |
| * raise the exception too and then grades them. When any |
| * error is fatal panic. Only then let the others continue. |
| * |
| * The other CPUs entering the MCE handler will be controlled by the |
| * Monarch. They are called Subjects. |
| * |
| * This way we prevent any potential data corruption in a unrecoverable case |
| * and also makes sure always all CPU's errors are examined. |
| * |
| * Also this detects the case of a machine check event coming from outer |
| * space (not detected by any CPUs) In this case some external agent wants |
| * us to shut down, so panic too. |
| * |
| * The other CPUs might still decide to panic if the handler happens |
| * in a unrecoverable place, but in this case the system is in a semi-stable |
| * state and won't corrupt anything by itself. It's ok to let the others |
| * continue for a bit first. |
| * |
| * All the spin loops have timeouts; when a timeout happens a CPU |
| * typically elects itself to be Monarch. |
| */ |
| static void mce_reign(void) |
| { |
| int cpu; |
| struct mce *m = NULL; |
| int global_worst = 0; |
| char *msg = NULL; |
| char *nmsg = NULL; |
| |
| /* |
| * This CPU is the Monarch and the other CPUs have run |
| * through their handlers. |
| * Grade the severity of the errors of all the CPUs. |
| */ |
| for_each_possible_cpu(cpu) { |
| int severity = mce_severity(&per_cpu(mces_seen, cpu), |
| mca_cfg.tolerant, |
| &nmsg, true); |
| if (severity > global_worst) { |
| msg = nmsg; |
| global_worst = severity; |
| m = &per_cpu(mces_seen, cpu); |
| } |
| } |
| |
| /* |
| * Cannot recover? Panic here then. |
| * This dumps all the mces in the log buffer and stops the |
| * other CPUs. |
| */ |
| if (m && global_worst >= MCE_PANIC_SEVERITY && mca_cfg.tolerant < 3) |
| mce_panic("Fatal machine check", m, msg); |
| |
| /* |
| * For UC somewhere we let the CPU who detects it handle it. |
| * Also must let continue the others, otherwise the handling |
| * CPU could deadlock on a lock. |
| */ |
| |
| /* |
| * No machine check event found. Must be some external |
| * source or one CPU is hung. Panic. |
| */ |
| if (global_worst <= MCE_KEEP_SEVERITY && mca_cfg.tolerant < 3) |
| mce_panic("Fatal machine check from unknown source", NULL, NULL); |
| |
| /* |
| * Now clear all the mces_seen so that they don't reappear on |
| * the next mce. |
| */ |
| for_each_possible_cpu(cpu) |
| memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce)); |
| } |
| |
| static atomic_t global_nwo; |
| |
| /* |
| * Start of Monarch synchronization. This waits until all CPUs have |
| * entered the exception handler and then determines if any of them |
| * saw a fatal event that requires panic. Then it executes them |
| * in the entry order. |
| * TBD double check parallel CPU hotunplug |
| */ |
| static int mce_start(int *no_way_out) |
| { |
| int order; |
| int cpus = num_online_cpus(); |
| u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC; |
| |
| if (!timeout) |
| return -1; |
| |
| atomic_add(*no_way_out, &global_nwo); |
| /* |
| * Rely on the implied barrier below, such that global_nwo |
| * is updated before mce_callin. |
| */ |
| order = atomic_inc_return(&mce_callin); |
| |
| /* |
| * Wait for everyone. |
| */ |
| while (atomic_read(&mce_callin) != cpus) { |
| if (mce_timed_out(&timeout, |
| "Timeout: Not all CPUs entered broadcast exception handler")) { |
| atomic_set(&global_nwo, 0); |
| return -1; |
| } |
| ndelay(SPINUNIT); |
| } |
| |
| /* |
| * mce_callin should be read before global_nwo |
| */ |
| smp_rmb(); |
| |
| if (order == 1) { |
| /* |
| * Monarch: Starts executing now, the others wait. |
| */ |
| atomic_set(&mce_executing, 1); |
| } else { |
| /* |
| * Subject: Now start the scanning loop one by one in |
| * the original callin order. |
| * This way when there are any shared banks it will be |
| * only seen by one CPU before cleared, avoiding duplicates. |
| */ |
| while (atomic_read(&mce_executing) < order) { |
| if (mce_timed_out(&timeout, |
| "Timeout: Subject CPUs unable to finish machine check processing")) { |
| atomic_set(&global_nwo, 0); |
| return -1; |
| } |
| ndelay(SPINUNIT); |
| } |
| } |
| |
| /* |
| * Cache the global no_way_out state. |
| */ |
| *no_way_out = atomic_read(&global_nwo); |
| |
| return order; |
| } |
| |
| /* |
| * Synchronize between CPUs after main scanning loop. |
| * This invokes the bulk of the Monarch processing. |
| */ |
| static int mce_end(int order) |
| { |
| int ret = -1; |
| u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC; |
| |
| if (!timeout) |
| goto reset; |
| if (order < 0) |
| goto reset; |
| |
| /* |
| * Allow others to run. |
| */ |
| atomic_inc(&mce_executing); |
| |
| if (order == 1) { |
| /* CHECKME: Can this race with a parallel hotplug? */ |
| int cpus = num_online_cpus(); |
| |
| /* |
| * Monarch: Wait for everyone to go through their scanning |
| * loops. |
| */ |
| while (atomic_read(&mce_executing) <= cpus) { |
| if (mce_timed_out(&timeout, |
| "Timeout: Monarch CPU unable to finish machine check processing")) |
| goto reset; |
| ndelay(SPINUNIT); |
| } |
| |
| mce_reign(); |
| barrier(); |
| ret = 0; |
| } else { |
| /* |
| * Subject: Wait for Monarch to finish. |
| */ |
| while (atomic_read(&mce_executing) != 0) { |
| if (mce_timed_out(&timeout, |
| "Timeout: Monarch CPU did not finish machine check processing")) |
| goto reset; |
| ndelay(SPINUNIT); |
| } |
| |
| /* |
| * Don't reset anything. That's done by the Monarch. |
| */ |
| return 0; |
| } |
| |
| /* |
| * Reset all global state. |
| */ |
| reset: |
| atomic_set(&global_nwo, 0); |
| atomic_set(&mce_callin, 0); |
| barrier(); |
| |
| /* |
| * Let others run again. |
| */ |
| atomic_set(&mce_executing, 0); |
| return ret; |
| } |
| |
| static void mce_clear_state(unsigned long *toclear) |
| { |
| int i; |
| |
| for (i = 0; i < mca_cfg.banks; i++) { |
| if (test_bit(i, toclear)) |
| mce_wrmsrl(msr_ops.status(i), 0); |
| } |
| } |
| |
| static int do_memory_failure(struct mce *m) |
| { |
| int flags = MF_ACTION_REQUIRED; |
| int ret; |
| |
| pr_err("Uncorrected hardware memory error in user-access at %llx", m->addr); |
| if (!(m->mcgstatus & MCG_STATUS_RIPV)) |
| flags |= MF_MUST_KILL; |
| ret = memory_failure(m->addr >> PAGE_SHIFT, MCE_VECTOR, flags); |
| if (ret) |
| pr_err("Memory error not recovered"); |
| else |
| mce_unmap_kpfn(m->addr >> PAGE_SHIFT); |
| return ret; |
| } |
| |
| #ifndef mce_unmap_kpfn |
| static void mce_unmap_kpfn(unsigned long pfn) |
| { |
| unsigned long decoy_addr; |
| |
| /* |
| * Unmap this page from the kernel 1:1 mappings to make sure |
| * we don't log more errors because of speculative access to |
| * the page. |
| * We would like to just call: |
| * set_memory_np((unsigned long)pfn_to_kaddr(pfn), 1); |
| * but doing that would radically increase the odds of a |
| * speculative access to the poison page because we'd have |
| * the virtual address of the kernel 1:1 mapping sitting |
| * around in registers. |
| * Instead we get tricky. We create a non-canonical address |
| * that looks just like the one we want, but has bit 63 flipped. |
| * This relies on set_memory_np() not checking whether we passed |
| * a legal address. |
| */ |
| |
| /* |
| * Build time check to see if we have a spare virtual bit. Don't want |
| * to leave this until run time because most developers don't have a |
| * system that can exercise this code path. This will only become a |
| * problem if/when we move beyond 5-level page tables. |
| * |
| * Hard code "9" here because cpp doesn't grok ilog2(PTRS_PER_PGD) |
| */ |
| #if PGDIR_SHIFT + 9 < 63 |
| decoy_addr = (pfn << PAGE_SHIFT) + (PAGE_OFFSET ^ BIT(63)); |
| #else |
| #error "no unused virtual bit available" |
| #endif |
| |
| if (set_memory_np(decoy_addr, 1)) |
| pr_warn("Could not invalidate pfn=0x%lx from 1:1 map\n", pfn); |
| } |
| #endif |
| |
| /* |
| * The actual machine check handler. This only handles real |
| * exceptions when something got corrupted coming in through int 18. |
| * |
| * This is executed in NMI context not subject to normal locking rules. This |
| * implies that most kernel services cannot be safely used. Don't even |
| * think about putting a printk in there! |
| * |
| * On Intel systems this is entered on all CPUs in parallel through |
| * MCE broadcast. However some CPUs might be broken beyond repair, |
| * so be always careful when synchronizing with others. |
| */ |
| void do_machine_check(struct pt_regs *regs, long error_code) |
| { |
| struct mca_config *cfg = &mca_cfg; |
| struct mce m, *final; |
| int i; |
| int worst = 0; |
| int severity; |
| |
| /* |
| * Establish sequential order between the CPUs entering the machine |
| * check handler. |
| */ |
| int order = -1; |
| /* |
| * If no_way_out gets set, there is no safe way to recover from this |
| * MCE. If mca_cfg.tolerant is cranked up, we'll try anyway. |
| */ |
| int no_way_out = 0; |
| /* |
| * If kill_it gets set, there might be a way to recover from this |
| * error. |
| */ |
| int kill_it = 0; |
| DECLARE_BITMAP(toclear, MAX_NR_BANKS); |
| DECLARE_BITMAP(valid_banks, MAX_NR_BANKS); |
| char *msg = "Unknown"; |
| |
| /* |
| * MCEs are always local on AMD. Same is determined by MCG_STATUS_LMCES |
| * on Intel. |
| */ |
| int lmce = 1; |
| int cpu = smp_processor_id(); |
| |
| /* |
| * Cases where we avoid rendezvous handler timeout: |
| * 1) If this CPU is offline. |
| * |
| * 2) If crashing_cpu was set, e.g. we're entering kdump and we need to |
| * skip those CPUs which remain looping in the 1st kernel - see |
| * crash_nmi_callback(). |
| * |
| * Note: there still is a small window between kexec-ing and the new, |
| * kdump kernel establishing a new #MC handler where a broadcasted MCE |
| * might not get handled properly. |
| */ |
| if (cpu_is_offline(cpu) || |
| (crashing_cpu != -1 && crashing_cpu != cpu)) { |
| u64 mcgstatus; |
| |
| mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS); |
| if (mcgstatus & MCG_STATUS_RIPV) { |
| mce_wrmsrl(MSR_IA32_MCG_STATUS, 0); |
| return; |
| } |
| } |
| |
| ist_enter(regs); |
| |
| this_cpu_inc(mce_exception_count); |
| |
| if (!cfg->banks) |
| goto out; |
| |
| mce_gather_info(&m, regs); |
| m.tsc = rdtsc(); |
| |
| final = this_cpu_ptr(&mces_seen); |
| *final = m; |
| |
| memset(valid_banks, 0, sizeof(valid_banks)); |
| no_way_out = mce_no_way_out(&m, &msg, valid_banks, regs); |
| |
| barrier(); |
| |
| /* |
| * When no restart IP might need to kill or panic. |
| * Assume the worst for now, but if we find the |
| * severity is MCE_AR_SEVERITY we have other options. |
| */ |
| if (!(m.mcgstatus & MCG_STATUS_RIPV)) |
| kill_it = 1; |
| |
| /* |
| * Check if this MCE is signaled to only this logical processor, |
| * on Intel only. |
| */ |
| if (m.cpuvendor == X86_VENDOR_INTEL) |
| lmce = m.mcgstatus & MCG_STATUS_LMCES; |
| |
| /* |
| * Local machine check may already know that we have to panic. |
| * Broadcast machine check begins rendezvous in mce_start() |
| * Go through all banks in exclusion of the other CPUs. This way we |
| * don't report duplicated events on shared banks because the first one |
| * to see it will clear it. |
| */ |
| if (lmce) { |
| if (no_way_out) |
| mce_panic("Fatal local machine check", &m, msg); |
| } else { |
| order = mce_start(&no_way_out); |
| } |
| |
| for (i = 0; i < cfg->banks; i++) { |
| __clear_bit(i, toclear); |
| if (!test_bit(i, valid_banks)) |
| continue; |
| if (!mce_banks[i].ctl) |
| continue; |
| |
| m.misc = 0; |
| m.addr = 0; |
| m.bank = i; |
| |
| m.status = mce_rdmsrl(msr_ops.status(i)); |
| if ((m.status & MCI_STATUS_VAL) == 0) |
| continue; |
| |
| /* |
| * Non uncorrected or non signaled errors are handled by |
| * machine_check_poll. Leave them alone, unless this panics. |
| */ |
| if (!(m.status & (cfg->ser ? MCI_STATUS_S : MCI_STATUS_UC)) && |
| !no_way_out) |
| continue; |
| |
| /* |
| * Set taint even when machine check was not enabled. |
| */ |
| add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE); |
| |
| severity = mce_severity(&m, cfg->tolerant, NULL, true); |
| |
| /* |
| * When machine check was for corrected/deferred handler don't |
| * touch, unless we're panicing. |
| */ |
| if ((severity == MCE_KEEP_SEVERITY || |
| severity == MCE_UCNA_SEVERITY) && !no_way_out) |
| continue; |
| __set_bit(i, toclear); |
| if (severity == MCE_NO_SEVERITY) { |
| /* |
| * Machine check event was not enabled. Clear, but |
| * ignore. |
| */ |
| continue; |
| } |
| |
| mce_read_aux(&m, i); |
| |
| /* assuming valid severity level != 0 */ |
| m.severity = severity; |
| |
| mce_log(&m); |
| |
| if (severity > worst) { |
| *final = m; |
| worst = severity; |
| } |
| } |
| |
| /* mce_clear_state will clear *final, save locally for use later */ |
| m = *final; |
| |
| if (!no_way_out) |
| mce_clear_state(toclear); |
| |
| /* |
| * Do most of the synchronization with other CPUs. |
| * When there's any problem use only local no_way_out state. |
| */ |
| if (!lmce) { |
| if (mce_end(order) < 0) |
| no_way_out = worst >= MCE_PANIC_SEVERITY; |
| } else { |
| /* |
| * If there was a fatal machine check we should have |
| * already called mce_panic earlier in this function. |
| * Since we re-read the banks, we might have found |
| * something new. Check again to see if we found a |
| * fatal error. We call "mce_severity()" again to |
| * make sure we have the right "msg". |
| */ |
| if (worst >= MCE_PANIC_SEVERITY && mca_cfg.tolerant < 3) { |
| mce_severity(&m, cfg->tolerant, &msg, true); |
| mce_panic("Local fatal machine check!", &m, msg); |
| } |
| } |
| |
| /* |
| * If tolerant is at an insane level we drop requests to kill |
| * processes and continue even when there is no way out. |
| */ |
| if (cfg->tolerant == 3) |
| kill_it = 0; |
| else if (no_way_out) |
| mce_panic("Fatal machine check on current CPU", &m, msg); |
| |
| if (worst > 0) |
| mce_report_event(regs); |
| mce_wrmsrl(MSR_IA32_MCG_STATUS, 0); |
| out: |
| sync_core(); |
| |
| if (worst != MCE_AR_SEVERITY && !kill_it) |
| goto out_ist; |
| |
| /* Fault was in user mode and we need to take some action */ |
| if ((m.cs & 3) == 3) { |
| ist_begin_non_atomic(regs); |
| local_irq_enable(); |
| |
| if (kill_it || do_memory_failure(&m)) |
| force_sig(SIGBUS, current); |
| local_irq_disable(); |
| ist_end_non_atomic(); |
| } else { |
| if (!fixup_exception(regs, X86_TRAP_MC)) |
| mce_panic("Failed kernel mode recovery", &m, NULL); |
| } |
| |
| out_ist: |
| ist_exit(regs); |
| } |
| EXPORT_SYMBOL_GPL(do_machine_check); |
| |
| #ifndef CONFIG_MEMORY_FAILURE |
| int memory_failure(unsigned long pfn, int vector, int flags) |
| { |
| /* mce_severity() should not hand us an ACTION_REQUIRED error */ |
| BUG_ON(flags & MF_ACTION_REQUIRED); |
| pr_err("Uncorrected memory error in page 0x%lx ignored\n" |
| "Rebuild kernel with CONFIG_MEMORY_FAILURE=y for smarter handling\n", |
| pfn); |
| |
| return 0; |
| } |
| #endif |
| |
| /* |
| * Periodic polling timer for "silent" machine check errors. If the |
| * poller finds an MCE, poll 2x faster. When the poller finds no more |
| * errors, poll 2x slower (up to check_interval seconds). |
| */ |
| static unsigned long check_interval = INITIAL_CHECK_INTERVAL; |
| |
| static DEFINE_PER_CPU(unsigned long, mce_next_interval); /* in jiffies */ |
| static DEFINE_PER_CPU(struct timer_list, mce_timer); |
| |
| static unsigned long mce_adjust_timer_default(unsigned long interval) |
| { |
| return interval; |
| } |
| |
| static unsigned long (*mce_adjust_timer)(unsigned long interval) = mce_adjust_timer_default; |
| |
| static void __start_timer(struct timer_list *t, unsigned long interval) |
| { |
| unsigned long when = jiffies + interval; |
| unsigned long flags; |
| |
| local_irq_save(flags); |
| |
| if (!timer_pending(t) || time_before(when, t->expires)) |
| mod_timer(t, round_jiffies(when)); |
| |
| local_irq_restore(flags); |
| } |
| |
| static void mce_timer_fn(unsigned long data) |
| { |
| struct timer_list *t = this_cpu_ptr(&mce_timer); |
| int cpu = smp_processor_id(); |
| unsigned long iv; |
| |
| WARN_ON(cpu != data); |
| |
| iv = __this_cpu_read(mce_next_interval); |
| |
| if (mce_available(this_cpu_ptr(&cpu_info))) { |
| machine_check_poll(0, this_cpu_ptr(&mce_poll_banks)); |
| |
| if (mce_intel_cmci_poll()) { |
| iv = mce_adjust_timer(iv); |
| goto done; |
| } |
| } |
| |
| /* |
| * Alert userspace if needed. If we logged an MCE, reduce the polling |
| * interval, otherwise increase the polling interval. |
| */ |
| if (mce_notify_irq()) |
| iv = max(iv / 2, (unsigned long) HZ/100); |
| else |
| iv = min(iv * 2, round_jiffies_relative(check_interval * HZ)); |
| |
| done: |
| __this_cpu_write(mce_next_interval, iv); |
| __start_timer(t, iv); |
| } |
| |
| /* |
| * Ensure that the timer is firing in @interval from now. |
| */ |
| void mce_timer_kick(unsigned long interval) |
| { |
| struct timer_list *t = this_cpu_ptr(&mce_timer); |
| unsigned long iv = __this_cpu_read(mce_next_interval); |
| |
| __start_timer(t, interval); |
| |
| if (interval < iv) |
| __this_cpu_write(mce_next_interval, interval); |
| } |
| |
| /* Must not be called in IRQ context where del_timer_sync() can deadlock */ |
| static void mce_timer_delete_all(void) |
| { |
| int cpu; |
| |
| for_each_online_cpu(cpu) |
| del_timer_sync(&per_cpu(mce_timer, cpu)); |
| } |
| |
| /* |
| * Notify the user(s) about new machine check events. |
| * Can be called from interrupt context, but not from machine check/NMI |
| * context. |
| */ |
| int mce_notify_irq(void) |
| { |
| /* Not more than two messages every minute */ |
| static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2); |
| |
| if (test_and_clear_bit(0, &mce_need_notify)) { |
| mce_work_trigger(); |
| |
| if (__ratelimit(&ratelimit)) |
| pr_info(HW_ERR "Machine check events logged\n"); |
| |
| return 1; |
| } |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(mce_notify_irq); |
| |
| static int __mcheck_cpu_mce_banks_init(void) |
| { |
| int i; |
| |
| mce_banks = kcalloc(MAX_NR_BANKS, sizeof(struct mce_bank), GFP_KERNEL); |
| if (!mce_banks) |
| return -ENOMEM; |
| |
| for (i = 0; i < MAX_NR_BANKS; i++) { |
| struct mce_bank *b = &mce_banks[i]; |
| |
| b->ctl = -1ULL; |
| b->init = 1; |
| } |
| return 0; |
| } |
| |
| /* |
| * Initialize Machine Checks for a CPU. |
| */ |
| static int __mcheck_cpu_cap_init(void) |
| { |
| u64 cap; |
| u8 b; |
| |
| rdmsrl(MSR_IA32_MCG_CAP, cap); |
| |
| b = cap & MCG_BANKCNT_MASK; |
| if (WARN_ON_ONCE(b > MAX_NR_BANKS)) |
| b = MAX_NR_BANKS; |
| |
| mca_cfg.banks = max(mca_cfg.banks, b); |
| |
| if (!mce_banks) { |
| int err = __mcheck_cpu_mce_banks_init(); |
| if (err) |
| return err; |
| } |
| |
| /* Use accurate RIP reporting if available. */ |
| if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9) |
| mca_cfg.rip_msr = MSR_IA32_MCG_EIP; |
| |
| if (cap & MCG_SER_P) |
| mca_cfg.ser = true; |
| |
| return 0; |
| } |
| |
| static void __mcheck_cpu_init_generic(void) |
| { |
| enum mcp_flags m_fl = 0; |
| mce_banks_t all_banks; |
| u64 cap; |
| |
| if (!mca_cfg.bootlog) |
| m_fl = MCP_DONTLOG; |
| |
| /* |
| * Log the machine checks left over from the previous reset. |
| */ |
| bitmap_fill(all_banks, MAX_NR_BANKS); |
| machine_check_poll(MCP_UC | m_fl, &all_banks); |
| |
| cr4_set_bits(X86_CR4_MCE); |
| |
| rdmsrl(MSR_IA32_MCG_CAP, cap); |
| if (cap & MCG_CTL_P) |
| wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff); |
| } |
| |
| static void __mcheck_cpu_init_clear_banks(void) |
| { |
| int i; |
| |
| for (i = 0; i < mca_cfg.banks; i++) { |
| struct mce_bank *b = &mce_banks[i]; |
| |
| if (!b->init) |
| continue; |
| wrmsrl(msr_ops.ctl(i), b->ctl); |
| wrmsrl(msr_ops.status(i), 0); |
| } |
| } |
| |
| /* |
| * During IFU recovery Sandy Bridge -EP4S processors set the RIPV and |
| * EIPV bits in MCG_STATUS to zero on the affected logical processor (SDM |
| * Vol 3B Table 15-20). But this confuses both the code that determines |
| * whether the machine check occurred in kernel or user mode, and also |
| * the severity assessment code. Pretend that EIPV was set, and take the |
| * ip/cs values from the pt_regs that mce_gather_info() ignored earlier. |
| */ |
| static void quirk_sandybridge_ifu(int bank, struct mce *m, struct pt_regs *regs) |
| { |
| if (bank != 0) |
| return; |
| if ((m->mcgstatus & (MCG_STATUS_EIPV|MCG_STATUS_RIPV)) != 0) |
| return; |
| if ((m->status & (MCI_STATUS_OVER|MCI_STATUS_UC| |
| MCI_STATUS_EN|MCI_STATUS_MISCV|MCI_STATUS_ADDRV| |
| MCI_STATUS_PCC|MCI_STATUS_S|MCI_STATUS_AR| |
| MCACOD)) != |
| (MCI_STATUS_UC|MCI_STATUS_EN| |
| MCI_STATUS_MISCV|MCI_STATUS_ADDRV|MCI_STATUS_S| |
| MCI_STATUS_AR|MCACOD_INSTR)) |
| return; |
| |
| m->mcgstatus |= MCG_STATUS_EIPV; |
| m->ip = regs->ip; |
| m->cs = regs->cs; |
| } |
| |
| /* Add per CPU specific workarounds here */ |
| static int __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c) |
| { |
| struct mca_config *cfg = &mca_cfg; |
| |
| if (c->x86_vendor == X86_VENDOR_UNKNOWN) { |
| pr_info("unknown CPU type - not enabling MCE support\n"); |
| return -EOPNOTSUPP; |
| } |
| |
| /* This should be disabled by the BIOS, but isn't always */ |
| if (c->x86_vendor == X86_VENDOR_AMD) { |
| if (c->x86 == 15 && cfg->banks > 4) { |
| /* |
| * disable GART TBL walk error reporting, which |
| * trips off incorrectly with the IOMMU & 3ware |
| * & Cerberus: |
| */ |
| clear_bit(10, (unsigned long *)&mce_banks[4].ctl); |
| } |
| if (c->x86 < 0x11 && cfg->bootlog < 0) { |
| /* |
| * Lots of broken BIOS around that don't clear them |
| * by default and leave crap in there. Don't log: |
| */ |
| cfg->bootlog = 0; |
| } |
| /* |
| * Various K7s with broken bank 0 around. Always disable |
| * by default. |
| */ |
| if (c->x86 == 6 && cfg->banks > 0) |
| mce_banks[0].ctl = 0; |
| |
| /* |
| * overflow_recov is supported for F15h Models 00h-0fh |
| * even though we don't have a CPUID bit for it. |
| */ |
| if (c->x86 == 0x15 && c->x86_model <= 0xf) |
| mce_flags.overflow_recov = 1; |
| |
| } |
| |
| if (c->x86_vendor == X86_VENDOR_INTEL) { |
| /* |
| * SDM documents that on family 6 bank 0 should not be written |
| * because it aliases to another special BIOS controlled |
| * register. |
| * But it's not aliased anymore on model 0x1a+ |
| * Don't ignore bank 0 completely because there could be a |
| * valid event later, merely don't write CTL0. |
| */ |
| |
| if (c->x86 == 6 && c->x86_model < 0x1A && cfg->banks > 0) |
| mce_banks[0].init = 0; |
| |
| /* |
| * All newer Intel systems support MCE broadcasting. Enable |
| * synchronization with a one second timeout. |
| */ |
| if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) && |
| cfg->monarch_timeout < 0) |
| cfg->monarch_timeout = USEC_PER_SEC; |
| |
| /* |
| * There are also broken BIOSes on some Pentium M and |
| * earlier systems: |
| */ |
| if (c->x86 == 6 && c->x86_model <= 13 && cfg->bootlog < 0) |
| cfg->bootlog = 0; |
| |
| if (c->x86 == 6 && c->x86_model == 45) |
| quirk_no_way_out = quirk_sandybridge_ifu; |
| } |
| if (cfg->monarch_timeout < 0) |
| cfg->monarch_timeout = 0; |
| if (cfg->bootlog != 0) |
| cfg->panic_timeout = 30; |
| |
| return 0; |
| } |
| |
| static int __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c) |
| { |
| if (c->x86 != 5) |
| return 0; |
| |
| switch (c->x86_vendor) { |
| case X86_VENDOR_INTEL: |
| intel_p5_mcheck_init(c); |
| return 1; |
| break; |
| case X86_VENDOR_CENTAUR: |
| winchip_mcheck_init(c); |
| return 1; |
| break; |
| default: |
| return 0; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Init basic CPU features needed for early decoding of MCEs. |
| */ |
| static void __mcheck_cpu_init_early(struct cpuinfo_x86 *c) |
| { |
| if (c->x86_vendor == X86_VENDOR_AMD) { |
| mce_flags.overflow_recov = !!cpu_has(c, X86_FEATURE_OVERFLOW_RECOV); |
| mce_flags.succor = !!cpu_has(c, X86_FEATURE_SUCCOR); |
| mce_flags.smca = !!cpu_has(c, X86_FEATURE_SMCA); |
| |
| if (mce_flags.smca) { |
| msr_ops.ctl = smca_ctl_reg; |
| msr_ops.status = smca_status_reg; |
| msr_ops.addr = smca_addr_reg; |
| msr_ops.misc = smca_misc_reg; |
| } |
| } |
| } |
| |
| static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c) |
| { |
| switch (c->x86_vendor) { |
| case X86_VENDOR_INTEL: |
| mce_intel_feature_init(c); |
| mce_adjust_timer = cmci_intel_adjust_timer; |
| break; |
| |
| case X86_VENDOR_AMD: { |
| mce_amd_feature_init(c); |
| break; |
| } |
| |
| default: |
| break; |
| } |
| } |
| |
| static void __mcheck_cpu_clear_vendor(struct cpuinfo_x86 *c) |
| { |
| switch (c->x86_vendor) { |
| case X86_VENDOR_INTEL: |
| mce_intel_feature_clear(c); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| static void mce_start_timer(struct timer_list *t) |
| { |
| unsigned long iv = check_interval * HZ; |
| |
| if (mca_cfg.ignore_ce || !iv) |
| return; |
| |
| this_cpu_write(mce_next_interval, iv); |
| __start_timer(t, iv); |
| } |
| |
| static void __mcheck_cpu_setup_timer(void) |
| { |
| struct timer_list *t = this_cpu_ptr(&mce_timer); |
| unsigned int cpu = smp_processor_id(); |
| |
| setup_pinned_timer(t, mce_timer_fn, cpu); |
| } |
| |
| static void __mcheck_cpu_init_timer(void) |
| { |
| struct timer_list *t = this_cpu_ptr(&mce_timer); |
| unsigned int cpu = smp_processor_id(); |
| |
| setup_pinned_timer(t, mce_timer_fn, cpu); |
| mce_start_timer(t); |
| } |
| |
| /* Handle unconfigured int18 (should never happen) */ |
| static void unexpected_machine_check(struct pt_regs *regs, long error_code) |
| { |
| pr_err("CPU#%d: Unexpected int18 (Machine Check)\n", |
| smp_processor_id()); |
| } |
| |
| /* Call the installed machine check handler for this CPU setup. */ |
| void (*machine_check_vector)(struct pt_regs *, long error_code) = |
| unexpected_machine_check; |
| |
| dotraplinkage void do_mce(struct pt_regs *regs, long error_code) |
| { |
| machine_check_vector(regs, error_code); |
| } |
| |
| /* |
| * Called for each booted CPU to set up machine checks. |
| * Must be called with preempt off: |
| */ |
| void mcheck_cpu_init(struct cpuinfo_x86 *c) |
| { |
| if (mca_cfg.disabled) |
| return; |
| |
| if (__mcheck_cpu_ancient_init(c)) |
| return; |
| |
| if (!mce_available(c)) |
| return; |
| |
| if (__mcheck_cpu_cap_init() < 0 || __mcheck_cpu_apply_quirks(c) < 0) { |
| mca_cfg.disabled = true; |
| return; |
| } |
| |
| if (mce_gen_pool_init()) { |
| mca_cfg.disabled = true; |
| pr_emerg("Couldn't allocate MCE records pool!\n"); |
| return; |
| } |
| |
| machine_check_vector = do_machine_check; |
| |
| __mcheck_cpu_init_early(c); |
| __mcheck_cpu_init_generic(); |
| __mcheck_cpu_init_vendor(c); |
| __mcheck_cpu_init_clear_banks(); |
| __mcheck_cpu_setup_timer(); |
| } |
| |
| /* |
| * Called for each booted CPU to clear some machine checks opt-ins |
| */ |
| void mcheck_cpu_clear(struct cpuinfo_x86 *c) |
| { |
| if (mca_cfg.disabled) |
| return; |
| |
| if (!mce_available(c)) |
| return; |
| |
| /* |
| * Possibly to clear general settings generic to x86 |
| * __mcheck_cpu_clear_generic(c); |
| */ |
| __mcheck_cpu_clear_vendor(c); |
| |
| } |
| |
| static void __mce_disable_bank(void *arg) |
| { |
| int bank = *((int *)arg); |
| __clear_bit(bank, this_cpu_ptr(mce_poll_banks)); |
| cmci_disable_bank(bank); |
| } |
| |
| void mce_disable_bank(int bank) |
| { |
| if (bank >= mca_cfg.banks) { |
| pr_warn(FW_BUG |
| "Ignoring request to disable invalid MCA bank %d.\n", |
| bank); |
| return; |
| } |
| set_bit(bank, mce_banks_ce_disabled); |
| on_each_cpu(__mce_disable_bank, &bank, 1); |
| } |
| |
| /* |
| * mce=off Disables machine check |
| * mce=no_cmci Disables CMCI |
| * mce=no_lmce Disables LMCE |
| * mce=dont_log_ce Clears corrected events silently, no log created for CEs. |
| * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared. |
| * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above) |
| * monarchtimeout is how long to wait for other CPUs on machine |
| * check, or 0 to not wait |
| * mce=bootlog Log MCEs from before booting. Disabled by default on AMD Fam10h |
| and older. |
| * mce=nobootlog Don't log MCEs from before booting. |
| * mce=bios_cmci_threshold Don't program the CMCI threshold |
| * mce=recovery force enable memcpy_mcsafe() |
| */ |
| static int __init mcheck_enable(char *str) |
| { |
| struct mca_config *cfg = &mca_cfg; |
| |
| if (*str == 0) { |
| enable_p5_mce(); |
| return 1; |
| } |
| if (*str == '=') |
| str++; |
| if (!strcmp(str, "off")) |
| cfg->disabled = true; |
| else if (!strcmp(str, "no_cmci")) |
| cfg->cmci_disabled = true; |
| else if (!strcmp(str, "no_lmce")) |
| cfg->lmce_disabled = true; |
| else if (!strcmp(str, "dont_log_ce")) |
| cfg->dont_log_ce = true; |
| else if (!strcmp(str, "ignore_ce")) |
| cfg->ignore_ce = true; |
| else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog")) |
| cfg->bootlog = (str[0] == 'b'); |
| else if (!strcmp(str, "bios_cmci_threshold")) |
| cfg->bios_cmci_threshold = true; |
| else if (!strcmp(str, "recovery")) |
| cfg->recovery = true; |
| else if (isdigit(str[0])) { |
| if (get_option(&str, &cfg->tolerant) == 2) |
| get_option(&str, &(cfg->monarch_timeout)); |
| } else { |
| pr_info("mce argument %s ignored. Please use /sys\n", str); |
| return 0; |
| } |
| return 1; |
| } |
| __setup("mce", mcheck_enable); |
| |
| int __init mcheck_init(void) |
| { |
| mcheck_intel_therm_init(); |
| mce_register_decode_chain(&first_nb); |
| mce_register_decode_chain(&mce_srao_nb); |
| mce_register_decode_chain(&mce_default_nb); |
| mcheck_vendor_init_severity(); |
| |
| INIT_WORK(&mce_work, mce_gen_pool_process); |
| init_irq_work(&mce_irq_work, mce_irq_work_cb); |
| |
| return 0; |
| } |
| |
| /* |
| * mce_syscore: PM support |
| */ |
| |
| /* |
| * Disable machine checks on suspend and shutdown. We can't really handle |
| * them later. |
| */ |
| static void mce_disable_error_reporting(void) |
| { |
| int i; |
| |
| for (i = 0; i < mca_cfg.banks; i++) { |
| struct mce_bank *b = &mce_banks[i]; |
| |
| if (b->init) |
| wrmsrl(msr_ops.ctl(i), 0); |
| } |
| return; |
| } |
| |
| static void vendor_disable_error_reporting(void) |
| { |
| /* |
| * Don't clear on Intel or AMD CPUs. Some of these MSRs are socket-wide. |
| * Disabling them for just a single offlined CPU is bad, since it will |
| * inhibit reporting for all shared resources on the socket like the |
| * last level cache (LLC), the integrated memory controller (iMC), etc. |
| */ |
| if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL || |
| boot_cpu_data.x86_vendor == X86_VENDOR_AMD) |
| return; |
| |
| mce_disable_error_reporting(); |
| } |
| |
| static int mce_syscore_suspend(void) |
| { |
| vendor_disable_error_reporting(); |
| return 0; |
| } |
| |
| static void mce_syscore_shutdown(void) |
| { |
| vendor_disable_error_reporting(); |
| } |
| |
| /* |
| * On resume clear all MCE state. Don't want to see leftovers from the BIOS. |
| * Only one CPU is active at this time, the others get re-added later using |
| * CPU hotplug: |
| */ |
| static void mce_syscore_resume(void) |
| { |
| __mcheck_cpu_init_generic(); |
| __mcheck_cpu_init_vendor(raw_cpu_ptr(&cpu_info)); |
| __mcheck_cpu_init_clear_banks(); |
| } |
| |
| static struct syscore_ops mce_syscore_ops = { |
| .suspend = mce_syscore_suspend, |
| .shutdown = mce_syscore_shutdown, |
| .resume = mce_syscore_resume, |
| }; |
| |
| /* |
| * mce_device: Sysfs support |
| */ |
| |
| static void mce_cpu_restart(void *data) |
| { |
| if (!mce_available(raw_cpu_ptr(&cpu_info))) |
| return; |
| __mcheck_cpu_init_generic(); |
| __mcheck_cpu_init_clear_banks(); |
| __mcheck_cpu_init_timer(); |
| } |
| |
| /* Reinit MCEs after user configuration changes */ |
| static void mce_restart(void) |
| { |
| mce_timer_delete_all(); |
| on_each_cpu(mce_cpu_restart, NULL, 1); |
| } |
| |
| /* Toggle features for corrected errors */ |
| static void mce_disable_cmci(void *data) |
| { |
| if (!mce_available(raw_cpu_ptr(&cpu_info))) |
| return; |
| cmci_clear(); |
| } |
| |
| static void mce_enable_ce(void *all) |
| { |
| if (!mce_available(raw_cpu_ptr(&cpu_info))) |
| return; |
| cmci_reenable(); |
| cmci_recheck(); |
| if (all) |
| __mcheck_cpu_init_timer(); |
| } |
| |
| static struct bus_type mce_subsys = { |
| .name = "machinecheck", |
| .dev_name = "machinecheck", |
| }; |
| |
| DEFINE_PER_CPU(struct device *, mce_device); |
| |
| static inline struct mce_bank *attr_to_bank(struct device_attribute *attr) |
| { |
| return container_of(attr, struct mce_bank, attr); |
| } |
| |
| static ssize_t show_bank(struct device *s, struct device_attribute *attr, |
| char *buf) |
| { |
| return sprintf(buf, "%llx\n", attr_to_bank(attr)->ctl); |
| } |
| |
| static ssize_t set_bank(struct device *s, struct device_attribute *attr, |
| const char *buf, size_t size) |
| { |
| u64 new; |
| |
| if (kstrtou64(buf, 0, &new) < 0) |
| return -EINVAL; |
| |
| attr_to_bank(attr)->ctl = new; |
| mce_restart(); |
| |
| return size; |
| } |
| |
| static ssize_t set_ignore_ce(struct device *s, |
| struct device_attribute *attr, |
| const char *buf, size_t size) |
| { |
| u64 new; |
| |
| if (kstrtou64(buf, 0, &new) < 0) |
| return -EINVAL; |
| |
| mutex_lock(&mce_sysfs_mutex); |
| if (mca_cfg.ignore_ce ^ !!new) { |
| if (new) { |
| /* disable ce features */ |
| mce_timer_delete_all(); |
| on_each_cpu(mce_disable_cmci, NULL, 1); |
| mca_cfg.ignore_ce = true; |
| } else { |
| /* enable ce features */ |
| mca_cfg.ignore_ce = false; |
| on_each_cpu(mce_enable_ce, (void *)1, 1); |
| } |
| } |
| mutex_unlock(&mce_sysfs_mutex); |
| |
| return size; |
| } |
| |
| static ssize_t set_cmci_disabled(struct device *s, |
| struct device_attribute *attr, |
| const char *buf, size_t size) |
| { |
| u64 new; |
| |
| if (kstrtou64(buf, 0, &new) < 0) |
| return -EINVAL; |
| |
| mutex_lock(&mce_sysfs_mutex); |
| if (mca_cfg.cmci_disabled ^ !!new) { |
| if (new) { |
| /* disable cmci */ |
| on_each_cpu(mce_disable_cmci, NULL, 1); |
| mca_cfg.cmci_disabled = true; |
| } else { |
| /* enable cmci */ |
| mca_cfg.cmci_disabled = false; |
| on_each_cpu(mce_enable_ce, NULL, 1); |
| } |
| } |
| mutex_unlock(&mce_sysfs_mutex); |
| |
| return size; |
| } |
| |
| static ssize_t store_int_with_restart(struct device *s, |
| struct device_attribute *attr, |
| const char *buf, size_t size) |
| { |
| unsigned long old_check_interval = check_interval; |
| ssize_t ret = device_store_ulong(s, attr, buf, size); |
| |
| if (check_interval == old_check_interval) |
| return ret; |
| |
| mutex_lock(&mce_sysfs_mutex); |
| mce_restart(); |
| mutex_unlock(&mce_sysfs_mutex); |
| |
| return ret; |
| } |
| |
| static DEVICE_INT_ATTR(tolerant, 0644, mca_cfg.tolerant); |
| static DEVICE_INT_ATTR(monarch_timeout, 0644, mca_cfg.monarch_timeout); |
| static DEVICE_BOOL_ATTR(dont_log_ce, 0644, mca_cfg.dont_log_ce); |
| |
| static struct dev_ext_attribute dev_attr_check_interval = { |
| __ATTR(check_interval, 0644, device_show_int, store_int_with_restart), |
| &check_interval |
| }; |
| |
| static struct dev_ext_attribute dev_attr_ignore_ce = { |
| __ATTR(ignore_ce, 0644, device_show_bool, set_ignore_ce), |
| &mca_cfg.ignore_ce |
| }; |
| |
| static struct dev_ext_attribute dev_attr_cmci_disabled = { |
| __ATTR(cmci_disabled, 0644, device_show_bool, set_cmci_disabled), |
| &mca_cfg.cmci_disabled |
| }; |
| |
| static struct device_attribute *mce_device_attrs[] = { |
| &dev_attr_tolerant.attr, |
| &dev_attr_check_interval.attr, |
| #ifdef CONFIG_X86_MCELOG_LEGACY |
| &dev_attr_trigger, |
| #endif |
| &dev_attr_monarch_timeout.attr, |
| &dev_attr_dont_log_ce.attr, |
| &dev_attr_ignore_ce.attr, |
| &dev_attr_cmci_disabled.attr, |
| NULL |
| }; |
| |
| static cpumask_var_t mce_device_initialized; |
| |
| static void mce_device_release(struct device *dev) |
| { |
| kfree(dev); |
| } |
| |
| /* Per cpu device init. All of the cpus still share the same ctrl bank: */ |
| static int mce_device_create(unsigned int cpu) |
| { |
| struct device *dev; |
| int err; |
| int i, j; |
| |
| if (!mce_available(&boot_cpu_data)) |
| return -EIO; |
| |
| dev = per_cpu(mce_device, cpu); |
| if (dev) |
| return 0; |
| |
| dev = kzalloc(sizeof *dev, GFP_KERNEL); |
| if (!dev) |
| return -ENOMEM; |
| dev->id = cpu; |
| dev->bus = &mce_subsys; |
| dev->release = &mce_device_release; |
| |
| err = device_register(dev); |
| if (err) { |
| put_device(dev); |
| return err; |
| } |
| |
| for (i = 0; mce_device_attrs[i]; i++) { |
| err = device_create_file(dev, mce_device_attrs[i]); |
| if (err) |
| goto error; |
| } |
| for (j = 0; j < mca_cfg.banks; j++) { |
| err = device_create_file(dev, &mce_banks[j].attr); |
| if (err) |
| goto error2; |
| } |
| cpumask_set_cpu(cpu, mce_device_initialized); |
| per_cpu(mce_device, cpu) = dev; |
| |
| return 0; |
| error2: |
| while (--j >= 0) |
| device_remove_file(dev, &mce_banks[j].attr); |
| error: |
| while (--i >= 0) |
| device_remove_file(dev, mce_device_attrs[i]); |
| |
| device_unregister(dev); |
| |
| return err; |
| } |
| |
| static void mce_device_remove(unsigned int cpu) |
| { |
| struct device *dev = per_cpu(mce_device, cpu); |
| int i; |
| |
| if (!cpumask_test_cpu(cpu, mce_device_initialized)) |
| return; |
| |
| for (i = 0; mce_device_attrs[i]; i++) |
| device_remove_file(dev, mce_device_attrs[i]); |
| |
| for (i = 0; i < mca_cfg.banks; i++) |
| device_remove_file(dev, &mce_banks[i].attr); |
| |
| device_unregister(dev); |
| cpumask_clear_cpu(cpu, mce_device_initialized); |
| per_cpu(mce_device, cpu) = NULL; |
| } |
| |
| /* Make sure there are no machine checks on offlined CPUs. */ |
| static void mce_disable_cpu(void) |
| { |
| if (!mce_available(raw_cpu_ptr(&cpu_info))) |
| return; |
| |
| if (!cpuhp_tasks_frozen) |
| cmci_clear(); |
| |
| vendor_disable_error_reporting(); |
| } |
| |
| static void mce_reenable_cpu(void) |
| { |
| int i; |
| |
| if (!mce_available(raw_cpu_ptr(&cpu_info))) |
| return; |
| |
| if (!cpuhp_tasks_frozen) |
| cmci_reenable(); |
| for (i = 0; i < mca_cfg.banks; i++) { |
| struct mce_bank *b = &mce_banks[i]; |
| |
| if (b->init) |
| wrmsrl(msr_ops.ctl(i), b->ctl); |
| } |
| } |
| |
| static int mce_cpu_dead(unsigned int cpu) |
| { |
| mce_intel_hcpu_update(cpu); |
| |
| /* intentionally ignoring frozen here */ |
| if (!cpuhp_tasks_frozen) |
| cmci_rediscover(); |
| return 0; |
| } |
| |
| static int mce_cpu_online(unsigned int cpu) |
| { |
| struct timer_list *t = this_cpu_ptr(&mce_timer); |
| int ret; |
| |
| mce_device_create(cpu); |
| |
| ret = mce_threshold_create_device(cpu); |
| if (ret) { |
| mce_device_remove(cpu); |
| return ret; |
| } |
| mce_reenable_cpu(); |
| mce_start_timer(t); |
| return 0; |
| } |
| |
| static int mce_cpu_pre_down(unsigned int cpu) |
| { |
| struct timer_list *t = this_cpu_ptr(&mce_timer); |
| |
| mce_disable_cpu(); |
| del_timer_sync(t); |
| mce_threshold_remove_device(cpu); |
| mce_device_remove(cpu); |
| return 0; |
| } |
| |
| static __init void mce_init_banks(void) |
| { |
| int i; |
| |
| for (i = 0; i < mca_cfg.banks; i++) { |
| struct mce_bank *b = &mce_banks[i]; |
| struct device_attribute *a = &b->attr; |
| |
| sysfs_attr_init(&a->attr); |
| a->attr.name = b->attrname; |
| snprintf(b->attrname, ATTR_LEN, "bank%d", i); |
| |
| a->attr.mode = 0644; |
| a->show = show_bank; |
| a->store = set_bank; |
| } |
| } |
| |
| static __init int mcheck_init_device(void) |
| { |
| int err; |
| |
| if (!mce_available(&boot_cpu_data)) { |
| err = -EIO; |
| goto err_out; |
| } |
| |
| if (!zalloc_cpumask_var(&mce_device_initialized, GFP_KERNEL)) { |
| err = -ENOMEM; |
| goto err_out; |
| } |
| |
| mce_init_banks(); |
| |
| err = subsys_system_register(&mce_subsys, NULL); |
| if (err) |
| goto err_out_mem; |
| |
| err = cpuhp_setup_state(CPUHP_X86_MCE_DEAD, "x86/mce:dead", NULL, |
| mce_cpu_dead); |
| if (err) |
| goto err_out_mem; |
| |
| err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/mce:online", |
| mce_cpu_online, mce_cpu_pre_down); |
| if (err < 0) |
| goto err_out_online; |
| |
| register_syscore_ops(&mce_syscore_ops); |
| |
| return 0; |
| |
| err_out_online: |
| cpuhp_remove_state(CPUHP_X86_MCE_DEAD); |
| |
| err_out_mem: |
| free_cpumask_var(mce_device_initialized); |
| |
| err_out: |
| pr_err("Unable to init MCE device (rc: %d)\n", err); |
| |
| return err; |
| } |
| device_initcall_sync(mcheck_init_device); |
| |
| /* |
| * Old style boot options parsing. Only for compatibility. |
| */ |
| static int __init mcheck_disable(char *str) |
| { |
| mca_cfg.disabled = true; |
| return 1; |
| } |
| __setup("nomce", mcheck_disable); |
| |
| #ifdef CONFIG_DEBUG_FS |
| struct dentry *mce_get_debugfs_dir(void) |
| { |
| static struct dentry *dmce; |
| |
| if (!dmce) |
| dmce = debugfs_create_dir("mce", NULL); |
| |
| return dmce; |
| } |
| |
| static void mce_reset(void) |
| { |
| cpu_missing = 0; |
| atomic_set(&mce_fake_panicked, 0); |
| atomic_set(&mce_executing, 0); |
| atomic_set(&mce_callin, 0); |
| atomic_set(&global_nwo, 0); |
| } |
| |
| static int fake_panic_get(void *data, u64 *val) |
| { |
| *val = fake_panic; |
| return 0; |
| } |
| |
| static int fake_panic_set(void *data, u64 val) |
| { |
| mce_reset(); |
| fake_panic = val; |
| return 0; |
| } |
| |
| DEFINE_SIMPLE_ATTRIBUTE(fake_panic_fops, fake_panic_get, |
| fake_panic_set, "%llu\n"); |
| |
| static int __init mcheck_debugfs_init(void) |
| { |
| struct dentry *dmce, *ffake_panic; |
| |
| dmce = mce_get_debugfs_dir(); |
| if (!dmce) |
| return -ENOMEM; |
| ffake_panic = debugfs_create_file("fake_panic", 0444, dmce, NULL, |
| &fake_panic_fops); |
| if (!ffake_panic) |
| return -ENOMEM; |
| |
| return 0; |
| } |
| #else |
| static int __init mcheck_debugfs_init(void) { return -EINVAL; } |
| #endif |
| |
| DEFINE_STATIC_KEY_FALSE(mcsafe_key); |
| EXPORT_SYMBOL_GPL(mcsafe_key); |
| |
| static int __init mcheck_late_init(void) |
| { |
| pr_info("Using %d MCE banks\n", mca_cfg.banks); |
| |
| if (mca_cfg.recovery) |
| static_branch_inc(&mcsafe_key); |
| |
| mcheck_debugfs_init(); |
| cec_init(); |
| |
| /* |
| * Flush out everything that has been logged during early boot, now that |
| * everything has been initialized (workqueues, decoders, ...). |
| */ |
| mce_schedule_work(); |
| |
| return 0; |
| } |
| late_initcall(mcheck_late_init); |