| /* SPDX-License-Identifier: GPL-2.0 */ |
| #ifndef _ASM_X86_PKEYS_H |
| #define _ASM_X86_PKEYS_H |
| |
| #define ARCH_DEFAULT_PKEY 0 |
| |
| /* |
| * If more than 16 keys are ever supported, a thorough audit |
| * will be necessary to ensure that the types that store key |
| * numbers and masks have sufficient capacity. |
| */ |
| #define arch_max_pkey() (boot_cpu_has(X86_FEATURE_OSPKE) ? 16 : 1) |
| |
| extern int arch_set_user_pkey_access(struct task_struct *tsk, int pkey, |
| unsigned long init_val); |
| |
| /* |
| * Try to dedicate one of the protection keys to be used as an |
| * execute-only protection key. |
| */ |
| extern int __execute_only_pkey(struct mm_struct *mm); |
| static inline int execute_only_pkey(struct mm_struct *mm) |
| { |
| if (!boot_cpu_has(X86_FEATURE_OSPKE)) |
| return ARCH_DEFAULT_PKEY; |
| |
| return __execute_only_pkey(mm); |
| } |
| |
| extern int __arch_override_mprotect_pkey(struct vm_area_struct *vma, |
| int prot, int pkey); |
| static inline int arch_override_mprotect_pkey(struct vm_area_struct *vma, |
| int prot, int pkey) |
| { |
| if (!boot_cpu_has(X86_FEATURE_OSPKE)) |
| return 0; |
| |
| return __arch_override_mprotect_pkey(vma, prot, pkey); |
| } |
| |
| extern int __arch_set_user_pkey_access(struct task_struct *tsk, int pkey, |
| unsigned long init_val); |
| |
| #define ARCH_VM_PKEY_FLAGS (VM_PKEY_BIT0 | VM_PKEY_BIT1 | VM_PKEY_BIT2 | VM_PKEY_BIT3) |
| |
| #define mm_pkey_allocation_map(mm) (mm->context.pkey_allocation_map) |
| #define mm_set_pkey_allocated(mm, pkey) do { \ |
| mm_pkey_allocation_map(mm) |= (1U << pkey); \ |
| } while (0) |
| #define mm_set_pkey_free(mm, pkey) do { \ |
| mm_pkey_allocation_map(mm) &= ~(1U << pkey); \ |
| } while (0) |
| |
| static inline |
| bool mm_pkey_is_allocated(struct mm_struct *mm, int pkey) |
| { |
| /* |
| * "Allocated" pkeys are those that have been returned |
| * from pkey_alloc() or pkey 0 which is allocated |
| * implicitly when the mm is created. |
| */ |
| if (pkey < 0) |
| return false; |
| if (pkey >= arch_max_pkey()) |
| return false; |
| /* |
| * The exec-only pkey is set in the allocation map, but |
| * is not available to any of the user interfaces like |
| * mprotect_pkey(). |
| */ |
| if (pkey == mm->context.execute_only_pkey) |
| return false; |
| |
| return mm_pkey_allocation_map(mm) & (1U << pkey); |
| } |
| |
| /* |
| * Returns a positive, 4-bit key on success, or -1 on failure. |
| */ |
| static inline |
| int mm_pkey_alloc(struct mm_struct *mm) |
| { |
| /* |
| * Note: this is the one and only place we make sure |
| * that the pkey is valid as far as the hardware is |
| * concerned. The rest of the kernel trusts that |
| * only good, valid pkeys come out of here. |
| */ |
| u16 all_pkeys_mask = ((1U << arch_max_pkey()) - 1); |
| int ret; |
| |
| /* |
| * Are we out of pkeys? We must handle this specially |
| * because ffz() behavior is undefined if there are no |
| * zeros. |
| */ |
| if (mm_pkey_allocation_map(mm) == all_pkeys_mask) |
| return -1; |
| |
| ret = ffz(mm_pkey_allocation_map(mm)); |
| |
| mm_set_pkey_allocated(mm, ret); |
| |
| return ret; |
| } |
| |
| static inline |
| int mm_pkey_free(struct mm_struct *mm, int pkey) |
| { |
| if (!mm_pkey_is_allocated(mm, pkey)) |
| return -EINVAL; |
| |
| mm_set_pkey_free(mm, pkey); |
| |
| return 0; |
| } |
| |
| extern int arch_set_user_pkey_access(struct task_struct *tsk, int pkey, |
| unsigned long init_val); |
| extern int __arch_set_user_pkey_access(struct task_struct *tsk, int pkey, |
| unsigned long init_val); |
| extern void copy_init_pkru_to_fpregs(void); |
| |
| #endif /*_ASM_X86_PKEYS_H */ |