| /* |
| * net/sched/sch_tbf.c Token Bucket Filter queue. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| * |
| * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> |
| * Dmitry Torokhov <dtor@mail.ru> - allow attaching inner qdiscs - |
| * original idea by Martin Devera |
| * |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/types.h> |
| #include <linux/kernel.h> |
| #include <linux/string.h> |
| #include <linux/errno.h> |
| #include <linux/skbuff.h> |
| #include <net/netlink.h> |
| #include <net/sch_generic.h> |
| #include <net/pkt_sched.h> |
| |
| |
| /* Simple Token Bucket Filter. |
| ======================================= |
| |
| SOURCE. |
| ------- |
| |
| None. |
| |
| Description. |
| ------------ |
| |
| A data flow obeys TBF with rate R and depth B, if for any |
| time interval t_i...t_f the number of transmitted bits |
| does not exceed B + R*(t_f-t_i). |
| |
| Packetized version of this definition: |
| The sequence of packets of sizes s_i served at moments t_i |
| obeys TBF, if for any i<=k: |
| |
| s_i+....+s_k <= B + R*(t_k - t_i) |
| |
| Algorithm. |
| ---------- |
| |
| Let N(t_i) be B/R initially and N(t) grow continuously with time as: |
| |
| N(t+delta) = min{B/R, N(t) + delta} |
| |
| If the first packet in queue has length S, it may be |
| transmitted only at the time t_* when S/R <= N(t_*), |
| and in this case N(t) jumps: |
| |
| N(t_* + 0) = N(t_* - 0) - S/R. |
| |
| |
| |
| Actually, QoS requires two TBF to be applied to a data stream. |
| One of them controls steady state burst size, another |
| one with rate P (peak rate) and depth M (equal to link MTU) |
| limits bursts at a smaller time scale. |
| |
| It is easy to see that P>R, and B>M. If P is infinity, this double |
| TBF is equivalent to a single one. |
| |
| When TBF works in reshaping mode, latency is estimated as: |
| |
| lat = max ((L-B)/R, (L-M)/P) |
| |
| |
| NOTES. |
| ------ |
| |
| If TBF throttles, it starts a watchdog timer, which will wake it up |
| when it is ready to transmit. |
| Note that the minimal timer resolution is 1/HZ. |
| If no new packets arrive during this period, |
| or if the device is not awaken by EOI for some previous packet, |
| TBF can stop its activity for 1/HZ. |
| |
| |
| This means, that with depth B, the maximal rate is |
| |
| R_crit = B*HZ |
| |
| F.e. for 10Mbit ethernet and HZ=100 the minimal allowed B is ~10Kbytes. |
| |
| Note that the peak rate TBF is much more tough: with MTU 1500 |
| P_crit = 150Kbytes/sec. So, if you need greater peak |
| rates, use alpha with HZ=1000 :-) |
| |
| With classful TBF, limit is just kept for backwards compatibility. |
| It is passed to the default bfifo qdisc - if the inner qdisc is |
| changed the limit is not effective anymore. |
| */ |
| |
| struct tbf_sched_data { |
| /* Parameters */ |
| u32 limit; /* Maximal length of backlog: bytes */ |
| u32 max_size; |
| s64 buffer; /* Token bucket depth/rate: MUST BE >= MTU/B */ |
| s64 mtu; |
| struct psched_ratecfg rate; |
| struct psched_ratecfg peak; |
| |
| /* Variables */ |
| s64 tokens; /* Current number of B tokens */ |
| s64 ptokens; /* Current number of P tokens */ |
| s64 t_c; /* Time check-point */ |
| struct Qdisc *qdisc; /* Inner qdisc, default - bfifo queue */ |
| struct qdisc_watchdog watchdog; /* Watchdog timer */ |
| }; |
| |
| |
| /* Time to Length, convert time in ns to length in bytes |
| * to determinate how many bytes can be sent in given time. |
| */ |
| static u64 psched_ns_t2l(const struct psched_ratecfg *r, |
| u64 time_in_ns) |
| { |
| /* The formula is : |
| * len = (time_in_ns * r->rate_bytes_ps) / NSEC_PER_SEC |
| */ |
| u64 len = time_in_ns * r->rate_bytes_ps; |
| |
| do_div(len, NSEC_PER_SEC); |
| |
| if (unlikely(r->linklayer == TC_LINKLAYER_ATM)) { |
| do_div(len, 53); |
| len = len * 48; |
| } |
| |
| if (len > r->overhead) |
| len -= r->overhead; |
| else |
| len = 0; |
| |
| return len; |
| } |
| |
| /* |
| * Return length of individual segments of a gso packet, |
| * including all headers (MAC, IP, TCP/UDP) |
| */ |
| static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb) |
| { |
| unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb); |
| return hdr_len + skb_gso_transport_seglen(skb); |
| } |
| |
| /* GSO packet is too big, segment it so that tbf can transmit |
| * each segment in time |
| */ |
| static int tbf_segment(struct sk_buff *skb, struct Qdisc *sch) |
| { |
| struct tbf_sched_data *q = qdisc_priv(sch); |
| struct sk_buff *segs, *nskb; |
| netdev_features_t features = netif_skb_features(skb); |
| int ret, nb; |
| |
| segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK); |
| |
| if (IS_ERR_OR_NULL(segs)) |
| return qdisc_reshape_fail(skb, sch); |
| |
| nb = 0; |
| while (segs) { |
| nskb = segs->next; |
| segs->next = NULL; |
| qdisc_skb_cb(segs)->pkt_len = segs->len; |
| ret = qdisc_enqueue(segs, q->qdisc); |
| if (ret != NET_XMIT_SUCCESS) { |
| if (net_xmit_drop_count(ret)) |
| sch->qstats.drops++; |
| } else { |
| nb++; |
| } |
| segs = nskb; |
| } |
| sch->q.qlen += nb; |
| if (nb > 1) |
| qdisc_tree_decrease_qlen(sch, 1 - nb); |
| consume_skb(skb); |
| return nb > 0 ? NET_XMIT_SUCCESS : NET_XMIT_DROP; |
| } |
| |
| static int tbf_enqueue(struct sk_buff *skb, struct Qdisc *sch) |
| { |
| struct tbf_sched_data *q = qdisc_priv(sch); |
| int ret; |
| |
| if (qdisc_pkt_len(skb) > q->max_size) { |
| if (skb_is_gso(skb) && skb_gso_mac_seglen(skb) <= q->max_size) |
| return tbf_segment(skb, sch); |
| return qdisc_reshape_fail(skb, sch); |
| } |
| ret = qdisc_enqueue(skb, q->qdisc); |
| if (ret != NET_XMIT_SUCCESS) { |
| if (net_xmit_drop_count(ret)) |
| sch->qstats.drops++; |
| return ret; |
| } |
| |
| sch->q.qlen++; |
| return NET_XMIT_SUCCESS; |
| } |
| |
| static unsigned int tbf_drop(struct Qdisc *sch) |
| { |
| struct tbf_sched_data *q = qdisc_priv(sch); |
| unsigned int len = 0; |
| |
| if (q->qdisc->ops->drop && (len = q->qdisc->ops->drop(q->qdisc)) != 0) { |
| sch->q.qlen--; |
| sch->qstats.drops++; |
| } |
| return len; |
| } |
| |
| static bool tbf_peak_present(const struct tbf_sched_data *q) |
| { |
| return q->peak.rate_bytes_ps; |
| } |
| |
| static struct sk_buff *tbf_dequeue(struct Qdisc *sch) |
| { |
| struct tbf_sched_data *q = qdisc_priv(sch); |
| struct sk_buff *skb; |
| |
| skb = q->qdisc->ops->peek(q->qdisc); |
| |
| if (skb) { |
| s64 now; |
| s64 toks; |
| s64 ptoks = 0; |
| unsigned int len = qdisc_pkt_len(skb); |
| |
| now = ktime_to_ns(ktime_get()); |
| toks = min_t(s64, now - q->t_c, q->buffer); |
| |
| if (tbf_peak_present(q)) { |
| ptoks = toks + q->ptokens; |
| if (ptoks > q->mtu) |
| ptoks = q->mtu; |
| ptoks -= (s64) psched_l2t_ns(&q->peak, len); |
| } |
| toks += q->tokens; |
| if (toks > q->buffer) |
| toks = q->buffer; |
| toks -= (s64) psched_l2t_ns(&q->rate, len); |
| |
| if ((toks|ptoks) >= 0) { |
| skb = qdisc_dequeue_peeked(q->qdisc); |
| if (unlikely(!skb)) |
| return NULL; |
| |
| q->t_c = now; |
| q->tokens = toks; |
| q->ptokens = ptoks; |
| sch->q.qlen--; |
| qdisc_unthrottled(sch); |
| qdisc_bstats_update(sch, skb); |
| return skb; |
| } |
| |
| qdisc_watchdog_schedule_ns(&q->watchdog, |
| now + max_t(long, -toks, -ptoks)); |
| |
| /* Maybe we have a shorter packet in the queue, |
| which can be sent now. It sounds cool, |
| but, however, this is wrong in principle. |
| We MUST NOT reorder packets under these circumstances. |
| |
| Really, if we split the flow into independent |
| subflows, it would be a very good solution. |
| This is the main idea of all FQ algorithms |
| (cf. CSZ, HPFQ, HFSC) |
| */ |
| |
| sch->qstats.overlimits++; |
| } |
| return NULL; |
| } |
| |
| static void tbf_reset(struct Qdisc *sch) |
| { |
| struct tbf_sched_data *q = qdisc_priv(sch); |
| |
| qdisc_reset(q->qdisc); |
| sch->q.qlen = 0; |
| q->t_c = ktime_to_ns(ktime_get()); |
| q->tokens = q->buffer; |
| q->ptokens = q->mtu; |
| qdisc_watchdog_cancel(&q->watchdog); |
| } |
| |
| static const struct nla_policy tbf_policy[TCA_TBF_MAX + 1] = { |
| [TCA_TBF_PARMS] = { .len = sizeof(struct tc_tbf_qopt) }, |
| [TCA_TBF_RTAB] = { .type = NLA_BINARY, .len = TC_RTAB_SIZE }, |
| [TCA_TBF_PTAB] = { .type = NLA_BINARY, .len = TC_RTAB_SIZE }, |
| [TCA_TBF_RATE64] = { .type = NLA_U64 }, |
| [TCA_TBF_PRATE64] = { .type = NLA_U64 }, |
| [TCA_TBF_BURST] = { .type = NLA_U32 }, |
| [TCA_TBF_PBURST] = { .type = NLA_U32 }, |
| }; |
| |
| static int tbf_change(struct Qdisc *sch, struct nlattr *opt) |
| { |
| int err; |
| struct tbf_sched_data *q = qdisc_priv(sch); |
| struct nlattr *tb[TCA_TBF_MAX + 1]; |
| struct tc_tbf_qopt *qopt; |
| struct Qdisc *child = NULL; |
| struct psched_ratecfg rate; |
| struct psched_ratecfg peak; |
| u64 max_size; |
| s64 buffer, mtu; |
| u64 rate64 = 0, prate64 = 0; |
| |
| err = nla_parse_nested(tb, TCA_TBF_MAX, opt, tbf_policy); |
| if (err < 0) |
| return err; |
| |
| err = -EINVAL; |
| if (tb[TCA_TBF_PARMS] == NULL) |
| goto done; |
| |
| qopt = nla_data(tb[TCA_TBF_PARMS]); |
| if (qopt->rate.linklayer == TC_LINKLAYER_UNAWARE) |
| qdisc_put_rtab(qdisc_get_rtab(&qopt->rate, |
| tb[TCA_TBF_RTAB])); |
| |
| if (qopt->peakrate.linklayer == TC_LINKLAYER_UNAWARE) |
| qdisc_put_rtab(qdisc_get_rtab(&qopt->peakrate, |
| tb[TCA_TBF_PTAB])); |
| |
| buffer = min_t(u64, PSCHED_TICKS2NS(qopt->buffer), ~0U); |
| mtu = min_t(u64, PSCHED_TICKS2NS(qopt->mtu), ~0U); |
| |
| if (tb[TCA_TBF_RATE64]) |
| rate64 = nla_get_u64(tb[TCA_TBF_RATE64]); |
| psched_ratecfg_precompute(&rate, &qopt->rate, rate64); |
| |
| if (tb[TCA_TBF_BURST]) { |
| max_size = nla_get_u32(tb[TCA_TBF_BURST]); |
| buffer = psched_l2t_ns(&rate, max_size); |
| } else { |
| max_size = min_t(u64, psched_ns_t2l(&rate, buffer), ~0U); |
| } |
| |
| if (qopt->peakrate.rate) { |
| if (tb[TCA_TBF_PRATE64]) |
| prate64 = nla_get_u64(tb[TCA_TBF_PRATE64]); |
| psched_ratecfg_precompute(&peak, &qopt->peakrate, prate64); |
| if (peak.rate_bytes_ps <= rate.rate_bytes_ps) { |
| pr_warn_ratelimited("sch_tbf: peakrate %llu is lower than or equals to rate %llu !\n", |
| peak.rate_bytes_ps, rate.rate_bytes_ps); |
| err = -EINVAL; |
| goto done; |
| } |
| |
| if (tb[TCA_TBF_PBURST]) { |
| u32 pburst = nla_get_u32(tb[TCA_TBF_PBURST]); |
| max_size = min_t(u32, max_size, pburst); |
| mtu = psched_l2t_ns(&peak, pburst); |
| } else { |
| max_size = min_t(u64, max_size, psched_ns_t2l(&peak, mtu)); |
| } |
| } else { |
| memset(&peak, 0, sizeof(peak)); |
| } |
| |
| if (max_size < psched_mtu(qdisc_dev(sch))) |
| pr_warn_ratelimited("sch_tbf: burst %llu is lower than device %s mtu (%u) !\n", |
| max_size, qdisc_dev(sch)->name, |
| psched_mtu(qdisc_dev(sch))); |
| |
| if (!max_size) { |
| err = -EINVAL; |
| goto done; |
| } |
| |
| if (q->qdisc != &noop_qdisc) { |
| err = fifo_set_limit(q->qdisc, qopt->limit); |
| if (err) |
| goto done; |
| } else if (qopt->limit > 0) { |
| child = fifo_create_dflt(sch, &bfifo_qdisc_ops, qopt->limit); |
| if (IS_ERR(child)) { |
| err = PTR_ERR(child); |
| goto done; |
| } |
| } |
| |
| sch_tree_lock(sch); |
| if (child) { |
| qdisc_tree_decrease_qlen(q->qdisc, q->qdisc->q.qlen); |
| qdisc_destroy(q->qdisc); |
| q->qdisc = child; |
| } |
| q->limit = qopt->limit; |
| if (tb[TCA_TBF_PBURST]) |
| q->mtu = mtu; |
| else |
| q->mtu = PSCHED_TICKS2NS(qopt->mtu); |
| q->max_size = max_size; |
| if (tb[TCA_TBF_BURST]) |
| q->buffer = buffer; |
| else |
| q->buffer = PSCHED_TICKS2NS(qopt->buffer); |
| q->tokens = q->buffer; |
| q->ptokens = q->mtu; |
| |
| memcpy(&q->rate, &rate, sizeof(struct psched_ratecfg)); |
| memcpy(&q->peak, &peak, sizeof(struct psched_ratecfg)); |
| |
| sch_tree_unlock(sch); |
| err = 0; |
| done: |
| return err; |
| } |
| |
| static int tbf_init(struct Qdisc *sch, struct nlattr *opt) |
| { |
| struct tbf_sched_data *q = qdisc_priv(sch); |
| |
| if (opt == NULL) |
| return -EINVAL; |
| |
| q->t_c = ktime_to_ns(ktime_get()); |
| qdisc_watchdog_init(&q->watchdog, sch); |
| q->qdisc = &noop_qdisc; |
| |
| return tbf_change(sch, opt); |
| } |
| |
| static void tbf_destroy(struct Qdisc *sch) |
| { |
| struct tbf_sched_data *q = qdisc_priv(sch); |
| |
| qdisc_watchdog_cancel(&q->watchdog); |
| qdisc_destroy(q->qdisc); |
| } |
| |
| static int tbf_dump(struct Qdisc *sch, struct sk_buff *skb) |
| { |
| struct tbf_sched_data *q = qdisc_priv(sch); |
| struct nlattr *nest; |
| struct tc_tbf_qopt opt; |
| |
| sch->qstats.backlog = q->qdisc->qstats.backlog; |
| nest = nla_nest_start(skb, TCA_OPTIONS); |
| if (nest == NULL) |
| goto nla_put_failure; |
| |
| opt.limit = q->limit; |
| psched_ratecfg_getrate(&opt.rate, &q->rate); |
| if (tbf_peak_present(q)) |
| psched_ratecfg_getrate(&opt.peakrate, &q->peak); |
| else |
| memset(&opt.peakrate, 0, sizeof(opt.peakrate)); |
| opt.mtu = PSCHED_NS2TICKS(q->mtu); |
| opt.buffer = PSCHED_NS2TICKS(q->buffer); |
| if (nla_put(skb, TCA_TBF_PARMS, sizeof(opt), &opt)) |
| goto nla_put_failure; |
| if (q->rate.rate_bytes_ps >= (1ULL << 32) && |
| nla_put_u64(skb, TCA_TBF_RATE64, q->rate.rate_bytes_ps)) |
| goto nla_put_failure; |
| if (tbf_peak_present(q) && |
| q->peak.rate_bytes_ps >= (1ULL << 32) && |
| nla_put_u64(skb, TCA_TBF_PRATE64, q->peak.rate_bytes_ps)) |
| goto nla_put_failure; |
| |
| nla_nest_end(skb, nest); |
| return skb->len; |
| |
| nla_put_failure: |
| nla_nest_cancel(skb, nest); |
| return -1; |
| } |
| |
| static int tbf_dump_class(struct Qdisc *sch, unsigned long cl, |
| struct sk_buff *skb, struct tcmsg *tcm) |
| { |
| struct tbf_sched_data *q = qdisc_priv(sch); |
| |
| tcm->tcm_handle |= TC_H_MIN(1); |
| tcm->tcm_info = q->qdisc->handle; |
| |
| return 0; |
| } |
| |
| static int tbf_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new, |
| struct Qdisc **old) |
| { |
| struct tbf_sched_data *q = qdisc_priv(sch); |
| |
| if (new == NULL) |
| new = &noop_qdisc; |
| |
| sch_tree_lock(sch); |
| *old = q->qdisc; |
| q->qdisc = new; |
| qdisc_tree_decrease_qlen(*old, (*old)->q.qlen); |
| qdisc_reset(*old); |
| sch_tree_unlock(sch); |
| |
| return 0; |
| } |
| |
| static struct Qdisc *tbf_leaf(struct Qdisc *sch, unsigned long arg) |
| { |
| struct tbf_sched_data *q = qdisc_priv(sch); |
| return q->qdisc; |
| } |
| |
| static unsigned long tbf_get(struct Qdisc *sch, u32 classid) |
| { |
| return 1; |
| } |
| |
| static void tbf_put(struct Qdisc *sch, unsigned long arg) |
| { |
| } |
| |
| static void tbf_walk(struct Qdisc *sch, struct qdisc_walker *walker) |
| { |
| if (!walker->stop) { |
| if (walker->count >= walker->skip) |
| if (walker->fn(sch, 1, walker) < 0) { |
| walker->stop = 1; |
| return; |
| } |
| walker->count++; |
| } |
| } |
| |
| static const struct Qdisc_class_ops tbf_class_ops = { |
| .graft = tbf_graft, |
| .leaf = tbf_leaf, |
| .get = tbf_get, |
| .put = tbf_put, |
| .walk = tbf_walk, |
| .dump = tbf_dump_class, |
| }; |
| |
| static struct Qdisc_ops tbf_qdisc_ops __read_mostly = { |
| .next = NULL, |
| .cl_ops = &tbf_class_ops, |
| .id = "tbf", |
| .priv_size = sizeof(struct tbf_sched_data), |
| .enqueue = tbf_enqueue, |
| .dequeue = tbf_dequeue, |
| .peek = qdisc_peek_dequeued, |
| .drop = tbf_drop, |
| .init = tbf_init, |
| .reset = tbf_reset, |
| .destroy = tbf_destroy, |
| .change = tbf_change, |
| .dump = tbf_dump, |
| .owner = THIS_MODULE, |
| }; |
| |
| static int __init tbf_module_init(void) |
| { |
| return register_qdisc(&tbf_qdisc_ops); |
| } |
| |
| static void __exit tbf_module_exit(void) |
| { |
| unregister_qdisc(&tbf_qdisc_ops); |
| } |
| module_init(tbf_module_init) |
| module_exit(tbf_module_exit) |
| MODULE_LICENSE("GPL"); |