| /* |
| * arch/sh/kernel/setup.c |
| * |
| * This file handles the architecture-dependent parts of initialization |
| * |
| * Copyright (C) 1999 Niibe Yutaka |
| * Copyright (C) 2002 - 2007 Paul Mundt |
| */ |
| #include <linux/screen_info.h> |
| #include <linux/ioport.h> |
| #include <linux/init.h> |
| #include <linux/initrd.h> |
| #include <linux/bootmem.h> |
| #include <linux/console.h> |
| #include <linux/seq_file.h> |
| #include <linux/root_dev.h> |
| #include <linux/utsname.h> |
| #include <linux/nodemask.h> |
| #include <linux/cpu.h> |
| #include <linux/pfn.h> |
| #include <linux/fs.h> |
| #include <linux/mm.h> |
| #include <linux/kexec.h> |
| #include <linux/module.h> |
| #include <asm/uaccess.h> |
| #include <asm/io.h> |
| #include <asm/page.h> |
| #include <asm/sections.h> |
| #include <asm/irq.h> |
| #include <asm/setup.h> |
| #include <asm/clock.h> |
| #include <asm/mmu_context.h> |
| |
| extern void * __rd_start, * __rd_end; |
| |
| /* |
| * Machine setup.. |
| */ |
| |
| /* |
| * Initialize loops_per_jiffy as 10000000 (1000MIPS). |
| * This value will be used at the very early stage of serial setup. |
| * The bigger value means no problem. |
| */ |
| struct sh_cpuinfo boot_cpu_data = { CPU_SH_NONE, 10000000, }; |
| |
| /* |
| * The machine vector. First entry in .machvec.init, or clobbered by |
| * sh_mv= on the command line, prior to .machvec.init teardown. |
| */ |
| struct sh_machine_vector sh_mv = { .mv_name = "generic", }; |
| |
| #ifdef CONFIG_VT |
| struct screen_info screen_info; |
| #endif |
| |
| extern int root_mountflags; |
| |
| /* |
| * This is set up by the setup-routine at boot-time |
| */ |
| #define PARAM ((unsigned char *)empty_zero_page) |
| |
| #define MOUNT_ROOT_RDONLY (*(unsigned long *) (PARAM+0x000)) |
| #define RAMDISK_FLAGS (*(unsigned long *) (PARAM+0x004)) |
| #define ORIG_ROOT_DEV (*(unsigned long *) (PARAM+0x008)) |
| #define LOADER_TYPE (*(unsigned long *) (PARAM+0x00c)) |
| #define INITRD_START (*(unsigned long *) (PARAM+0x010)) |
| #define INITRD_SIZE (*(unsigned long *) (PARAM+0x014)) |
| /* ... */ |
| #define COMMAND_LINE ((char *) (PARAM+0x100)) |
| |
| #define RAMDISK_IMAGE_START_MASK 0x07FF |
| #define RAMDISK_PROMPT_FLAG 0x8000 |
| #define RAMDISK_LOAD_FLAG 0x4000 |
| |
| static char __initdata command_line[COMMAND_LINE_SIZE] = { 0, }; |
| |
| static struct resource code_resource = { .name = "Kernel code", }; |
| static struct resource data_resource = { .name = "Kernel data", }; |
| |
| unsigned long memory_start; |
| EXPORT_SYMBOL(memory_start); |
| |
| unsigned long memory_end; |
| EXPORT_SYMBOL(memory_end); |
| |
| static int __init early_parse_mem(char *p) |
| { |
| unsigned long size; |
| |
| memory_start = (unsigned long)PAGE_OFFSET+__MEMORY_START; |
| size = memparse(p, &p); |
| memory_end = memory_start + size; |
| |
| return 0; |
| } |
| early_param("mem", early_parse_mem); |
| |
| /* |
| * Register fully available low RAM pages with the bootmem allocator. |
| */ |
| static void __init register_bootmem_low_pages(void) |
| { |
| unsigned long curr_pfn, last_pfn, pages; |
| |
| /* |
| * We are rounding up the start address of usable memory: |
| */ |
| curr_pfn = PFN_UP(__MEMORY_START); |
| |
| /* |
| * ... and at the end of the usable range downwards: |
| */ |
| last_pfn = PFN_DOWN(__pa(memory_end)); |
| |
| if (last_pfn > max_low_pfn) |
| last_pfn = max_low_pfn; |
| |
| pages = last_pfn - curr_pfn; |
| free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(pages)); |
| } |
| |
| void __init setup_bootmem_allocator(unsigned long free_pfn) |
| { |
| unsigned long bootmap_size; |
| |
| /* |
| * Find a proper area for the bootmem bitmap. After this |
| * bootstrap step all allocations (until the page allocator |
| * is intact) must be done via bootmem_alloc(). |
| */ |
| bootmap_size = init_bootmem_node(NODE_DATA(0), free_pfn, |
| min_low_pfn, max_low_pfn); |
| |
| add_active_range(0, min_low_pfn, max_low_pfn); |
| register_bootmem_low_pages(); |
| |
| node_set_online(0); |
| |
| /* |
| * Reserve the kernel text and |
| * Reserve the bootmem bitmap. We do this in two steps (first step |
| * was init_bootmem()), because this catches the (definitely buggy) |
| * case of us accidentally initializing the bootmem allocator with |
| * an invalid RAM area. |
| */ |
| reserve_bootmem(__MEMORY_START+PAGE_SIZE, |
| (PFN_PHYS(free_pfn)+bootmap_size+PAGE_SIZE-1)-__MEMORY_START); |
| |
| /* |
| * reserve physical page 0 - it's a special BIOS page on many boxes, |
| * enabling clean reboots, SMP operation, laptop functions. |
| */ |
| reserve_bootmem(__MEMORY_START, PAGE_SIZE); |
| |
| sparse_memory_present_with_active_regions(0); |
| |
| #ifdef CONFIG_BLK_DEV_INITRD |
| ROOT_DEV = MKDEV(RAMDISK_MAJOR, 0); |
| if (&__rd_start != &__rd_end) { |
| LOADER_TYPE = 1; |
| INITRD_START = PHYSADDR((unsigned long)&__rd_start) - |
| __MEMORY_START; |
| INITRD_SIZE = (unsigned long)&__rd_end - |
| (unsigned long)&__rd_start; |
| } |
| |
| if (LOADER_TYPE && INITRD_START) { |
| if (INITRD_START + INITRD_SIZE <= (max_low_pfn << PAGE_SHIFT)) { |
| reserve_bootmem(INITRD_START + __MEMORY_START, |
| INITRD_SIZE); |
| initrd_start = INITRD_START + PAGE_OFFSET + |
| __MEMORY_START; |
| initrd_end = initrd_start + INITRD_SIZE; |
| } else { |
| printk("initrd extends beyond end of memory " |
| "(0x%08lx > 0x%08lx)\ndisabling initrd\n", |
| INITRD_START + INITRD_SIZE, |
| max_low_pfn << PAGE_SHIFT); |
| initrd_start = 0; |
| } |
| } |
| #endif |
| #ifdef CONFIG_KEXEC |
| if (crashk_res.start != crashk_res.end) |
| reserve_bootmem(crashk_res.start, |
| crashk_res.end - crashk_res.start + 1); |
| #endif |
| } |
| |
| #ifndef CONFIG_NEED_MULTIPLE_NODES |
| static void __init setup_memory(void) |
| { |
| unsigned long start_pfn; |
| |
| /* |
| * Partially used pages are not usable - thus |
| * we are rounding upwards: |
| */ |
| start_pfn = PFN_UP(__pa(_end)); |
| setup_bootmem_allocator(start_pfn); |
| } |
| #else |
| extern void __init setup_memory(void); |
| #endif |
| |
| void __init setup_arch(char **cmdline_p) |
| { |
| enable_mmu(); |
| |
| ROOT_DEV = old_decode_dev(ORIG_ROOT_DEV); |
| |
| #ifdef CONFIG_BLK_DEV_RAM |
| rd_image_start = RAMDISK_FLAGS & RAMDISK_IMAGE_START_MASK; |
| rd_prompt = ((RAMDISK_FLAGS & RAMDISK_PROMPT_FLAG) != 0); |
| rd_doload = ((RAMDISK_FLAGS & RAMDISK_LOAD_FLAG) != 0); |
| #endif |
| |
| if (!MOUNT_ROOT_RDONLY) |
| root_mountflags &= ~MS_RDONLY; |
| init_mm.start_code = (unsigned long) _text; |
| init_mm.end_code = (unsigned long) _etext; |
| init_mm.end_data = (unsigned long) _edata; |
| init_mm.brk = (unsigned long) _end; |
| |
| code_resource.start = virt_to_phys(_text); |
| code_resource.end = virt_to_phys(_etext)-1; |
| data_resource.start = virt_to_phys(_etext); |
| data_resource.end = virt_to_phys(_edata)-1; |
| |
| memory_start = (unsigned long)PAGE_OFFSET+__MEMORY_START; |
| memory_end = memory_start + __MEMORY_SIZE; |
| |
| #ifdef CONFIG_CMDLINE_BOOL |
| strlcpy(command_line, CONFIG_CMDLINE, sizeof(command_line)); |
| #else |
| strlcpy(command_line, COMMAND_LINE, sizeof(command_line)); |
| #endif |
| |
| /* Save unparsed command line copy for /proc/cmdline */ |
| memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE); |
| *cmdline_p = command_line; |
| |
| parse_early_param(); |
| |
| sh_mv_setup(); |
| |
| /* |
| * Find the highest page frame number we have available |
| */ |
| max_pfn = PFN_DOWN(__pa(memory_end)); |
| |
| /* |
| * Determine low and high memory ranges: |
| */ |
| max_low_pfn = max_pfn; |
| min_low_pfn = __MEMORY_START >> PAGE_SHIFT; |
| |
| nodes_clear(node_online_map); |
| |
| /* Setup bootmem with available RAM */ |
| setup_memory(); |
| sparse_init(); |
| |
| #ifdef CONFIG_DUMMY_CONSOLE |
| conswitchp = &dummy_con; |
| #endif |
| |
| /* Perform the machine specific initialisation */ |
| if (likely(sh_mv.mv_setup)) |
| sh_mv.mv_setup(cmdline_p); |
| |
| paging_init(); |
| } |
| |
| static const char *cpu_name[] = { |
| [CPU_SH7206] = "SH7206", [CPU_SH7619] = "SH7619", |
| [CPU_SH7300] = "SH7300", |
| [CPU_SH7705] = "SH7705", [CPU_SH7706] = "SH7706", |
| [CPU_SH7707] = "SH7707", [CPU_SH7708] = "SH7708", |
| [CPU_SH7709] = "SH7709", [CPU_SH7710] = "SH7710", |
| [CPU_SH7712] = "SH7712", |
| [CPU_SH7729] = "SH7729", [CPU_SH7750] = "SH7750", |
| [CPU_SH7750S] = "SH7750S", [CPU_SH7750R] = "SH7750R", |
| [CPU_SH7751] = "SH7751", [CPU_SH7751R] = "SH7751R", |
| [CPU_SH7760] = "SH7760", [CPU_SH73180] = "SH73180", |
| [CPU_ST40RA] = "ST40RA", [CPU_ST40GX1] = "ST40GX1", |
| [CPU_SH4_202] = "SH4-202", [CPU_SH4_501] = "SH4-501", |
| [CPU_SH7770] = "SH7770", [CPU_SH7780] = "SH7780", |
| [CPU_SH7781] = "SH7781", [CPU_SH7343] = "SH7343", |
| [CPU_SH7785] = "SH7785", [CPU_SH7722] = "SH7722", |
| [CPU_SHX3] = "SH-X3", [CPU_SH_NONE] = "Unknown" |
| }; |
| |
| const char *get_cpu_subtype(struct sh_cpuinfo *c) |
| { |
| return cpu_name[c->type]; |
| } |
| |
| #ifdef CONFIG_PROC_FS |
| /* Symbolic CPU flags, keep in sync with asm/cpu-features.h */ |
| static const char *cpu_flags[] = { |
| "none", "fpu", "p2flush", "mmuassoc", "dsp", "perfctr", |
| "ptea", "llsc", "l2", "op32", NULL |
| }; |
| |
| static void show_cpuflags(struct seq_file *m, struct sh_cpuinfo *c) |
| { |
| unsigned long i; |
| |
| seq_printf(m, "cpu flags\t:"); |
| |
| if (!c->flags) { |
| seq_printf(m, " %s\n", cpu_flags[0]); |
| return; |
| } |
| |
| for (i = 0; cpu_flags[i]; i++) |
| if ((c->flags & (1 << i))) |
| seq_printf(m, " %s", cpu_flags[i+1]); |
| |
| seq_printf(m, "\n"); |
| } |
| |
| static void show_cacheinfo(struct seq_file *m, const char *type, |
| struct cache_info info) |
| { |
| unsigned int cache_size; |
| |
| cache_size = info.ways * info.sets * info.linesz; |
| |
| seq_printf(m, "%s size\t: %2dKiB (%d-way)\n", |
| type, cache_size >> 10, info.ways); |
| } |
| |
| /* |
| * Get CPU information for use by the procfs. |
| */ |
| static int show_cpuinfo(struct seq_file *m, void *v) |
| { |
| struct sh_cpuinfo *c = v; |
| unsigned int cpu = c - cpu_data; |
| |
| if (!cpu_online(cpu)) |
| return 0; |
| |
| if (cpu == 0) |
| seq_printf(m, "machine\t\t: %s\n", get_system_type()); |
| |
| seq_printf(m, "processor\t: %d\n", cpu); |
| seq_printf(m, "cpu family\t: %s\n", init_utsname()->machine); |
| seq_printf(m, "cpu type\t: %s\n", get_cpu_subtype(c)); |
| |
| show_cpuflags(m, c); |
| |
| seq_printf(m, "cache type\t: "); |
| |
| /* |
| * Check for what type of cache we have, we support both the |
| * unified cache on the SH-2 and SH-3, as well as the harvard |
| * style cache on the SH-4. |
| */ |
| if (c->icache.flags & SH_CACHE_COMBINED) { |
| seq_printf(m, "unified\n"); |
| show_cacheinfo(m, "cache", c->icache); |
| } else { |
| seq_printf(m, "split (harvard)\n"); |
| show_cacheinfo(m, "icache", c->icache); |
| show_cacheinfo(m, "dcache", c->dcache); |
| } |
| |
| /* Optional secondary cache */ |
| if (c->flags & CPU_HAS_L2_CACHE) |
| show_cacheinfo(m, "scache", c->scache); |
| |
| seq_printf(m, "bogomips\t: %lu.%02lu\n", |
| c->loops_per_jiffy/(500000/HZ), |
| (c->loops_per_jiffy/(5000/HZ)) % 100); |
| |
| return 0; |
| } |
| |
| static void *c_start(struct seq_file *m, loff_t *pos) |
| { |
| return *pos < NR_CPUS ? cpu_data + *pos : NULL; |
| } |
| static void *c_next(struct seq_file *m, void *v, loff_t *pos) |
| { |
| ++*pos; |
| return c_start(m, pos); |
| } |
| static void c_stop(struct seq_file *m, void *v) |
| { |
| } |
| struct seq_operations cpuinfo_op = { |
| .start = c_start, |
| .next = c_next, |
| .stop = c_stop, |
| .show = show_cpuinfo, |
| }; |
| #endif /* CONFIG_PROC_FS */ |