| /* |
| * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family |
| * of PCI-SCSI IO processors. |
| * |
| * Copyright (C) 1999-2001 Gerard Roudier <groudier@free.fr> |
| * |
| * This driver is derived from the Linux sym53c8xx driver. |
| * Copyright (C) 1998-2000 Gerard Roudier |
| * |
| * The sym53c8xx driver is derived from the ncr53c8xx driver that had been |
| * a port of the FreeBSD ncr driver to Linux-1.2.13. |
| * |
| * The original ncr driver has been written for 386bsd and FreeBSD by |
| * Wolfgang Stanglmeier <wolf@cologne.de> |
| * Stefan Esser <se@mi.Uni-Koeln.de> |
| * Copyright (C) 1994 Wolfgang Stanglmeier |
| * |
| * Other major contributions: |
| * |
| * NVRAM detection and reading. |
| * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk> |
| * |
| *----------------------------------------------------------------------------- |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| */ |
| |
| #include <linux/gfp.h> |
| |
| #ifndef SYM_HIPD_H |
| #define SYM_HIPD_H |
| |
| /* |
| * Generic driver options. |
| * |
| * They may be defined in platform specific headers, if they |
| * are useful. |
| * |
| * SYM_OPT_HANDLE_DEVICE_QUEUEING |
| * When this option is set, the driver will use a queue per |
| * device and handle QUEUE FULL status requeuing internally. |
| * |
| * SYM_OPT_LIMIT_COMMAND_REORDERING |
| * When this option is set, the driver tries to limit tagged |
| * command reordering to some reasonnable value. |
| * (set for Linux) |
| */ |
| #if 0 |
| #define SYM_OPT_HANDLE_DEVICE_QUEUEING |
| #define SYM_OPT_LIMIT_COMMAND_REORDERING |
| #endif |
| |
| /* |
| * Active debugging tags and verbosity. |
| * Both DEBUG_FLAGS and sym_verbose can be redefined |
| * by the platform specific code to something else. |
| */ |
| #define DEBUG_ALLOC (0x0001) |
| #define DEBUG_PHASE (0x0002) |
| #define DEBUG_POLL (0x0004) |
| #define DEBUG_QUEUE (0x0008) |
| #define DEBUG_RESULT (0x0010) |
| #define DEBUG_SCATTER (0x0020) |
| #define DEBUG_SCRIPT (0x0040) |
| #define DEBUG_TINY (0x0080) |
| #define DEBUG_TIMING (0x0100) |
| #define DEBUG_NEGO (0x0200) |
| #define DEBUG_TAGS (0x0400) |
| #define DEBUG_POINTER (0x0800) |
| |
| #ifndef DEBUG_FLAGS |
| #define DEBUG_FLAGS (0x0000) |
| #endif |
| |
| #ifndef sym_verbose |
| #define sym_verbose (np->verbose) |
| #endif |
| |
| /* |
| * These ones should have been already defined. |
| */ |
| #ifndef assert |
| #define assert(expression) { \ |
| if (!(expression)) { \ |
| (void)panic( \ |
| "assertion \"%s\" failed: file \"%s\", line %d\n", \ |
| #expression, \ |
| __FILE__, __LINE__); \ |
| } \ |
| } |
| #endif |
| |
| /* |
| * Number of tasks per device we want to handle. |
| */ |
| #if SYM_CONF_MAX_TAG_ORDER > 8 |
| #error "more than 256 tags per logical unit not allowed." |
| #endif |
| #define SYM_CONF_MAX_TASK (1<<SYM_CONF_MAX_TAG_ORDER) |
| |
| /* |
| * Donnot use more tasks that we can handle. |
| */ |
| #ifndef SYM_CONF_MAX_TAG |
| #define SYM_CONF_MAX_TAG SYM_CONF_MAX_TASK |
| #endif |
| #if SYM_CONF_MAX_TAG > SYM_CONF_MAX_TASK |
| #undef SYM_CONF_MAX_TAG |
| #define SYM_CONF_MAX_TAG SYM_CONF_MAX_TASK |
| #endif |
| |
| /* |
| * This one means 'NO TAG for this job' |
| */ |
| #define NO_TAG (256) |
| |
| /* |
| * Number of SCSI targets. |
| */ |
| #if SYM_CONF_MAX_TARGET > 16 |
| #error "more than 16 targets not allowed." |
| #endif |
| |
| /* |
| * Number of logical units per target. |
| */ |
| #if SYM_CONF_MAX_LUN > 64 |
| #error "more than 64 logical units per target not allowed." |
| #endif |
| |
| /* |
| * Asynchronous pre-scaler (ns). Shall be 40 for |
| * the SCSI timings to be compliant. |
| */ |
| #define SYM_CONF_MIN_ASYNC (40) |
| |
| |
| /* |
| * MEMORY ALLOCATOR. |
| */ |
| |
| #define SYM_MEM_WARN 1 /* Warn on failed operations */ |
| |
| #define SYM_MEM_PAGE_ORDER 0 /* 1 PAGE maximum */ |
| #define SYM_MEM_CLUSTER_SHIFT (PAGE_SHIFT+SYM_MEM_PAGE_ORDER) |
| #define SYM_MEM_FREE_UNUSED /* Free unused pages immediately */ |
| /* |
| * Shortest memory chunk is (1<<SYM_MEM_SHIFT), currently 16. |
| * Actual allocations happen as SYM_MEM_CLUSTER_SIZE sized. |
| * (1 PAGE at a time is just fine). |
| */ |
| #define SYM_MEM_SHIFT 4 |
| #define SYM_MEM_CLUSTER_SIZE (1UL << SYM_MEM_CLUSTER_SHIFT) |
| #define SYM_MEM_CLUSTER_MASK (SYM_MEM_CLUSTER_SIZE-1) |
| |
| /* |
| * Number of entries in the START and DONE queues. |
| * |
| * We limit to 1 PAGE in order to succeed allocation of |
| * these queues. Each entry is 8 bytes long (2 DWORDS). |
| */ |
| #ifdef SYM_CONF_MAX_START |
| #define SYM_CONF_MAX_QUEUE (SYM_CONF_MAX_START+2) |
| #else |
| #define SYM_CONF_MAX_QUEUE (7*SYM_CONF_MAX_TASK+2) |
| #define SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2) |
| #endif |
| |
| #if SYM_CONF_MAX_QUEUE > SYM_MEM_CLUSTER_SIZE/8 |
| #undef SYM_CONF_MAX_QUEUE |
| #define SYM_CONF_MAX_QUEUE (SYM_MEM_CLUSTER_SIZE/8) |
| #undef SYM_CONF_MAX_START |
| #define SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2) |
| #endif |
| |
| /* |
| * For this one, we want a short name :-) |
| */ |
| #define MAX_QUEUE SYM_CONF_MAX_QUEUE |
| |
| /* |
| * Common definitions for both bus space based and legacy IO methods. |
| */ |
| |
| #define INB_OFF(np, o) ioread8(np->s.ioaddr + (o)) |
| #define INW_OFF(np, o) ioread16(np->s.ioaddr + (o)) |
| #define INL_OFF(np, o) ioread32(np->s.ioaddr + (o)) |
| |
| #define OUTB_OFF(np, o, val) iowrite8((val), np->s.ioaddr + (o)) |
| #define OUTW_OFF(np, o, val) iowrite16((val), np->s.ioaddr + (o)) |
| #define OUTL_OFF(np, o, val) iowrite32((val), np->s.ioaddr + (o)) |
| |
| #define INB(np, r) INB_OFF(np, offsetof(struct sym_reg, r)) |
| #define INW(np, r) INW_OFF(np, offsetof(struct sym_reg, r)) |
| #define INL(np, r) INL_OFF(np, offsetof(struct sym_reg, r)) |
| |
| #define OUTB(np, r, v) OUTB_OFF(np, offsetof(struct sym_reg, r), (v)) |
| #define OUTW(np, r, v) OUTW_OFF(np, offsetof(struct sym_reg, r), (v)) |
| #define OUTL(np, r, v) OUTL_OFF(np, offsetof(struct sym_reg, r), (v)) |
| |
| #define OUTONB(np, r, m) OUTB(np, r, INB(np, r) | (m)) |
| #define OUTOFFB(np, r, m) OUTB(np, r, INB(np, r) & ~(m)) |
| #define OUTONW(np, r, m) OUTW(np, r, INW(np, r) | (m)) |
| #define OUTOFFW(np, r, m) OUTW(np, r, INW(np, r) & ~(m)) |
| #define OUTONL(np, r, m) OUTL(np, r, INL(np, r) | (m)) |
| #define OUTOFFL(np, r, m) OUTL(np, r, INL(np, r) & ~(m)) |
| |
| /* |
| * We normally want the chip to have a consistent view |
| * of driver internal data structures when we restart it. |
| * Thus these macros. |
| */ |
| #define OUTL_DSP(np, v) \ |
| do { \ |
| MEMORY_WRITE_BARRIER(); \ |
| OUTL(np, nc_dsp, (v)); \ |
| } while (0) |
| |
| #define OUTONB_STD() \ |
| do { \ |
| MEMORY_WRITE_BARRIER(); \ |
| OUTONB(np, nc_dcntl, (STD|NOCOM)); \ |
| } while (0) |
| |
| /* |
| * Command control block states. |
| */ |
| #define HS_IDLE (0) |
| #define HS_BUSY (1) |
| #define HS_NEGOTIATE (2) /* sync/wide data transfer*/ |
| #define HS_DISCONNECT (3) /* Disconnected by target */ |
| #define HS_WAIT (4) /* waiting for resource */ |
| |
| #define HS_DONEMASK (0x80) |
| #define HS_COMPLETE (4|HS_DONEMASK) |
| #define HS_SEL_TIMEOUT (5|HS_DONEMASK) /* Selection timeout */ |
| #define HS_UNEXPECTED (6|HS_DONEMASK) /* Unexpected disconnect */ |
| #define HS_COMP_ERR (7|HS_DONEMASK) /* Completed with error */ |
| |
| /* |
| * Software Interrupt Codes |
| */ |
| #define SIR_BAD_SCSI_STATUS (1) |
| #define SIR_SEL_ATN_NO_MSG_OUT (2) |
| #define SIR_MSG_RECEIVED (3) |
| #define SIR_MSG_WEIRD (4) |
| #define SIR_NEGO_FAILED (5) |
| #define SIR_NEGO_PROTO (6) |
| #define SIR_SCRIPT_STOPPED (7) |
| #define SIR_REJECT_TO_SEND (8) |
| #define SIR_SWIDE_OVERRUN (9) |
| #define SIR_SODL_UNDERRUN (10) |
| #define SIR_RESEL_NO_MSG_IN (11) |
| #define SIR_RESEL_NO_IDENTIFY (12) |
| #define SIR_RESEL_BAD_LUN (13) |
| #define SIR_TARGET_SELECTED (14) |
| #define SIR_RESEL_BAD_I_T_L (15) |
| #define SIR_RESEL_BAD_I_T_L_Q (16) |
| #define SIR_ABORT_SENT (17) |
| #define SIR_RESEL_ABORTED (18) |
| #define SIR_MSG_OUT_DONE (19) |
| #define SIR_COMPLETE_ERROR (20) |
| #define SIR_DATA_OVERRUN (21) |
| #define SIR_BAD_PHASE (22) |
| #if SYM_CONF_DMA_ADDRESSING_MODE == 2 |
| #define SIR_DMAP_DIRTY (23) |
| #define SIR_MAX (23) |
| #else |
| #define SIR_MAX (22) |
| #endif |
| |
| /* |
| * Extended error bit codes. |
| * xerr_status field of struct sym_ccb. |
| */ |
| #define XE_EXTRA_DATA (1) /* unexpected data phase */ |
| #define XE_BAD_PHASE (1<<1) /* illegal phase (4/5) */ |
| #define XE_PARITY_ERR (1<<2) /* unrecovered SCSI parity error */ |
| #define XE_SODL_UNRUN (1<<3) /* ODD transfer in DATA OUT phase */ |
| #define XE_SWIDE_OVRUN (1<<4) /* ODD transfer in DATA IN phase */ |
| |
| /* |
| * Negotiation status. |
| * nego_status field of struct sym_ccb. |
| */ |
| #define NS_SYNC (1) |
| #define NS_WIDE (2) |
| #define NS_PPR (3) |
| |
| /* |
| * A CCB hashed table is used to retrieve CCB address |
| * from DSA value. |
| */ |
| #define CCB_HASH_SHIFT 8 |
| #define CCB_HASH_SIZE (1UL << CCB_HASH_SHIFT) |
| #define CCB_HASH_MASK (CCB_HASH_SIZE-1) |
| #if 1 |
| #define CCB_HASH_CODE(dsa) \ |
| (((dsa) >> (_LGRU16_(sizeof(struct sym_ccb)))) & CCB_HASH_MASK) |
| #else |
| #define CCB_HASH_CODE(dsa) (((dsa) >> 9) & CCB_HASH_MASK) |
| #endif |
| |
| #if SYM_CONF_DMA_ADDRESSING_MODE == 2 |
| /* |
| * We may want to use segment registers for 64 bit DMA. |
| * 16 segments registers -> up to 64 GB addressable. |
| */ |
| #define SYM_DMAP_SHIFT (4) |
| #define SYM_DMAP_SIZE (1u<<SYM_DMAP_SHIFT) |
| #define SYM_DMAP_MASK (SYM_DMAP_SIZE-1) |
| #endif |
| |
| /* |
| * Device flags. |
| */ |
| #define SYM_DISC_ENABLED (1) |
| #define SYM_TAGS_ENABLED (1<<1) |
| #define SYM_SCAN_BOOT_DISABLED (1<<2) |
| #define SYM_SCAN_LUNS_DISABLED (1<<3) |
| |
| /* |
| * Host adapter miscellaneous flags. |
| */ |
| #define SYM_AVOID_BUS_RESET (1) |
| |
| /* |
| * Misc. |
| */ |
| #define SYM_SNOOP_TIMEOUT (10000000) |
| #define BUS_8_BIT 0 |
| #define BUS_16_BIT 1 |
| |
| /* |
| * Gather negotiable parameters value |
| */ |
| struct sym_trans { |
| u8 period; |
| u8 offset; |
| unsigned int width:1; |
| unsigned int iu:1; |
| unsigned int dt:1; |
| unsigned int qas:1; |
| unsigned int check_nego:1; |
| unsigned int renego:2; |
| }; |
| |
| /* |
| * Global TCB HEADER. |
| * |
| * Due to lack of indirect addressing on earlier NCR chips, |
| * this substructure is copied from the TCB to a global |
| * address after selection. |
| * For SYMBIOS chips that support LOAD/STORE this copy is |
| * not needed and thus not performed. |
| */ |
| struct sym_tcbh { |
| /* |
| * Scripts bus addresses of LUN table accessed from scripts. |
| * LUN #0 is a special case, since multi-lun devices are rare, |
| * and we we want to speed-up the general case and not waste |
| * resources. |
| */ |
| u32 luntbl_sa; /* bus address of this table */ |
| u32 lun0_sa; /* bus address of LCB #0 */ |
| /* |
| * Actual SYNC/WIDE IO registers value for this target. |
| * 'sval', 'wval' and 'uval' are read from SCRIPTS and |
| * so have alignment constraints. |
| */ |
| /*0*/ u_char uval; /* -> SCNTL4 register */ |
| /*1*/ u_char sval; /* -> SXFER io register */ |
| /*2*/ u_char filler1; |
| /*3*/ u_char wval; /* -> SCNTL3 io register */ |
| }; |
| |
| /* |
| * Target Control Block |
| */ |
| struct sym_tcb { |
| /* |
| * TCB header. |
| * Assumed at offset 0. |
| */ |
| /*0*/ struct sym_tcbh head; |
| |
| /* |
| * LUN table used by the SCRIPTS processor. |
| * An array of bus addresses is used on reselection. |
| */ |
| u32 *luntbl; /* LCBs bus address table */ |
| |
| /* |
| * LUN table used by the C code. |
| */ |
| struct sym_lcb *lun0p; /* LCB of LUN #0 (usual case) */ |
| #if SYM_CONF_MAX_LUN > 1 |
| struct sym_lcb **lunmp; /* Other LCBs [1..MAX_LUN] */ |
| #endif |
| |
| #ifdef SYM_HAVE_STCB |
| /* |
| * O/S specific data structure. |
| */ |
| struct sym_stcb s; |
| #endif |
| |
| /* Transfer goal */ |
| struct sym_trans tgoal; |
| |
| /* Last printed transfer speed */ |
| struct sym_trans tprint; |
| |
| /* |
| * Keep track of the CCB used for the negotiation in order |
| * to ensure that only 1 negotiation is queued at a time. |
| */ |
| struct sym_ccb * nego_cp; /* CCB used for the nego */ |
| |
| /* |
| * Set when we want to reset the device. |
| */ |
| u_char to_reset; |
| |
| /* |
| * Other user settable limits and options. |
| * These limits are read from the NVRAM if present. |
| */ |
| unsigned char usrflags; |
| unsigned char usr_period; |
| unsigned char usr_width; |
| unsigned short usrtags; |
| struct scsi_target *starget; |
| }; |
| |
| /* |
| * Global LCB HEADER. |
| * |
| * Due to lack of indirect addressing on earlier NCR chips, |
| * this substructure is copied from the LCB to a global |
| * address after selection. |
| * For SYMBIOS chips that support LOAD/STORE this copy is |
| * not needed and thus not performed. |
| */ |
| struct sym_lcbh { |
| /* |
| * SCRIPTS address jumped by SCRIPTS on reselection. |
| * For not probed logical units, this address points to |
| * SCRIPTS that deal with bad LU handling (must be at |
| * offset zero of the LCB for that reason). |
| */ |
| /*0*/ u32 resel_sa; |
| |
| /* |
| * Task (bus address of a CCB) read from SCRIPTS that points |
| * to the unique ITL nexus allowed to be disconnected. |
| */ |
| u32 itl_task_sa; |
| |
| /* |
| * Task table bus address (read from SCRIPTS). |
| */ |
| u32 itlq_tbl_sa; |
| }; |
| |
| /* |
| * Logical Unit Control Block |
| */ |
| struct sym_lcb { |
| /* |
| * TCB header. |
| * Assumed at offset 0. |
| */ |
| /*0*/ struct sym_lcbh head; |
| |
| /* |
| * Task table read from SCRIPTS that contains pointers to |
| * ITLQ nexuses. The bus address read from SCRIPTS is |
| * inside the header. |
| */ |
| u32 *itlq_tbl; /* Kernel virtual address */ |
| |
| /* |
| * Busy CCBs management. |
| */ |
| u_short busy_itlq; /* Number of busy tagged CCBs */ |
| u_short busy_itl; /* Number of busy untagged CCBs */ |
| |
| /* |
| * Circular tag allocation buffer. |
| */ |
| u_short ia_tag; /* Tag allocation index */ |
| u_short if_tag; /* Tag release index */ |
| u_char *cb_tags; /* Circular tags buffer */ |
| |
| /* |
| * O/S specific data structure. |
| */ |
| #ifdef SYM_HAVE_SLCB |
| struct sym_slcb s; |
| #endif |
| |
| #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING |
| /* |
| * Optionnaly the driver can handle device queueing, |
| * and requeues internally command to redo. |
| */ |
| SYM_QUEHEAD waiting_ccbq; |
| SYM_QUEHEAD started_ccbq; |
| int num_sgood; |
| u_short started_tags; |
| u_short started_no_tag; |
| u_short started_max; |
| u_short started_limit; |
| #endif |
| |
| #ifdef SYM_OPT_LIMIT_COMMAND_REORDERING |
| /* |
| * Optionally the driver can try to prevent SCSI |
| * IOs from being reordered too much. |
| */ |
| u_char tags_si; /* Current index to tags sum */ |
| u_short tags_sum[2]; /* Tags sum counters */ |
| u_short tags_since; /* # of tags since last switch */ |
| #endif |
| |
| /* |
| * Set when we want to clear all tasks. |
| */ |
| u_char to_clear; |
| |
| /* |
| * Capabilities. |
| */ |
| u_char user_flags; |
| u_char curr_flags; |
| }; |
| |
| /* |
| * Action from SCRIPTS on a task. |
| * Is part of the CCB, but is also used separately to plug |
| * error handling action to perform from SCRIPTS. |
| */ |
| struct sym_actscr { |
| u32 start; /* Jumped by SCRIPTS after selection */ |
| u32 restart; /* Jumped by SCRIPTS on relection */ |
| }; |
| |
| /* |
| * Phase mismatch context. |
| * |
| * It is part of the CCB and is used as parameters for the |
| * DATA pointer. We need two contexts to handle correctly the |
| * SAVED DATA POINTER. |
| */ |
| struct sym_pmc { |
| struct sym_tblmove sg; /* Updated interrupted SG block */ |
| u32 ret; /* SCRIPT return address */ |
| }; |
| |
| /* |
| * LUN control block lookup. |
| * We use a direct pointer for LUN #0, and a table of |
| * pointers which is only allocated for devices that support |
| * LUN(s) > 0. |
| */ |
| #if SYM_CONF_MAX_LUN <= 1 |
| #define sym_lp(tp, lun) (!lun) ? (tp)->lun0p : NULL |
| #else |
| #define sym_lp(tp, lun) \ |
| (!lun) ? (tp)->lun0p : (tp)->lunmp ? (tp)->lunmp[(lun)] : NULL |
| #endif |
| |
| /* |
| * Status are used by the host and the script processor. |
| * |
| * The last four bytes (status[4]) are copied to the |
| * scratchb register (declared as scr0..scr3) just after the |
| * select/reselect, and copied back just after disconnecting. |
| * Inside the script the XX_REG are used. |
| */ |
| |
| /* |
| * Last four bytes (script) |
| */ |
| #define HX_REG scr0 |
| #define HX_PRT nc_scr0 |
| #define HS_REG scr1 |
| #define HS_PRT nc_scr1 |
| #define SS_REG scr2 |
| #define SS_PRT nc_scr2 |
| #define HF_REG scr3 |
| #define HF_PRT nc_scr3 |
| |
| /* |
| * Last four bytes (host) |
| */ |
| #define host_xflags phys.head.status[0] |
| #define host_status phys.head.status[1] |
| #define ssss_status phys.head.status[2] |
| #define host_flags phys.head.status[3] |
| |
| /* |
| * Host flags |
| */ |
| #define HF_IN_PM0 1u |
| #define HF_IN_PM1 (1u<<1) |
| #define HF_ACT_PM (1u<<2) |
| #define HF_DP_SAVED (1u<<3) |
| #define HF_SENSE (1u<<4) |
| #define HF_EXT_ERR (1u<<5) |
| #define HF_DATA_IN (1u<<6) |
| #ifdef SYM_CONF_IARB_SUPPORT |
| #define HF_HINT_IARB (1u<<7) |
| #endif |
| |
| /* |
| * More host flags |
| */ |
| #if SYM_CONF_DMA_ADDRESSING_MODE == 2 |
| #define HX_DMAP_DIRTY (1u<<7) |
| #endif |
| |
| /* |
| * Global CCB HEADER. |
| * |
| * Due to lack of indirect addressing on earlier NCR chips, |
| * this substructure is copied from the ccb to a global |
| * address after selection (or reselection) and copied back |
| * before disconnect. |
| * For SYMBIOS chips that support LOAD/STORE this copy is |
| * not needed and thus not performed. |
| */ |
| |
| struct sym_ccbh { |
| /* |
| * Start and restart SCRIPTS addresses (must be at 0). |
| */ |
| /*0*/ struct sym_actscr go; |
| |
| /* |
| * SCRIPTS jump address that deal with data pointers. |
| * 'savep' points to the position in the script responsible |
| * for the actual transfer of data. |
| * It's written on reception of a SAVE_DATA_POINTER message. |
| */ |
| u32 savep; /* Jump address to saved data pointer */ |
| u32 lastp; /* SCRIPTS address at end of data */ |
| |
| /* |
| * Status fields. |
| */ |
| u8 status[4]; |
| }; |
| |
| /* |
| * GET/SET the value of the data pointer used by SCRIPTS. |
| * |
| * We must distinguish between the LOAD/STORE-based SCRIPTS |
| * that use directly the header in the CCB, and the NCR-GENERIC |
| * SCRIPTS that use the copy of the header in the HCB. |
| */ |
| #if SYM_CONF_GENERIC_SUPPORT |
| #define sym_set_script_dp(np, cp, dp) \ |
| do { \ |
| if (np->features & FE_LDSTR) \ |
| cp->phys.head.lastp = cpu_to_scr(dp); \ |
| else \ |
| np->ccb_head.lastp = cpu_to_scr(dp); \ |
| } while (0) |
| #define sym_get_script_dp(np, cp) \ |
| scr_to_cpu((np->features & FE_LDSTR) ? \ |
| cp->phys.head.lastp : np->ccb_head.lastp) |
| #else |
| #define sym_set_script_dp(np, cp, dp) \ |
| do { \ |
| cp->phys.head.lastp = cpu_to_scr(dp); \ |
| } while (0) |
| |
| #define sym_get_script_dp(np, cp) (cp->phys.head.lastp) |
| #endif |
| |
| /* |
| * Data Structure Block |
| * |
| * During execution of a ccb by the script processor, the |
| * DSA (data structure address) register points to this |
| * substructure of the ccb. |
| */ |
| struct sym_dsb { |
| /* |
| * CCB header. |
| * Also assumed at offset 0 of the sym_ccb structure. |
| */ |
| /*0*/ struct sym_ccbh head; |
| |
| /* |
| * Phase mismatch contexts. |
| * We need two to handle correctly the SAVED DATA POINTER. |
| * MUST BOTH BE AT OFFSET < 256, due to using 8 bit arithmetic |
| * for address calculation from SCRIPTS. |
| */ |
| struct sym_pmc pm0; |
| struct sym_pmc pm1; |
| |
| /* |
| * Table data for Script |
| */ |
| struct sym_tblsel select; |
| struct sym_tblmove smsg; |
| struct sym_tblmove smsg_ext; |
| struct sym_tblmove cmd; |
| struct sym_tblmove sense; |
| struct sym_tblmove wresid; |
| struct sym_tblmove data [SYM_CONF_MAX_SG]; |
| }; |
| |
| /* |
| * Our Command Control Block |
| */ |
| struct sym_ccb { |
| /* |
| * This is the data structure which is pointed by the DSA |
| * register when it is executed by the script processor. |
| * It must be the first entry. |
| */ |
| struct sym_dsb phys; |
| |
| /* |
| * Pointer to CAM ccb and related stuff. |
| */ |
| struct scsi_cmnd *cmd; /* CAM scsiio ccb */ |
| u8 cdb_buf[16]; /* Copy of CDB */ |
| #define SYM_SNS_BBUF_LEN 32 |
| u8 sns_bbuf[SYM_SNS_BBUF_LEN]; /* Bounce buffer for sense data */ |
| int data_len; /* Total data length */ |
| int segments; /* Number of SG segments */ |
| |
| u8 order; /* Tag type (if tagged command) */ |
| unsigned char odd_byte_adjustment; /* odd-sized req on wide bus */ |
| |
| u_char nego_status; /* Negotiation status */ |
| u_char xerr_status; /* Extended error flags */ |
| u32 extra_bytes; /* Extraneous bytes transferred */ |
| |
| /* |
| * Message areas. |
| * We prepare a message to be sent after selection. |
| * We may use a second one if the command is rescheduled |
| * due to CHECK_CONDITION or COMMAND TERMINATED. |
| * Contents are IDENTIFY and SIMPLE_TAG. |
| * While negotiating sync or wide transfer, |
| * a SDTR or WDTR message is appended. |
| */ |
| u_char scsi_smsg [12]; |
| u_char scsi_smsg2[12]; |
| |
| /* |
| * Auto request sense related fields. |
| */ |
| u_char sensecmd[6]; /* Request Sense command */ |
| u_char sv_scsi_status; /* Saved SCSI status */ |
| u_char sv_xerr_status; /* Saved extended status */ |
| int sv_resid; /* Saved residual */ |
| |
| /* |
| * Other fields. |
| */ |
| u32 ccb_ba; /* BUS address of this CCB */ |
| u_short tag; /* Tag for this transfer */ |
| /* NO_TAG means no tag */ |
| u_char target; |
| u_char lun; |
| struct sym_ccb *link_ccbh; /* Host adapter CCB hash chain */ |
| SYM_QUEHEAD link_ccbq; /* Link to free/busy CCB queue */ |
| u32 startp; /* Initial data pointer */ |
| u32 goalp; /* Expected last data pointer */ |
| int ext_sg; /* Extreme data pointer, used */ |
| int ext_ofs; /* to calculate the residual. */ |
| #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING |
| SYM_QUEHEAD link2_ccbq; /* Link for device queueing */ |
| u_char started; /* CCB queued to the squeue */ |
| #endif |
| u_char to_abort; /* Want this IO to be aborted */ |
| #ifdef SYM_OPT_LIMIT_COMMAND_REORDERING |
| u_char tags_si; /* Lun tags sum index (0,1) */ |
| #endif |
| }; |
| |
| #define CCB_BA(cp,lbl) cpu_to_scr(cp->ccb_ba + offsetof(struct sym_ccb, lbl)) |
| |
| typedef struct device *m_pool_ident_t; |
| |
| /* |
| * Host Control Block |
| */ |
| struct sym_hcb { |
| /* |
| * Global headers. |
| * Due to poorness of addressing capabilities, earlier |
| * chips (810, 815, 825) copy part of the data structures |
| * (CCB, TCB and LCB) in fixed areas. |
| */ |
| #if SYM_CONF_GENERIC_SUPPORT |
| struct sym_ccbh ccb_head; |
| struct sym_tcbh tcb_head; |
| struct sym_lcbh lcb_head; |
| #endif |
| /* |
| * Idle task and invalid task actions and |
| * their bus addresses. |
| */ |
| struct sym_actscr idletask, notask, bad_itl, bad_itlq; |
| u32 idletask_ba, notask_ba, bad_itl_ba, bad_itlq_ba; |
| |
| /* |
| * Dummy lun table to protect us against target |
| * returning bad lun number on reselection. |
| */ |
| u32 *badluntbl; /* Table physical address */ |
| u32 badlun_sa; /* SCRIPT handler BUS address */ |
| |
| /* |
| * Bus address of this host control block. |
| */ |
| u32 hcb_ba; |
| |
| /* |
| * Bit 32-63 of the on-chip RAM bus address in LE format. |
| * The START_RAM64 script loads the MMRS and MMWS from this |
| * field. |
| */ |
| u32 scr_ram_seg; |
| |
| /* |
| * Initial value of some IO register bits. |
| * These values are assumed to have been set by BIOS, and may |
| * be used to probe adapter implementation differences. |
| */ |
| u_char sv_scntl0, sv_scntl3, sv_dmode, sv_dcntl, sv_ctest3, sv_ctest4, |
| sv_ctest5, sv_gpcntl, sv_stest2, sv_stest4, sv_scntl4, |
| sv_stest1; |
| |
| /* |
| * Actual initial value of IO register bits used by the |
| * driver. They are loaded at initialisation according to |
| * features that are to be enabled/disabled. |
| */ |
| u_char rv_scntl0, rv_scntl3, rv_dmode, rv_dcntl, rv_ctest3, rv_ctest4, |
| rv_ctest5, rv_stest2, rv_ccntl0, rv_ccntl1, rv_scntl4; |
| |
| /* |
| * Target data. |
| */ |
| struct sym_tcb target[SYM_CONF_MAX_TARGET]; |
| |
| /* |
| * Target control block bus address array used by the SCRIPT |
| * on reselection. |
| */ |
| u32 *targtbl; |
| u32 targtbl_ba; |
| |
| /* |
| * DMA pool handle for this HBA. |
| */ |
| m_pool_ident_t bus_dmat; |
| |
| /* |
| * O/S specific data structure |
| */ |
| struct sym_shcb s; |
| |
| /* |
| * Physical bus addresses of the chip. |
| */ |
| u32 mmio_ba; /* MMIO 32 bit BUS address */ |
| u32 ram_ba; /* RAM 32 bit BUS address */ |
| |
| /* |
| * SCRIPTS virtual and physical bus addresses. |
| * 'script' is loaded in the on-chip RAM if present. |
| * 'scripth' stays in main memory for all chips except the |
| * 53C895A, 53C896 and 53C1010 that provide 8K on-chip RAM. |
| */ |
| u_char *scripta0; /* Copy of scripts A, B, Z */ |
| u_char *scriptb0; |
| u_char *scriptz0; |
| u32 scripta_ba; /* Actual scripts A, B, Z */ |
| u32 scriptb_ba; /* 32 bit bus addresses. */ |
| u32 scriptz_ba; |
| u_short scripta_sz; /* Actual size of script A, B, Z*/ |
| u_short scriptb_sz; |
| u_short scriptz_sz; |
| |
| /* |
| * Bus addresses, setup and patch methods for |
| * the selected firmware. |
| */ |
| struct sym_fwa_ba fwa_bas; /* Useful SCRIPTA bus addresses */ |
| struct sym_fwb_ba fwb_bas; /* Useful SCRIPTB bus addresses */ |
| struct sym_fwz_ba fwz_bas; /* Useful SCRIPTZ bus addresses */ |
| void (*fw_setup)(struct sym_hcb *np, struct sym_fw *fw); |
| void (*fw_patch)(struct Scsi_Host *); |
| char *fw_name; |
| |
| /* |
| * General controller parameters and configuration. |
| */ |
| u_int features; /* Chip features map */ |
| u_char myaddr; /* SCSI id of the adapter */ |
| u_char maxburst; /* log base 2 of dwords burst */ |
| u_char maxwide; /* Maximum transfer width */ |
| u_char minsync; /* Min sync period factor (ST) */ |
| u_char maxsync; /* Max sync period factor (ST) */ |
| u_char maxoffs; /* Max scsi offset (ST) */ |
| u_char minsync_dt; /* Min sync period factor (DT) */ |
| u_char maxsync_dt; /* Max sync period factor (DT) */ |
| u_char maxoffs_dt; /* Max scsi offset (DT) */ |
| u_char multiplier; /* Clock multiplier (1,2,4) */ |
| u_char clock_divn; /* Number of clock divisors */ |
| u32 clock_khz; /* SCSI clock frequency in KHz */ |
| u32 pciclk_khz; /* Estimated PCI clock in KHz */ |
| /* |
| * Start queue management. |
| * It is filled up by the host processor and accessed by the |
| * SCRIPTS processor in order to start SCSI commands. |
| */ |
| volatile /* Prevent code optimizations */ |
| u32 *squeue; /* Start queue virtual address */ |
| u32 squeue_ba; /* Start queue BUS address */ |
| u_short squeueput; /* Next free slot of the queue */ |
| u_short actccbs; /* Number of allocated CCBs */ |
| |
| /* |
| * Command completion queue. |
| * It is the same size as the start queue to avoid overflow. |
| */ |
| u_short dqueueget; /* Next position to scan */ |
| volatile /* Prevent code optimizations */ |
| u32 *dqueue; /* Completion (done) queue */ |
| u32 dqueue_ba; /* Done queue BUS address */ |
| |
| /* |
| * Miscellaneous buffers accessed by the scripts-processor. |
| * They shall be DWORD aligned, because they may be read or |
| * written with a script command. |
| */ |
| u_char msgout[8]; /* Buffer for MESSAGE OUT */ |
| u_char msgin [8]; /* Buffer for MESSAGE IN */ |
| u32 lastmsg; /* Last SCSI message sent */ |
| u32 scratch; /* Scratch for SCSI receive */ |
| /* Also used for cache test */ |
| /* |
| * Miscellaneous configuration and status parameters. |
| */ |
| u_char usrflags; /* Miscellaneous user flags */ |
| u_char scsi_mode; /* Current SCSI BUS mode */ |
| u_char verbose; /* Verbosity for this controller*/ |
| |
| /* |
| * CCB lists and queue. |
| */ |
| struct sym_ccb **ccbh; /* CCBs hashed by DSA value */ |
| /* CCB_HASH_SIZE lists of CCBs */ |
| SYM_QUEHEAD free_ccbq; /* Queue of available CCBs */ |
| SYM_QUEHEAD busy_ccbq; /* Queue of busy CCBs */ |
| |
| /* |
| * During error handling and/or recovery, |
| * active CCBs that are to be completed with |
| * error or requeued are moved from the busy_ccbq |
| * to the comp_ccbq prior to completion. |
| */ |
| SYM_QUEHEAD comp_ccbq; |
| |
| #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING |
| SYM_QUEHEAD dummy_ccbq; |
| #endif |
| |
| /* |
| * IMMEDIATE ARBITRATION (IARB) control. |
| * |
| * We keep track in 'last_cp' of the last CCB that has been |
| * queued to the SCRIPTS processor and clear 'last_cp' when |
| * this CCB completes. If last_cp is not zero at the moment |
| * we queue a new CCB, we set a flag in 'last_cp' that is |
| * used by the SCRIPTS as a hint for setting IARB. |
| * We donnot set more than 'iarb_max' consecutive hints for |
| * IARB in order to leave devices a chance to reselect. |
| * By the way, any non zero value of 'iarb_max' is unfair. :) |
| */ |
| #ifdef SYM_CONF_IARB_SUPPORT |
| u_short iarb_max; /* Max. # consecutive IARB hints*/ |
| u_short iarb_count; /* Actual # of these hints */ |
| struct sym_ccb * last_cp; |
| #endif |
| |
| /* |
| * Command abort handling. |
| * We need to synchronize tightly with the SCRIPTS |
| * processor in order to handle things correctly. |
| */ |
| u_char abrt_msg[4]; /* Message to send buffer */ |
| struct sym_tblmove abrt_tbl; /* Table for the MOV of it */ |
| struct sym_tblsel abrt_sel; /* Sync params for selection */ |
| u_char istat_sem; /* Tells the chip to stop (SEM) */ |
| |
| /* |
| * 64 bit DMA handling. |
| */ |
| #if SYM_CONF_DMA_ADDRESSING_MODE != 0 |
| u_char use_dac; /* Use PCI DAC cycles */ |
| #if SYM_CONF_DMA_ADDRESSING_MODE == 2 |
| u_char dmap_dirty; /* Dma segments registers dirty */ |
| u32 dmap_bah[SYM_DMAP_SIZE];/* Segment registers map */ |
| #endif |
| #endif |
| }; |
| |
| #if SYM_CONF_DMA_ADDRESSING_MODE == 0 |
| #define use_dac(np) 0 |
| #define set_dac(np) do { } while (0) |
| #else |
| #define use_dac(np) (np)->use_dac |
| #define set_dac(np) (np)->use_dac = 1 |
| #endif |
| |
| #define HCB_BA(np, lbl) (np->hcb_ba + offsetof(struct sym_hcb, lbl)) |
| |
| |
| /* |
| * FIRMWARES (sym_fw.c) |
| */ |
| struct sym_fw * sym_find_firmware(struct sym_chip *chip); |
| void sym_fw_bind_script(struct sym_hcb *np, u32 *start, int len); |
| |
| /* |
| * Driver methods called from O/S specific code. |
| */ |
| char *sym_driver_name(void); |
| void sym_print_xerr(struct scsi_cmnd *cmd, int x_status); |
| int sym_reset_scsi_bus(struct sym_hcb *np, int enab_int); |
| struct sym_chip *sym_lookup_chip_table(u_short device_id, u_char revision); |
| #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING |
| void sym_start_next_ccbs(struct sym_hcb *np, struct sym_lcb *lp, int maxn); |
| #else |
| void sym_put_start_queue(struct sym_hcb *np, struct sym_ccb *cp); |
| #endif |
| void sym_start_up(struct Scsi_Host *, int reason); |
| irqreturn_t sym_interrupt(struct Scsi_Host *); |
| int sym_clear_tasks(struct sym_hcb *np, int cam_status, int target, int lun, int task); |
| struct sym_ccb *sym_get_ccb(struct sym_hcb *np, struct scsi_cmnd *cmd, u_char tag_order); |
| void sym_free_ccb(struct sym_hcb *np, struct sym_ccb *cp); |
| struct sym_lcb *sym_alloc_lcb(struct sym_hcb *np, u_char tn, u_char ln); |
| int sym_queue_scsiio(struct sym_hcb *np, struct scsi_cmnd *csio, struct sym_ccb *cp); |
| int sym_abort_scsiio(struct sym_hcb *np, struct scsi_cmnd *ccb, int timed_out); |
| int sym_reset_scsi_target(struct sym_hcb *np, int target); |
| void sym_hcb_free(struct sym_hcb *np); |
| int sym_hcb_attach(struct Scsi_Host *shost, struct sym_fw *fw, struct sym_nvram *nvram); |
| |
| /* |
| * Build a scatter/gather entry. |
| * |
| * For 64 bit systems, we use the 8 upper bits of the size field |
| * to provide bus address bits 32-39 to the SCRIPTS processor. |
| * This allows the 895A, 896, 1010 to address up to 1 TB of memory. |
| */ |
| |
| #if SYM_CONF_DMA_ADDRESSING_MODE == 0 |
| #define DMA_DAC_MASK DMA_BIT_MASK(32) |
| #define sym_build_sge(np, data, badd, len) \ |
| do { \ |
| (data)->addr = cpu_to_scr(badd); \ |
| (data)->size = cpu_to_scr(len); \ |
| } while (0) |
| #elif SYM_CONF_DMA_ADDRESSING_MODE == 1 |
| #define DMA_DAC_MASK DMA_BIT_MASK(40) |
| #define sym_build_sge(np, data, badd, len) \ |
| do { \ |
| (data)->addr = cpu_to_scr(badd); \ |
| (data)->size = cpu_to_scr((((badd) >> 8) & 0xff000000) + len); \ |
| } while (0) |
| #elif SYM_CONF_DMA_ADDRESSING_MODE == 2 |
| #define DMA_DAC_MASK DMA_BIT_MASK(64) |
| int sym_lookup_dmap(struct sym_hcb *np, u32 h, int s); |
| static inline void |
| sym_build_sge(struct sym_hcb *np, struct sym_tblmove *data, u64 badd, int len) |
| { |
| u32 h = (badd>>32); |
| int s = (h&SYM_DMAP_MASK); |
| |
| if (h != np->dmap_bah[s]) |
| goto bad; |
| good: |
| (data)->addr = cpu_to_scr(badd); |
| (data)->size = cpu_to_scr((s<<24) + len); |
| return; |
| bad: |
| s = sym_lookup_dmap(np, h, s); |
| goto good; |
| } |
| #else |
| #error "Unsupported DMA addressing mode" |
| #endif |
| |
| /* |
| * MEMORY ALLOCATOR. |
| */ |
| |
| #define sym_get_mem_cluster() \ |
| (void *) __get_free_pages(GFP_ATOMIC, SYM_MEM_PAGE_ORDER) |
| #define sym_free_mem_cluster(p) \ |
| free_pages((unsigned long)p, SYM_MEM_PAGE_ORDER) |
| |
| /* |
| * Link between free memory chunks of a given size. |
| */ |
| typedef struct sym_m_link { |
| struct sym_m_link *next; |
| } *m_link_p; |
| |
| /* |
| * Virtual to bus physical translation for a given cluster. |
| * Such a structure is only useful with DMA abstraction. |
| */ |
| typedef struct sym_m_vtob { /* Virtual to Bus address translation */ |
| struct sym_m_vtob *next; |
| void *vaddr; /* Virtual address */ |
| dma_addr_t baddr; /* Bus physical address */ |
| } *m_vtob_p; |
| |
| /* Hash this stuff a bit to speed up translations */ |
| #define VTOB_HASH_SHIFT 5 |
| #define VTOB_HASH_SIZE (1UL << VTOB_HASH_SHIFT) |
| #define VTOB_HASH_MASK (VTOB_HASH_SIZE-1) |
| #define VTOB_HASH_CODE(m) \ |
| ((((unsigned long)(m)) >> SYM_MEM_CLUSTER_SHIFT) & VTOB_HASH_MASK) |
| |
| /* |
| * Memory pool of a given kind. |
| * Ideally, we want to use: |
| * 1) 1 pool for memory we donnot need to involve in DMA. |
| * 2) The same pool for controllers that require same DMA |
| * constraints and features. |
| * The OS specific m_pool_id_t thing and the sym_m_pool_match() |
| * method are expected to tell the driver about. |
| */ |
| typedef struct sym_m_pool { |
| m_pool_ident_t dev_dmat; /* Identifies the pool (see above) */ |
| void * (*get_mem_cluster)(struct sym_m_pool *); |
| #ifdef SYM_MEM_FREE_UNUSED |
| void (*free_mem_cluster)(struct sym_m_pool *, void *); |
| #endif |
| #define M_GET_MEM_CLUSTER() mp->get_mem_cluster(mp) |
| #define M_FREE_MEM_CLUSTER(p) mp->free_mem_cluster(mp, p) |
| int nump; |
| m_vtob_p vtob[VTOB_HASH_SIZE]; |
| struct sym_m_pool *next; |
| struct sym_m_link h[SYM_MEM_CLUSTER_SHIFT - SYM_MEM_SHIFT + 1]; |
| } *m_pool_p; |
| |
| /* |
| * Alloc, free and translate addresses to bus physical |
| * for DMAable memory. |
| */ |
| void *__sym_calloc_dma(m_pool_ident_t dev_dmat, int size, char *name); |
| void __sym_mfree_dma(m_pool_ident_t dev_dmat, void *m, int size, char *name); |
| dma_addr_t __vtobus(m_pool_ident_t dev_dmat, void *m); |
| |
| /* |
| * Verbs used by the driver code for DMAable memory handling. |
| * The _uvptv_ macro avoids a nasty warning about pointer to volatile |
| * being discarded. |
| */ |
| #define _uvptv_(p) ((void *)((u_long)(p))) |
| |
| #define _sym_calloc_dma(np, l, n) __sym_calloc_dma(np->bus_dmat, l, n) |
| #define _sym_mfree_dma(np, p, l, n) \ |
| __sym_mfree_dma(np->bus_dmat, _uvptv_(p), l, n) |
| #define sym_calloc_dma(l, n) _sym_calloc_dma(np, l, n) |
| #define sym_mfree_dma(p, l, n) _sym_mfree_dma(np, p, l, n) |
| #define vtobus(p) __vtobus(np->bus_dmat, _uvptv_(p)) |
| |
| /* |
| * We have to provide the driver memory allocator with methods for |
| * it to maintain virtual to bus physical address translations. |
| */ |
| |
| #define sym_m_pool_match(mp_id1, mp_id2) (mp_id1 == mp_id2) |
| |
| static inline void *sym_m_get_dma_mem_cluster(m_pool_p mp, m_vtob_p vbp) |
| { |
| void *vaddr = NULL; |
| dma_addr_t baddr = 0; |
| |
| vaddr = dma_alloc_coherent(mp->dev_dmat, SYM_MEM_CLUSTER_SIZE, &baddr, |
| GFP_ATOMIC); |
| if (vaddr) { |
| vbp->vaddr = vaddr; |
| vbp->baddr = baddr; |
| } |
| return vaddr; |
| } |
| |
| static inline void sym_m_free_dma_mem_cluster(m_pool_p mp, m_vtob_p vbp) |
| { |
| dma_free_coherent(mp->dev_dmat, SYM_MEM_CLUSTER_SIZE, vbp->vaddr, |
| vbp->baddr); |
| } |
| |
| #endif /* SYM_HIPD_H */ |