| /* SPDX-License-Identifier: GPL-2.0 */ |
| #ifndef _ASM_X86_PROCESSOR_H |
| #define _ASM_X86_PROCESSOR_H |
| |
| #include <asm/processor-flags.h> |
| |
| /* Forward declaration, a strange C thing */ |
| struct task_struct; |
| struct mm_struct; |
| struct vm86; |
| |
| #include <asm/math_emu.h> |
| #include <asm/segment.h> |
| #include <asm/types.h> |
| #include <uapi/asm/sigcontext.h> |
| #include <asm/current.h> |
| #include <asm/cpufeatures.h> |
| #include <asm/page.h> |
| #include <asm/pgtable_types.h> |
| #include <asm/percpu.h> |
| #include <asm/msr.h> |
| #include <asm/desc_defs.h> |
| #include <asm/nops.h> |
| #include <asm/special_insns.h> |
| #include <asm/fpu/types.h> |
| #include <asm/unwind_hints.h> |
| |
| #include <linux/personality.h> |
| #include <linux/cache.h> |
| #include <linux/threads.h> |
| #include <linux/math64.h> |
| #include <linux/err.h> |
| #include <linux/irqflags.h> |
| #include <linux/mem_encrypt.h> |
| |
| /* |
| * We handle most unaligned accesses in hardware. On the other hand |
| * unaligned DMA can be quite expensive on some Nehalem processors. |
| * |
| * Based on this we disable the IP header alignment in network drivers. |
| */ |
| #define NET_IP_ALIGN 0 |
| |
| #define HBP_NUM 4 |
| /* |
| * Default implementation of macro that returns current |
| * instruction pointer ("program counter"). |
| */ |
| static inline void *current_text_addr(void) |
| { |
| void *pc; |
| |
| asm volatile("mov $1f, %0; 1:":"=r" (pc)); |
| |
| return pc; |
| } |
| |
| /* |
| * These alignment constraints are for performance in the vSMP case, |
| * but in the task_struct case we must also meet hardware imposed |
| * alignment requirements of the FPU state: |
| */ |
| #ifdef CONFIG_X86_VSMP |
| # define ARCH_MIN_TASKALIGN (1 << INTERNODE_CACHE_SHIFT) |
| # define ARCH_MIN_MMSTRUCT_ALIGN (1 << INTERNODE_CACHE_SHIFT) |
| #else |
| # define ARCH_MIN_TASKALIGN __alignof__(union fpregs_state) |
| # define ARCH_MIN_MMSTRUCT_ALIGN 0 |
| #endif |
| |
| enum tlb_infos { |
| ENTRIES, |
| NR_INFO |
| }; |
| |
| extern u16 __read_mostly tlb_lli_4k[NR_INFO]; |
| extern u16 __read_mostly tlb_lli_2m[NR_INFO]; |
| extern u16 __read_mostly tlb_lli_4m[NR_INFO]; |
| extern u16 __read_mostly tlb_lld_4k[NR_INFO]; |
| extern u16 __read_mostly tlb_lld_2m[NR_INFO]; |
| extern u16 __read_mostly tlb_lld_4m[NR_INFO]; |
| extern u16 __read_mostly tlb_lld_1g[NR_INFO]; |
| |
| /* |
| * CPU type and hardware bug flags. Kept separately for each CPU. |
| * Members of this structure are referenced in head_32.S, so think twice |
| * before touching them. [mj] |
| */ |
| |
| struct cpuinfo_x86 { |
| __u8 x86; /* CPU family */ |
| __u8 x86_vendor; /* CPU vendor */ |
| __u8 x86_model; |
| __u8 x86_stepping; |
| #ifdef CONFIG_X86_64 |
| /* Number of 4K pages in DTLB/ITLB combined(in pages): */ |
| int x86_tlbsize; |
| #endif |
| __u8 x86_virt_bits; |
| __u8 x86_phys_bits; |
| /* CPUID returned core id bits: */ |
| __u8 x86_coreid_bits; |
| __u8 cu_id; |
| /* Max extended CPUID function supported: */ |
| __u32 extended_cpuid_level; |
| /* Maximum supported CPUID level, -1=no CPUID: */ |
| int cpuid_level; |
| __u32 x86_capability[NCAPINTS + NBUGINTS]; |
| char x86_vendor_id[16]; |
| char x86_model_id[64]; |
| /* in KB - valid for CPUS which support this call: */ |
| unsigned int x86_cache_size; |
| int x86_cache_alignment; /* In bytes */ |
| /* Cache QoS architectural values: */ |
| int x86_cache_max_rmid; /* max index */ |
| int x86_cache_occ_scale; /* scale to bytes */ |
| int x86_power; |
| unsigned long loops_per_jiffy; |
| /* cpuid returned max cores value: */ |
| u16 x86_max_cores; |
| u16 apicid; |
| u16 initial_apicid; |
| u16 x86_clflush_size; |
| /* number of cores as seen by the OS: */ |
| u16 booted_cores; |
| /* Physical processor id: */ |
| u16 phys_proc_id; |
| /* Logical processor id: */ |
| u16 logical_proc_id; |
| /* Core id: */ |
| u16 cpu_core_id; |
| /* Index into per_cpu list: */ |
| u16 cpu_index; |
| u32 microcode; |
| /* Address space bits used by the cache internally */ |
| u8 x86_cache_bits; |
| } __randomize_layout; |
| |
| struct cpuid_regs { |
| u32 eax, ebx, ecx, edx; |
| }; |
| |
| enum cpuid_regs_idx { |
| CPUID_EAX = 0, |
| CPUID_EBX, |
| CPUID_ECX, |
| CPUID_EDX, |
| }; |
| |
| #define X86_VENDOR_INTEL 0 |
| #define X86_VENDOR_CYRIX 1 |
| #define X86_VENDOR_AMD 2 |
| #define X86_VENDOR_UMC 3 |
| #define X86_VENDOR_CENTAUR 5 |
| #define X86_VENDOR_TRANSMETA 7 |
| #define X86_VENDOR_NSC 8 |
| #define X86_VENDOR_NUM 9 |
| |
| #define X86_VENDOR_UNKNOWN 0xff |
| |
| /* |
| * capabilities of CPUs |
| */ |
| extern struct cpuinfo_x86 boot_cpu_data; |
| extern struct cpuinfo_x86 new_cpu_data; |
| |
| extern struct x86_hw_tss doublefault_tss; |
| extern __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS]; |
| extern __u32 cpu_caps_set[NCAPINTS + NBUGINTS]; |
| |
| #ifdef CONFIG_SMP |
| DECLARE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info); |
| #define cpu_data(cpu) per_cpu(cpu_info, cpu) |
| #else |
| #define cpu_info boot_cpu_data |
| #define cpu_data(cpu) boot_cpu_data |
| #endif |
| |
| extern const struct seq_operations cpuinfo_op; |
| |
| #define cache_line_size() (boot_cpu_data.x86_cache_alignment) |
| |
| extern void cpu_detect(struct cpuinfo_x86 *c); |
| |
| static inline unsigned long long l1tf_pfn_limit(void) |
| { |
| return BIT_ULL(boot_cpu_data.x86_cache_bits - 1 - PAGE_SHIFT); |
| } |
| |
| extern void early_cpu_init(void); |
| extern void identify_boot_cpu(void); |
| extern void identify_secondary_cpu(struct cpuinfo_x86 *); |
| extern void print_cpu_info(struct cpuinfo_x86 *); |
| void print_cpu_msr(struct cpuinfo_x86 *); |
| extern void init_scattered_cpuid_features(struct cpuinfo_x86 *c); |
| extern u32 get_scattered_cpuid_leaf(unsigned int level, |
| unsigned int sub_leaf, |
| enum cpuid_regs_idx reg); |
| extern unsigned int init_intel_cacheinfo(struct cpuinfo_x86 *c); |
| extern void init_amd_cacheinfo(struct cpuinfo_x86 *c); |
| |
| extern void detect_extended_topology(struct cpuinfo_x86 *c); |
| extern void detect_ht(struct cpuinfo_x86 *c); |
| |
| #ifdef CONFIG_X86_32 |
| extern int have_cpuid_p(void); |
| #else |
| static inline int have_cpuid_p(void) |
| { |
| return 1; |
| } |
| #endif |
| static inline void native_cpuid(unsigned int *eax, unsigned int *ebx, |
| unsigned int *ecx, unsigned int *edx) |
| { |
| /* ecx is often an input as well as an output. */ |
| asm volatile("cpuid" |
| : "=a" (*eax), |
| "=b" (*ebx), |
| "=c" (*ecx), |
| "=d" (*edx) |
| : "0" (*eax), "2" (*ecx) |
| : "memory"); |
| } |
| |
| #define native_cpuid_reg(reg) \ |
| static inline unsigned int native_cpuid_##reg(unsigned int op) \ |
| { \ |
| unsigned int eax = op, ebx, ecx = 0, edx; \ |
| \ |
| native_cpuid(&eax, &ebx, &ecx, &edx); \ |
| \ |
| return reg; \ |
| } |
| |
| /* |
| * Native CPUID functions returning a single datum. |
| */ |
| native_cpuid_reg(eax) |
| native_cpuid_reg(ebx) |
| native_cpuid_reg(ecx) |
| native_cpuid_reg(edx) |
| |
| /* |
| * Friendlier CR3 helpers. |
| */ |
| static inline unsigned long read_cr3_pa(void) |
| { |
| return __read_cr3() & CR3_ADDR_MASK; |
| } |
| |
| static inline unsigned long native_read_cr3_pa(void) |
| { |
| return __native_read_cr3() & CR3_ADDR_MASK; |
| } |
| |
| static inline void load_cr3(pgd_t *pgdir) |
| { |
| write_cr3(__sme_pa(pgdir)); |
| } |
| |
| /* |
| * Note that while the legacy 'TSS' name comes from 'Task State Segment', |
| * on modern x86 CPUs the TSS also holds information important to 64-bit mode, |
| * unrelated to the task-switch mechanism: |
| */ |
| #ifdef CONFIG_X86_32 |
| /* This is the TSS defined by the hardware. */ |
| struct x86_hw_tss { |
| unsigned short back_link, __blh; |
| unsigned long sp0; |
| unsigned short ss0, __ss0h; |
| unsigned long sp1; |
| |
| /* |
| * We don't use ring 1, so ss1 is a convenient scratch space in |
| * the same cacheline as sp0. We use ss1 to cache the value in |
| * MSR_IA32_SYSENTER_CS. When we context switch |
| * MSR_IA32_SYSENTER_CS, we first check if the new value being |
| * written matches ss1, and, if it's not, then we wrmsr the new |
| * value and update ss1. |
| * |
| * The only reason we context switch MSR_IA32_SYSENTER_CS is |
| * that we set it to zero in vm86 tasks to avoid corrupting the |
| * stack if we were to go through the sysenter path from vm86 |
| * mode. |
| */ |
| unsigned short ss1; /* MSR_IA32_SYSENTER_CS */ |
| |
| unsigned short __ss1h; |
| unsigned long sp2; |
| unsigned short ss2, __ss2h; |
| unsigned long __cr3; |
| unsigned long ip; |
| unsigned long flags; |
| unsigned long ax; |
| unsigned long cx; |
| unsigned long dx; |
| unsigned long bx; |
| unsigned long sp; |
| unsigned long bp; |
| unsigned long si; |
| unsigned long di; |
| unsigned short es, __esh; |
| unsigned short cs, __csh; |
| unsigned short ss, __ssh; |
| unsigned short ds, __dsh; |
| unsigned short fs, __fsh; |
| unsigned short gs, __gsh; |
| unsigned short ldt, __ldth; |
| unsigned short trace; |
| unsigned short io_bitmap_base; |
| |
| } __attribute__((packed)); |
| #else |
| struct x86_hw_tss { |
| u32 reserved1; |
| u64 sp0; |
| |
| /* |
| * We store cpu_current_top_of_stack in sp1 so it's always accessible. |
| * Linux does not use ring 1, so sp1 is not otherwise needed. |
| */ |
| u64 sp1; |
| |
| u64 sp2; |
| u64 reserved2; |
| u64 ist[7]; |
| u32 reserved3; |
| u32 reserved4; |
| u16 reserved5; |
| u16 io_bitmap_base; |
| |
| } __attribute__((packed)); |
| #endif |
| |
| /* |
| * IO-bitmap sizes: |
| */ |
| #define IO_BITMAP_BITS 65536 |
| #define IO_BITMAP_BYTES (IO_BITMAP_BITS/8) |
| #define IO_BITMAP_LONGS (IO_BITMAP_BYTES/sizeof(long)) |
| #define IO_BITMAP_OFFSET (offsetof(struct tss_struct, io_bitmap) - offsetof(struct tss_struct, x86_tss)) |
| #define INVALID_IO_BITMAP_OFFSET 0x8000 |
| |
| struct entry_stack { |
| char stack[PAGE_SIZE]; |
| }; |
| |
| struct entry_stack_page { |
| struct entry_stack stack; |
| } __aligned(PAGE_SIZE); |
| |
| struct tss_struct { |
| /* |
| * The fixed hardware portion. This must not cross a page boundary |
| * at risk of violating the SDM's advice and potentially triggering |
| * errata. |
| */ |
| struct x86_hw_tss x86_tss; |
| |
| /* |
| * The extra 1 is there because the CPU will access an |
| * additional byte beyond the end of the IO permission |
| * bitmap. The extra byte must be all 1 bits, and must |
| * be within the limit. |
| */ |
| unsigned long io_bitmap[IO_BITMAP_LONGS + 1]; |
| } __aligned(PAGE_SIZE); |
| |
| DECLARE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw); |
| |
| /* |
| * sizeof(unsigned long) coming from an extra "long" at the end |
| * of the iobitmap. |
| * |
| * -1? seg base+limit should be pointing to the address of the |
| * last valid byte |
| */ |
| #define __KERNEL_TSS_LIMIT \ |
| (IO_BITMAP_OFFSET + IO_BITMAP_BYTES + sizeof(unsigned long) - 1) |
| |
| #ifdef CONFIG_X86_32 |
| DECLARE_PER_CPU(unsigned long, cpu_current_top_of_stack); |
| #else |
| /* The RO copy can't be accessed with this_cpu_xyz(), so use the RW copy. */ |
| #define cpu_current_top_of_stack cpu_tss_rw.x86_tss.sp1 |
| #endif |
| |
| /* |
| * Save the original ist values for checking stack pointers during debugging |
| */ |
| struct orig_ist { |
| unsigned long ist[7]; |
| }; |
| |
| #ifdef CONFIG_X86_64 |
| DECLARE_PER_CPU(struct orig_ist, orig_ist); |
| |
| union irq_stack_union { |
| char irq_stack[IRQ_STACK_SIZE]; |
| /* |
| * GCC hardcodes the stack canary as %gs:40. Since the |
| * irq_stack is the object at %gs:0, we reserve the bottom |
| * 48 bytes of the irq stack for the canary. |
| */ |
| struct { |
| char gs_base[40]; |
| unsigned long stack_canary; |
| }; |
| }; |
| |
| DECLARE_PER_CPU_FIRST(union irq_stack_union, irq_stack_union) __visible; |
| DECLARE_INIT_PER_CPU(irq_stack_union); |
| |
| DECLARE_PER_CPU(char *, irq_stack_ptr); |
| DECLARE_PER_CPU(unsigned int, irq_count); |
| extern asmlinkage void ignore_sysret(void); |
| #else /* X86_64 */ |
| #ifdef CONFIG_CC_STACKPROTECTOR |
| /* |
| * Make sure stack canary segment base is cached-aligned: |
| * "For Intel Atom processors, avoid non zero segment base address |
| * that is not aligned to cache line boundary at all cost." |
| * (Optim Ref Manual Assembly/Compiler Coding Rule 15.) |
| */ |
| struct stack_canary { |
| char __pad[20]; /* canary at %gs:20 */ |
| unsigned long canary; |
| }; |
| DECLARE_PER_CPU_ALIGNED(struct stack_canary, stack_canary); |
| #endif |
| /* |
| * per-CPU IRQ handling stacks |
| */ |
| struct irq_stack { |
| u32 stack[THREAD_SIZE/sizeof(u32)]; |
| } __aligned(THREAD_SIZE); |
| |
| DECLARE_PER_CPU(struct irq_stack *, hardirq_stack); |
| DECLARE_PER_CPU(struct irq_stack *, softirq_stack); |
| #endif /* X86_64 */ |
| |
| extern unsigned int fpu_kernel_xstate_size; |
| extern unsigned int fpu_user_xstate_size; |
| |
| struct perf_event; |
| |
| typedef struct { |
| unsigned long seg; |
| } mm_segment_t; |
| |
| struct thread_struct { |
| /* Cached TLS descriptors: */ |
| struct desc_struct tls_array[GDT_ENTRY_TLS_ENTRIES]; |
| #ifdef CONFIG_X86_32 |
| unsigned long sp0; |
| #endif |
| unsigned long sp; |
| #ifdef CONFIG_X86_32 |
| unsigned long sysenter_cs; |
| #else |
| unsigned short es; |
| unsigned short ds; |
| unsigned short fsindex; |
| unsigned short gsindex; |
| #endif |
| |
| #ifdef CONFIG_X86_64 |
| unsigned long fsbase; |
| unsigned long gsbase; |
| #else |
| /* |
| * XXX: this could presumably be unsigned short. Alternatively, |
| * 32-bit kernels could be taught to use fsindex instead. |
| */ |
| unsigned long fs; |
| unsigned long gs; |
| #endif |
| |
| /* Save middle states of ptrace breakpoints */ |
| struct perf_event *ptrace_bps[HBP_NUM]; |
| /* Debug status used for traps, single steps, etc... */ |
| unsigned long debugreg6; |
| /* Keep track of the exact dr7 value set by the user */ |
| unsigned long ptrace_dr7; |
| /* Fault info: */ |
| unsigned long cr2; |
| unsigned long trap_nr; |
| unsigned long error_code; |
| #ifdef CONFIG_VM86 |
| /* Virtual 86 mode info */ |
| struct vm86 *vm86; |
| #endif |
| /* IO permissions: */ |
| unsigned long *io_bitmap_ptr; |
| unsigned long iopl; |
| /* Max allowed port in the bitmap, in bytes: */ |
| unsigned io_bitmap_max; |
| |
| mm_segment_t addr_limit; |
| |
| unsigned int sig_on_uaccess_err:1; |
| unsigned int uaccess_err:1; /* uaccess failed */ |
| |
| /* Floating point and extended processor state */ |
| struct fpu fpu; |
| /* |
| * WARNING: 'fpu' is dynamically-sized. It *MUST* be at |
| * the end. |
| */ |
| }; |
| |
| /* |
| * Set IOPL bits in EFLAGS from given mask |
| */ |
| static inline void native_set_iopl_mask(unsigned mask) |
| { |
| #ifdef CONFIG_X86_32 |
| unsigned int reg; |
| |
| asm volatile ("pushfl;" |
| "popl %0;" |
| "andl %1, %0;" |
| "orl %2, %0;" |
| "pushl %0;" |
| "popfl" |
| : "=&r" (reg) |
| : "i" (~X86_EFLAGS_IOPL), "r" (mask)); |
| #endif |
| } |
| |
| static inline void |
| native_load_sp0(unsigned long sp0) |
| { |
| this_cpu_write(cpu_tss_rw.x86_tss.sp0, sp0); |
| } |
| |
| static inline void native_swapgs(void) |
| { |
| #ifdef CONFIG_X86_64 |
| asm volatile("swapgs" ::: "memory"); |
| #endif |
| } |
| |
| static inline unsigned long current_top_of_stack(void) |
| { |
| /* |
| * We can't read directly from tss.sp0: sp0 on x86_32 is special in |
| * and around vm86 mode and sp0 on x86_64 is special because of the |
| * entry trampoline. |
| */ |
| return this_cpu_read_stable(cpu_current_top_of_stack); |
| } |
| |
| static inline bool on_thread_stack(void) |
| { |
| return (unsigned long)(current_top_of_stack() - |
| current_stack_pointer) < THREAD_SIZE; |
| } |
| |
| #ifdef CONFIG_PARAVIRT |
| #include <asm/paravirt.h> |
| #else |
| #define __cpuid native_cpuid |
| |
| static inline void load_sp0(unsigned long sp0) |
| { |
| native_load_sp0(sp0); |
| } |
| |
| #define set_iopl_mask native_set_iopl_mask |
| #endif /* CONFIG_PARAVIRT */ |
| |
| /* Free all resources held by a thread. */ |
| extern void release_thread(struct task_struct *); |
| |
| unsigned long get_wchan(struct task_struct *p); |
| |
| /* |
| * Generic CPUID function |
| * clear %ecx since some cpus (Cyrix MII) do not set or clear %ecx |
| * resulting in stale register contents being returned. |
| */ |
| static inline void cpuid(unsigned int op, |
| unsigned int *eax, unsigned int *ebx, |
| unsigned int *ecx, unsigned int *edx) |
| { |
| *eax = op; |
| *ecx = 0; |
| __cpuid(eax, ebx, ecx, edx); |
| } |
| |
| /* Some CPUID calls want 'count' to be placed in ecx */ |
| static inline void cpuid_count(unsigned int op, int count, |
| unsigned int *eax, unsigned int *ebx, |
| unsigned int *ecx, unsigned int *edx) |
| { |
| *eax = op; |
| *ecx = count; |
| __cpuid(eax, ebx, ecx, edx); |
| } |
| |
| /* |
| * CPUID functions returning a single datum |
| */ |
| static inline unsigned int cpuid_eax(unsigned int op) |
| { |
| unsigned int eax, ebx, ecx, edx; |
| |
| cpuid(op, &eax, &ebx, &ecx, &edx); |
| |
| return eax; |
| } |
| |
| static inline unsigned int cpuid_ebx(unsigned int op) |
| { |
| unsigned int eax, ebx, ecx, edx; |
| |
| cpuid(op, &eax, &ebx, &ecx, &edx); |
| |
| return ebx; |
| } |
| |
| static inline unsigned int cpuid_ecx(unsigned int op) |
| { |
| unsigned int eax, ebx, ecx, edx; |
| |
| cpuid(op, &eax, &ebx, &ecx, &edx); |
| |
| return ecx; |
| } |
| |
| static inline unsigned int cpuid_edx(unsigned int op) |
| { |
| unsigned int eax, ebx, ecx, edx; |
| |
| cpuid(op, &eax, &ebx, &ecx, &edx); |
| |
| return edx; |
| } |
| |
| /* REP NOP (PAUSE) is a good thing to insert into busy-wait loops. */ |
| static __always_inline void rep_nop(void) |
| { |
| asm volatile("rep; nop" ::: "memory"); |
| } |
| |
| static __always_inline void cpu_relax(void) |
| { |
| rep_nop(); |
| } |
| |
| /* |
| * This function forces the icache and prefetched instruction stream to |
| * catch up with reality in two very specific cases: |
| * |
| * a) Text was modified using one virtual address and is about to be executed |
| * from the same physical page at a different virtual address. |
| * |
| * b) Text was modified on a different CPU, may subsequently be |
| * executed on this CPU, and you want to make sure the new version |
| * gets executed. This generally means you're calling this in a IPI. |
| * |
| * If you're calling this for a different reason, you're probably doing |
| * it wrong. |
| */ |
| static inline void sync_core(void) |
| { |
| /* |
| * There are quite a few ways to do this. IRET-to-self is nice |
| * because it works on every CPU, at any CPL (so it's compatible |
| * with paravirtualization), and it never exits to a hypervisor. |
| * The only down sides are that it's a bit slow (it seems to be |
| * a bit more than 2x slower than the fastest options) and that |
| * it unmasks NMIs. The "push %cs" is needed because, in |
| * paravirtual environments, __KERNEL_CS may not be a valid CS |
| * value when we do IRET directly. |
| * |
| * In case NMI unmasking or performance ever becomes a problem, |
| * the next best option appears to be MOV-to-CR2 and an |
| * unconditional jump. That sequence also works on all CPUs, |
| * but it will fault at CPL3 (i.e. Xen PV). |
| * |
| * CPUID is the conventional way, but it's nasty: it doesn't |
| * exist on some 486-like CPUs, and it usually exits to a |
| * hypervisor. |
| * |
| * Like all of Linux's memory ordering operations, this is a |
| * compiler barrier as well. |
| */ |
| #ifdef CONFIG_X86_32 |
| asm volatile ( |
| "pushfl\n\t" |
| "pushl %%cs\n\t" |
| "pushl $1f\n\t" |
| "iret\n\t" |
| "1:" |
| : ASM_CALL_CONSTRAINT : : "memory"); |
| #else |
| unsigned int tmp; |
| |
| asm volatile ( |
| UNWIND_HINT_SAVE |
| "mov %%ss, %0\n\t" |
| "pushq %q0\n\t" |
| "pushq %%rsp\n\t" |
| "addq $8, (%%rsp)\n\t" |
| "pushfq\n\t" |
| "mov %%cs, %0\n\t" |
| "pushq %q0\n\t" |
| "pushq $1f\n\t" |
| "iretq\n\t" |
| UNWIND_HINT_RESTORE |
| "1:" |
| : "=&r" (tmp), ASM_CALL_CONSTRAINT : : "cc", "memory"); |
| #endif |
| } |
| |
| extern void select_idle_routine(const struct cpuinfo_x86 *c); |
| extern void amd_e400_c1e_apic_setup(void); |
| |
| extern unsigned long boot_option_idle_override; |
| |
| enum idle_boot_override {IDLE_NO_OVERRIDE=0, IDLE_HALT, IDLE_NOMWAIT, |
| IDLE_POLL}; |
| |
| extern void enable_sep_cpu(void); |
| extern int sysenter_setup(void); |
| |
| extern void early_trap_init(void); |
| void early_trap_pf_init(void); |
| |
| /* Defined in head.S */ |
| extern struct desc_ptr early_gdt_descr; |
| |
| extern void cpu_set_gdt(int); |
| extern void switch_to_new_gdt(int); |
| extern void load_direct_gdt(int); |
| extern void load_fixmap_gdt(int); |
| extern void load_percpu_segment(int); |
| extern void cpu_init(void); |
| |
| static inline unsigned long get_debugctlmsr(void) |
| { |
| unsigned long debugctlmsr = 0; |
| |
| #ifndef CONFIG_X86_DEBUGCTLMSR |
| if (boot_cpu_data.x86 < 6) |
| return 0; |
| #endif |
| rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr); |
| |
| return debugctlmsr; |
| } |
| |
| static inline void update_debugctlmsr(unsigned long debugctlmsr) |
| { |
| #ifndef CONFIG_X86_DEBUGCTLMSR |
| if (boot_cpu_data.x86 < 6) |
| return; |
| #endif |
| wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr); |
| } |
| |
| extern void set_task_blockstep(struct task_struct *task, bool on); |
| |
| /* Boot loader type from the setup header: */ |
| extern int bootloader_type; |
| extern int bootloader_version; |
| |
| extern char ignore_fpu_irq; |
| |
| #define HAVE_ARCH_PICK_MMAP_LAYOUT 1 |
| #define ARCH_HAS_PREFETCHW |
| #define ARCH_HAS_SPINLOCK_PREFETCH |
| |
| #ifdef CONFIG_X86_32 |
| # define BASE_PREFETCH "" |
| # define ARCH_HAS_PREFETCH |
| #else |
| # define BASE_PREFETCH "prefetcht0 %P1" |
| #endif |
| |
| /* |
| * Prefetch instructions for Pentium III (+) and AMD Athlon (+) |
| * |
| * It's not worth to care about 3dnow prefetches for the K6 |
| * because they are microcoded there and very slow. |
| */ |
| static inline void prefetch(const void *x) |
| { |
| alternative_input(BASE_PREFETCH, "prefetchnta %P1", |
| X86_FEATURE_XMM, |
| "m" (*(const char *)x)); |
| } |
| |
| /* |
| * 3dnow prefetch to get an exclusive cache line. |
| * Useful for spinlocks to avoid one state transition in the |
| * cache coherency protocol: |
| */ |
| static inline void prefetchw(const void *x) |
| { |
| alternative_input(BASE_PREFETCH, "prefetchw %P1", |
| X86_FEATURE_3DNOWPREFETCH, |
| "m" (*(const char *)x)); |
| } |
| |
| static inline void spin_lock_prefetch(const void *x) |
| { |
| prefetchw(x); |
| } |
| |
| #define TOP_OF_INIT_STACK ((unsigned long)&init_stack + sizeof(init_stack) - \ |
| TOP_OF_KERNEL_STACK_PADDING) |
| |
| #define task_top_of_stack(task) ((unsigned long)(task_pt_regs(task) + 1)) |
| |
| #define task_pt_regs(task) \ |
| ({ \ |
| unsigned long __ptr = (unsigned long)task_stack_page(task); \ |
| __ptr += THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING; \ |
| ((struct pt_regs *)__ptr) - 1; \ |
| }) |
| |
| #ifdef CONFIG_X86_32 |
| /* |
| * User space process size: 3GB (default). |
| */ |
| #define IA32_PAGE_OFFSET PAGE_OFFSET |
| #define TASK_SIZE PAGE_OFFSET |
| #define TASK_SIZE_LOW TASK_SIZE |
| #define TASK_SIZE_MAX TASK_SIZE |
| #define DEFAULT_MAP_WINDOW TASK_SIZE |
| #define STACK_TOP TASK_SIZE |
| #define STACK_TOP_MAX STACK_TOP |
| |
| #define INIT_THREAD { \ |
| .sp0 = TOP_OF_INIT_STACK, \ |
| .sysenter_cs = __KERNEL_CS, \ |
| .io_bitmap_ptr = NULL, \ |
| .addr_limit = KERNEL_DS, \ |
| } |
| |
| #define KSTK_ESP(task) (task_pt_regs(task)->sp) |
| |
| #else |
| /* |
| * User space process size. This is the first address outside the user range. |
| * There are a few constraints that determine this: |
| * |
| * On Intel CPUs, if a SYSCALL instruction is at the highest canonical |
| * address, then that syscall will enter the kernel with a |
| * non-canonical return address, and SYSRET will explode dangerously. |
| * We avoid this particular problem by preventing anything executable |
| * from being mapped at the maximum canonical address. |
| * |
| * On AMD CPUs in the Ryzen family, there's a nasty bug in which the |
| * CPUs malfunction if they execute code from the highest canonical page. |
| * They'll speculate right off the end of the canonical space, and |
| * bad things happen. This is worked around in the same way as the |
| * Intel problem. |
| * |
| * With page table isolation enabled, we map the LDT in ... [stay tuned] |
| */ |
| #define TASK_SIZE_MAX ((1UL << __VIRTUAL_MASK_SHIFT) - PAGE_SIZE) |
| |
| #define DEFAULT_MAP_WINDOW ((1UL << 47) - PAGE_SIZE) |
| |
| /* This decides where the kernel will search for a free chunk of vm |
| * space during mmap's. |
| */ |
| #define IA32_PAGE_OFFSET ((current->personality & ADDR_LIMIT_3GB) ? \ |
| 0xc0000000 : 0xFFFFe000) |
| |
| #define TASK_SIZE_LOW (test_thread_flag(TIF_ADDR32) ? \ |
| IA32_PAGE_OFFSET : DEFAULT_MAP_WINDOW) |
| #define TASK_SIZE (test_thread_flag(TIF_ADDR32) ? \ |
| IA32_PAGE_OFFSET : TASK_SIZE_MAX) |
| #define TASK_SIZE_OF(child) ((test_tsk_thread_flag(child, TIF_ADDR32)) ? \ |
| IA32_PAGE_OFFSET : TASK_SIZE_MAX) |
| |
| #define STACK_TOP TASK_SIZE_LOW |
| #define STACK_TOP_MAX TASK_SIZE_MAX |
| |
| #define INIT_THREAD { \ |
| .addr_limit = KERNEL_DS, \ |
| } |
| |
| extern unsigned long KSTK_ESP(struct task_struct *task); |
| |
| #endif /* CONFIG_X86_64 */ |
| |
| extern void start_thread(struct pt_regs *regs, unsigned long new_ip, |
| unsigned long new_sp); |
| |
| /* |
| * This decides where the kernel will search for a free chunk of vm |
| * space during mmap's. |
| */ |
| #define __TASK_UNMAPPED_BASE(task_size) (PAGE_ALIGN(task_size / 3)) |
| #define TASK_UNMAPPED_BASE __TASK_UNMAPPED_BASE(TASK_SIZE_LOW) |
| |
| #define KSTK_EIP(task) (task_pt_regs(task)->ip) |
| |
| /* Get/set a process' ability to use the timestamp counter instruction */ |
| #define GET_TSC_CTL(adr) get_tsc_mode((adr)) |
| #define SET_TSC_CTL(val) set_tsc_mode((val)) |
| |
| extern int get_tsc_mode(unsigned long adr); |
| extern int set_tsc_mode(unsigned int val); |
| |
| DECLARE_PER_CPU(u64, msr_misc_features_shadow); |
| |
| /* Register/unregister a process' MPX related resource */ |
| #define MPX_ENABLE_MANAGEMENT() mpx_enable_management() |
| #define MPX_DISABLE_MANAGEMENT() mpx_disable_management() |
| |
| #ifdef CONFIG_X86_INTEL_MPX |
| extern int mpx_enable_management(void); |
| extern int mpx_disable_management(void); |
| #else |
| static inline int mpx_enable_management(void) |
| { |
| return -EINVAL; |
| } |
| static inline int mpx_disable_management(void) |
| { |
| return -EINVAL; |
| } |
| #endif /* CONFIG_X86_INTEL_MPX */ |
| |
| #ifdef CONFIG_CPU_SUP_AMD |
| extern u16 amd_get_nb_id(int cpu); |
| extern u32 amd_get_nodes_per_socket(void); |
| #else |
| static inline u16 amd_get_nb_id(int cpu) { return 0; } |
| static inline u32 amd_get_nodes_per_socket(void) { return 0; } |
| #endif |
| |
| static inline uint32_t hypervisor_cpuid_base(const char *sig, uint32_t leaves) |
| { |
| uint32_t base, eax, signature[3]; |
| |
| for (base = 0x40000000; base < 0x40010000; base += 0x100) { |
| cpuid(base, &eax, &signature[0], &signature[1], &signature[2]); |
| |
| if (!memcmp(sig, signature, 12) && |
| (leaves == 0 || ((eax - base) >= leaves))) |
| return base; |
| } |
| |
| return 0; |
| } |
| |
| extern unsigned long arch_align_stack(unsigned long sp); |
| extern void free_init_pages(char *what, unsigned long begin, unsigned long end); |
| |
| void default_idle(void); |
| #ifdef CONFIG_XEN |
| bool xen_set_default_idle(void); |
| #else |
| #define xen_set_default_idle 0 |
| #endif |
| |
| void stop_this_cpu(void *dummy); |
| void df_debug(struct pt_regs *regs, long error_code); |
| void microcode_check(void); |
| |
| enum l1tf_mitigations { |
| L1TF_MITIGATION_OFF, |
| L1TF_MITIGATION_FLUSH_NOWARN, |
| L1TF_MITIGATION_FLUSH, |
| L1TF_MITIGATION_FLUSH_NOSMT, |
| L1TF_MITIGATION_FULL, |
| L1TF_MITIGATION_FULL_FORCE |
| }; |
| |
| extern enum l1tf_mitigations l1tf_mitigation; |
| |
| enum mds_mitigations { |
| MDS_MITIGATION_OFF, |
| MDS_MITIGATION_FULL, |
| MDS_MITIGATION_VMWERV, |
| }; |
| |
| enum taa_mitigations { |
| TAA_MITIGATION_OFF, |
| TAA_MITIGATION_UCODE_NEEDED, |
| TAA_MITIGATION_VERW, |
| TAA_MITIGATION_TSX_DISABLED, |
| }; |
| |
| #endif /* _ASM_X86_PROCESSOR_H */ |