| /* |
| * JFFS2 -- Journalling Flash File System, Version 2. |
| * |
| * Copyright (C) 2001-2003 Red Hat, Inc. |
| * |
| * Created by David Woodhouse <dwmw2@infradead.org> |
| * |
| * For licensing information, see the file 'LICENCE' in this directory. |
| * |
| * $Id: scan.c,v 1.118 2005/02/09 09:23:53 pavlov Exp $ |
| * |
| */ |
| #include <linux/kernel.h> |
| #include <linux/sched.h> |
| #include <linux/slab.h> |
| #include <linux/mtd/mtd.h> |
| #include <linux/pagemap.h> |
| #include <linux/crc32.h> |
| #include <linux/compiler.h> |
| #include "nodelist.h" |
| |
| #define DEFAULT_EMPTY_SCAN_SIZE 1024 |
| |
| #define DIRTY_SPACE(x) do { typeof(x) _x = (x); \ |
| c->free_size -= _x; c->dirty_size += _x; \ |
| jeb->free_size -= _x ; jeb->dirty_size += _x; \ |
| }while(0) |
| #define USED_SPACE(x) do { typeof(x) _x = (x); \ |
| c->free_size -= _x; c->used_size += _x; \ |
| jeb->free_size -= _x ; jeb->used_size += _x; \ |
| }while(0) |
| #define UNCHECKED_SPACE(x) do { typeof(x) _x = (x); \ |
| c->free_size -= _x; c->unchecked_size += _x; \ |
| jeb->free_size -= _x ; jeb->unchecked_size += _x; \ |
| }while(0) |
| |
| #define noisy_printk(noise, args...) do { \ |
| if (*(noise)) { \ |
| printk(KERN_NOTICE args); \ |
| (*(noise))--; \ |
| if (!(*(noise))) { \ |
| printk(KERN_NOTICE "Further such events for this erase block will not be printed\n"); \ |
| } \ |
| } \ |
| } while(0) |
| |
| static uint32_t pseudo_random; |
| |
| static int jffs2_scan_eraseblock (struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, |
| unsigned char *buf, uint32_t buf_size); |
| |
| /* These helper functions _must_ increase ofs and also do the dirty/used space accounting. |
| * Returning an error will abort the mount - bad checksums etc. should just mark the space |
| * as dirty. |
| */ |
| static int jffs2_scan_inode_node(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, |
| struct jffs2_raw_inode *ri, uint32_t ofs); |
| static int jffs2_scan_dirent_node(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, |
| struct jffs2_raw_dirent *rd, uint32_t ofs); |
| |
| #define BLK_STATE_ALLFF 0 |
| #define BLK_STATE_CLEAN 1 |
| #define BLK_STATE_PARTDIRTY 2 |
| #define BLK_STATE_CLEANMARKER 3 |
| #define BLK_STATE_ALLDIRTY 4 |
| #define BLK_STATE_BADBLOCK 5 |
| |
| static inline int min_free(struct jffs2_sb_info *c) |
| { |
| uint32_t min = 2 * sizeof(struct jffs2_raw_inode); |
| #ifdef CONFIG_JFFS2_FS_WRITEBUFFER |
| if (!jffs2_can_mark_obsolete(c) && min < c->wbuf_pagesize) |
| return c->wbuf_pagesize; |
| #endif |
| return min; |
| |
| } |
| |
| static inline uint32_t EMPTY_SCAN_SIZE(uint32_t sector_size) { |
| if (sector_size < DEFAULT_EMPTY_SCAN_SIZE) |
| return sector_size; |
| else |
| return DEFAULT_EMPTY_SCAN_SIZE; |
| } |
| |
| int jffs2_scan_medium(struct jffs2_sb_info *c) |
| { |
| int i, ret; |
| uint32_t empty_blocks = 0, bad_blocks = 0; |
| unsigned char *flashbuf = NULL; |
| uint32_t buf_size = 0; |
| #ifndef __ECOS |
| size_t pointlen; |
| |
| if (c->mtd->point) { |
| ret = c->mtd->point (c->mtd, 0, c->mtd->size, &pointlen, &flashbuf); |
| if (!ret && pointlen < c->mtd->size) { |
| /* Don't muck about if it won't let us point to the whole flash */ |
| D1(printk(KERN_DEBUG "MTD point returned len too short: 0x%zx\n", pointlen)); |
| c->mtd->unpoint(c->mtd, flashbuf, 0, c->mtd->size); |
| flashbuf = NULL; |
| } |
| if (ret) |
| D1(printk(KERN_DEBUG "MTD point failed %d\n", ret)); |
| } |
| #endif |
| if (!flashbuf) { |
| /* For NAND it's quicker to read a whole eraseblock at a time, |
| apparently */ |
| if (jffs2_cleanmarker_oob(c)) |
| buf_size = c->sector_size; |
| else |
| buf_size = PAGE_SIZE; |
| |
| /* Respect kmalloc limitations */ |
| if (buf_size > 128*1024) |
| buf_size = 128*1024; |
| |
| D1(printk(KERN_DEBUG "Allocating readbuf of %d bytes\n", buf_size)); |
| flashbuf = kmalloc(buf_size, GFP_KERNEL); |
| if (!flashbuf) |
| return -ENOMEM; |
| } |
| |
| for (i=0; i<c->nr_blocks; i++) { |
| struct jffs2_eraseblock *jeb = &c->blocks[i]; |
| |
| ret = jffs2_scan_eraseblock(c, jeb, buf_size?flashbuf:(flashbuf+jeb->offset), buf_size); |
| |
| if (ret < 0) |
| goto out; |
| |
| ACCT_PARANOIA_CHECK(jeb); |
| |
| /* Now decide which list to put it on */ |
| switch(ret) { |
| case BLK_STATE_ALLFF: |
| /* |
| * Empty block. Since we can't be sure it |
| * was entirely erased, we just queue it for erase |
| * again. It will be marked as such when the erase |
| * is complete. Meanwhile we still count it as empty |
| * for later checks. |
| */ |
| empty_blocks++; |
| list_add(&jeb->list, &c->erase_pending_list); |
| c->nr_erasing_blocks++; |
| break; |
| |
| case BLK_STATE_CLEANMARKER: |
| /* Only a CLEANMARKER node is valid */ |
| if (!jeb->dirty_size) { |
| /* It's actually free */ |
| list_add(&jeb->list, &c->free_list); |
| c->nr_free_blocks++; |
| } else { |
| /* Dirt */ |
| D1(printk(KERN_DEBUG "Adding all-dirty block at 0x%08x to erase_pending_list\n", jeb->offset)); |
| list_add(&jeb->list, &c->erase_pending_list); |
| c->nr_erasing_blocks++; |
| } |
| break; |
| |
| case BLK_STATE_CLEAN: |
| /* Full (or almost full) of clean data. Clean list */ |
| list_add(&jeb->list, &c->clean_list); |
| break; |
| |
| case BLK_STATE_PARTDIRTY: |
| /* Some data, but not full. Dirty list. */ |
| /* We want to remember the block with most free space |
| and stick it in the 'nextblock' position to start writing to it. */ |
| if (jeb->free_size > min_free(c) && |
| (!c->nextblock || c->nextblock->free_size < jeb->free_size)) { |
| /* Better candidate for the next writes to go to */ |
| if (c->nextblock) { |
| c->nextblock->dirty_size += c->nextblock->free_size + c->nextblock->wasted_size; |
| c->dirty_size += c->nextblock->free_size + c->nextblock->wasted_size; |
| c->free_size -= c->nextblock->free_size; |
| c->wasted_size -= c->nextblock->wasted_size; |
| c->nextblock->free_size = c->nextblock->wasted_size = 0; |
| if (VERYDIRTY(c, c->nextblock->dirty_size)) { |
| list_add(&c->nextblock->list, &c->very_dirty_list); |
| } else { |
| list_add(&c->nextblock->list, &c->dirty_list); |
| } |
| } |
| c->nextblock = jeb; |
| } else { |
| jeb->dirty_size += jeb->free_size + jeb->wasted_size; |
| c->dirty_size += jeb->free_size + jeb->wasted_size; |
| c->free_size -= jeb->free_size; |
| c->wasted_size -= jeb->wasted_size; |
| jeb->free_size = jeb->wasted_size = 0; |
| if (VERYDIRTY(c, jeb->dirty_size)) { |
| list_add(&jeb->list, &c->very_dirty_list); |
| } else { |
| list_add(&jeb->list, &c->dirty_list); |
| } |
| } |
| break; |
| |
| case BLK_STATE_ALLDIRTY: |
| /* Nothing valid - not even a clean marker. Needs erasing. */ |
| /* For now we just put it on the erasing list. We'll start the erases later */ |
| D1(printk(KERN_NOTICE "JFFS2: Erase block at 0x%08x is not formatted. It will be erased\n", jeb->offset)); |
| list_add(&jeb->list, &c->erase_pending_list); |
| c->nr_erasing_blocks++; |
| break; |
| |
| case BLK_STATE_BADBLOCK: |
| D1(printk(KERN_NOTICE "JFFS2: Block at 0x%08x is bad\n", jeb->offset)); |
| list_add(&jeb->list, &c->bad_list); |
| c->bad_size += c->sector_size; |
| c->free_size -= c->sector_size; |
| bad_blocks++; |
| break; |
| default: |
| printk(KERN_WARNING "jffs2_scan_medium(): unknown block state\n"); |
| BUG(); |
| } |
| } |
| |
| /* Nextblock dirty is always seen as wasted, because we cannot recycle it now */ |
| if (c->nextblock && (c->nextblock->dirty_size)) { |
| c->nextblock->wasted_size += c->nextblock->dirty_size; |
| c->wasted_size += c->nextblock->dirty_size; |
| c->dirty_size -= c->nextblock->dirty_size; |
| c->nextblock->dirty_size = 0; |
| } |
| #ifdef CONFIG_JFFS2_FS_WRITEBUFFER |
| if (!jffs2_can_mark_obsolete(c) && c->nextblock && (c->nextblock->free_size & (c->wbuf_pagesize-1))) { |
| /* If we're going to start writing into a block which already |
| contains data, and the end of the data isn't page-aligned, |
| skip a little and align it. */ |
| |
| uint32_t skip = c->nextblock->free_size & (c->wbuf_pagesize-1); |
| |
| D1(printk(KERN_DEBUG "jffs2_scan_medium(): Skipping %d bytes in nextblock to ensure page alignment\n", |
| skip)); |
| c->nextblock->wasted_size += skip; |
| c->wasted_size += skip; |
| |
| c->nextblock->free_size -= skip; |
| c->free_size -= skip; |
| } |
| #endif |
| if (c->nr_erasing_blocks) { |
| if ( !c->used_size && ((c->nr_free_blocks+empty_blocks+bad_blocks)!= c->nr_blocks || bad_blocks == c->nr_blocks) ) { |
| printk(KERN_NOTICE "Cowardly refusing to erase blocks on filesystem with no valid JFFS2 nodes\n"); |
| printk(KERN_NOTICE "empty_blocks %d, bad_blocks %d, c->nr_blocks %d\n",empty_blocks,bad_blocks,c->nr_blocks); |
| ret = -EIO; |
| goto out; |
| } |
| jffs2_erase_pending_trigger(c); |
| } |
| ret = 0; |
| out: |
| if (buf_size) |
| kfree(flashbuf); |
| #ifndef __ECOS |
| else |
| c->mtd->unpoint(c->mtd, flashbuf, 0, c->mtd->size); |
| #endif |
| return ret; |
| } |
| |
| static int jffs2_fill_scan_buf (struct jffs2_sb_info *c, unsigned char *buf, |
| uint32_t ofs, uint32_t len) |
| { |
| int ret; |
| size_t retlen; |
| |
| ret = jffs2_flash_read(c, ofs, len, &retlen, buf); |
| if (ret) { |
| D1(printk(KERN_WARNING "mtd->read(0x%x bytes from 0x%x) returned %d\n", len, ofs, ret)); |
| return ret; |
| } |
| if (retlen < len) { |
| D1(printk(KERN_WARNING "Read at 0x%x gave only 0x%zx bytes\n", ofs, retlen)); |
| return -EIO; |
| } |
| D2(printk(KERN_DEBUG "Read 0x%x bytes from 0x%08x into buf\n", len, ofs)); |
| D2(printk(KERN_DEBUG "000: %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x\n", |
| buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6], buf[7], buf[8], buf[9], buf[10], buf[11], buf[12], buf[13], buf[14], buf[15])); |
| return 0; |
| } |
| |
| static int jffs2_scan_eraseblock (struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, |
| unsigned char *buf, uint32_t buf_size) { |
| struct jffs2_unknown_node *node; |
| struct jffs2_unknown_node crcnode; |
| uint32_t ofs, prevofs; |
| uint32_t hdr_crc, buf_ofs, buf_len; |
| int err; |
| int noise = 0; |
| #ifdef CONFIG_JFFS2_FS_WRITEBUFFER |
| int cleanmarkerfound = 0; |
| #endif |
| |
| ofs = jeb->offset; |
| prevofs = jeb->offset - 1; |
| |
| D1(printk(KERN_DEBUG "jffs2_scan_eraseblock(): Scanning block at 0x%x\n", ofs)); |
| |
| #ifdef CONFIG_JFFS2_FS_WRITEBUFFER |
| if (jffs2_cleanmarker_oob(c)) { |
| int ret = jffs2_check_nand_cleanmarker(c, jeb); |
| D2(printk(KERN_NOTICE "jffs_check_nand_cleanmarker returned %d\n",ret)); |
| /* Even if it's not found, we still scan to see |
| if the block is empty. We use this information |
| to decide whether to erase it or not. */ |
| switch (ret) { |
| case 0: cleanmarkerfound = 1; break; |
| case 1: break; |
| case 2: return BLK_STATE_BADBLOCK; |
| case 3: return BLK_STATE_ALLDIRTY; /* Block has failed to erase min. once */ |
| default: return ret; |
| } |
| } |
| #endif |
| buf_ofs = jeb->offset; |
| |
| if (!buf_size) { |
| buf_len = c->sector_size; |
| } else { |
| buf_len = EMPTY_SCAN_SIZE(c->sector_size); |
| err = jffs2_fill_scan_buf(c, buf, buf_ofs, buf_len); |
| if (err) |
| return err; |
| } |
| |
| /* We temporarily use 'ofs' as a pointer into the buffer/jeb */ |
| ofs = 0; |
| |
| /* Scan only 4KiB of 0xFF before declaring it's empty */ |
| while(ofs < EMPTY_SCAN_SIZE(c->sector_size) && *(uint32_t *)(&buf[ofs]) == 0xFFFFFFFF) |
| ofs += 4; |
| |
| if (ofs == EMPTY_SCAN_SIZE(c->sector_size)) { |
| #ifdef CONFIG_JFFS2_FS_WRITEBUFFER |
| if (jffs2_cleanmarker_oob(c)) { |
| /* scan oob, take care of cleanmarker */ |
| int ret = jffs2_check_oob_empty(c, jeb, cleanmarkerfound); |
| D2(printk(KERN_NOTICE "jffs2_check_oob_empty returned %d\n",ret)); |
| switch (ret) { |
| case 0: return cleanmarkerfound ? BLK_STATE_CLEANMARKER : BLK_STATE_ALLFF; |
| case 1: return BLK_STATE_ALLDIRTY; |
| default: return ret; |
| } |
| } |
| #endif |
| D1(printk(KERN_DEBUG "Block at 0x%08x is empty (erased)\n", jeb->offset)); |
| if (c->cleanmarker_size == 0) |
| return BLK_STATE_CLEANMARKER; /* don't bother with re-erase */ |
| else |
| return BLK_STATE_ALLFF; /* OK to erase if all blocks are like this */ |
| } |
| if (ofs) { |
| D1(printk(KERN_DEBUG "Free space at %08x ends at %08x\n", jeb->offset, |
| jeb->offset + ofs)); |
| DIRTY_SPACE(ofs); |
| } |
| |
| /* Now ofs is a complete physical flash offset as it always was... */ |
| ofs += jeb->offset; |
| |
| noise = 10; |
| |
| scan_more: |
| while(ofs < jeb->offset + c->sector_size) { |
| |
| D1(ACCT_PARANOIA_CHECK(jeb)); |
| |
| cond_resched(); |
| |
| if (ofs & 3) { |
| printk(KERN_WARNING "Eep. ofs 0x%08x not word-aligned!\n", ofs); |
| ofs = PAD(ofs); |
| continue; |
| } |
| if (ofs == prevofs) { |
| printk(KERN_WARNING "ofs 0x%08x has already been seen. Skipping\n", ofs); |
| DIRTY_SPACE(4); |
| ofs += 4; |
| continue; |
| } |
| prevofs = ofs; |
| |
| if (jeb->offset + c->sector_size < ofs + sizeof(*node)) { |
| D1(printk(KERN_DEBUG "Fewer than %zd bytes left to end of block. (%x+%x<%x+%zx) Not reading\n", sizeof(struct jffs2_unknown_node), |
| jeb->offset, c->sector_size, ofs, sizeof(*node))); |
| DIRTY_SPACE((jeb->offset + c->sector_size)-ofs); |
| break; |
| } |
| |
| if (buf_ofs + buf_len < ofs + sizeof(*node)) { |
| buf_len = min_t(uint32_t, buf_size, jeb->offset + c->sector_size - ofs); |
| D1(printk(KERN_DEBUG "Fewer than %zd bytes (node header) left to end of buf. Reading 0x%x at 0x%08x\n", |
| sizeof(struct jffs2_unknown_node), buf_len, ofs)); |
| err = jffs2_fill_scan_buf(c, buf, ofs, buf_len); |
| if (err) |
| return err; |
| buf_ofs = ofs; |
| } |
| |
| node = (struct jffs2_unknown_node *)&buf[ofs-buf_ofs]; |
| |
| if (*(uint32_t *)(&buf[ofs-buf_ofs]) == 0xffffffff) { |
| uint32_t inbuf_ofs; |
| uint32_t empty_start; |
| |
| empty_start = ofs; |
| ofs += 4; |
| |
| D1(printk(KERN_DEBUG "Found empty flash at 0x%08x\n", ofs)); |
| more_empty: |
| inbuf_ofs = ofs - buf_ofs; |
| while (inbuf_ofs < buf_len) { |
| if (*(uint32_t *)(&buf[inbuf_ofs]) != 0xffffffff) { |
| printk(KERN_WARNING "Empty flash at 0x%08x ends at 0x%08x\n", |
| empty_start, ofs); |
| DIRTY_SPACE(ofs-empty_start); |
| goto scan_more; |
| } |
| |
| inbuf_ofs+=4; |
| ofs += 4; |
| } |
| /* Ran off end. */ |
| D1(printk(KERN_DEBUG "Empty flash to end of buffer at 0x%08x\n", ofs)); |
| |
| /* If we're only checking the beginning of a block with a cleanmarker, |
| bail now */ |
| if (buf_ofs == jeb->offset && jeb->used_size == PAD(c->cleanmarker_size) && |
| c->cleanmarker_size && !jeb->dirty_size && !jeb->first_node->next_in_ino) { |
| D1(printk(KERN_DEBUG "%d bytes at start of block seems clean... assuming all clean\n", EMPTY_SCAN_SIZE(c->sector_size))); |
| return BLK_STATE_CLEANMARKER; |
| } |
| |
| /* See how much more there is to read in this eraseblock... */ |
| buf_len = min_t(uint32_t, buf_size, jeb->offset + c->sector_size - ofs); |
| if (!buf_len) { |
| /* No more to read. Break out of main loop without marking |
| this range of empty space as dirty (because it's not) */ |
| D1(printk(KERN_DEBUG "Empty flash at %08x runs to end of block. Treating as free_space\n", |
| empty_start)); |
| break; |
| } |
| D1(printk(KERN_DEBUG "Reading another 0x%x at 0x%08x\n", buf_len, ofs)); |
| err = jffs2_fill_scan_buf(c, buf, ofs, buf_len); |
| if (err) |
| return err; |
| buf_ofs = ofs; |
| goto more_empty; |
| } |
| |
| if (ofs == jeb->offset && je16_to_cpu(node->magic) == KSAMTIB_CIGAM_2SFFJ) { |
| printk(KERN_WARNING "Magic bitmask is backwards at offset 0x%08x. Wrong endian filesystem?\n", ofs); |
| DIRTY_SPACE(4); |
| ofs += 4; |
| continue; |
| } |
| if (je16_to_cpu(node->magic) == JFFS2_DIRTY_BITMASK) { |
| D1(printk(KERN_DEBUG "Dirty bitmask at 0x%08x\n", ofs)); |
| DIRTY_SPACE(4); |
| ofs += 4; |
| continue; |
| } |
| if (je16_to_cpu(node->magic) == JFFS2_OLD_MAGIC_BITMASK) { |
| printk(KERN_WARNING "Old JFFS2 bitmask found at 0x%08x\n", ofs); |
| printk(KERN_WARNING "You cannot use older JFFS2 filesystems with newer kernels\n"); |
| DIRTY_SPACE(4); |
| ofs += 4; |
| continue; |
| } |
| if (je16_to_cpu(node->magic) != JFFS2_MAGIC_BITMASK) { |
| /* OK. We're out of possibilities. Whinge and move on */ |
| noisy_printk(&noise, "jffs2_scan_eraseblock(): Magic bitmask 0x%04x not found at 0x%08x: 0x%04x instead\n", |
| JFFS2_MAGIC_BITMASK, ofs, |
| je16_to_cpu(node->magic)); |
| DIRTY_SPACE(4); |
| ofs += 4; |
| continue; |
| } |
| /* We seem to have a node of sorts. Check the CRC */ |
| crcnode.magic = node->magic; |
| crcnode.nodetype = cpu_to_je16( je16_to_cpu(node->nodetype) | JFFS2_NODE_ACCURATE); |
| crcnode.totlen = node->totlen; |
| hdr_crc = crc32(0, &crcnode, sizeof(crcnode)-4); |
| |
| if (hdr_crc != je32_to_cpu(node->hdr_crc)) { |
| noisy_printk(&noise, "jffs2_scan_eraseblock(): Node at 0x%08x {0x%04x, 0x%04x, 0x%08x) has invalid CRC 0x%08x (calculated 0x%08x)\n", |
| ofs, je16_to_cpu(node->magic), |
| je16_to_cpu(node->nodetype), |
| je32_to_cpu(node->totlen), |
| je32_to_cpu(node->hdr_crc), |
| hdr_crc); |
| DIRTY_SPACE(4); |
| ofs += 4; |
| continue; |
| } |
| |
| if (ofs + je32_to_cpu(node->totlen) > |
| jeb->offset + c->sector_size) { |
| /* Eep. Node goes over the end of the erase block. */ |
| printk(KERN_WARNING "Node at 0x%08x with length 0x%08x would run over the end of the erase block\n", |
| ofs, je32_to_cpu(node->totlen)); |
| printk(KERN_WARNING "Perhaps the file system was created with the wrong erase size?\n"); |
| DIRTY_SPACE(4); |
| ofs += 4; |
| continue; |
| } |
| |
| if (!(je16_to_cpu(node->nodetype) & JFFS2_NODE_ACCURATE)) { |
| /* Wheee. This is an obsoleted node */ |
| D2(printk(KERN_DEBUG "Node at 0x%08x is obsolete. Skipping\n", ofs)); |
| DIRTY_SPACE(PAD(je32_to_cpu(node->totlen))); |
| ofs += PAD(je32_to_cpu(node->totlen)); |
| continue; |
| } |
| |
| switch(je16_to_cpu(node->nodetype)) { |
| case JFFS2_NODETYPE_INODE: |
| if (buf_ofs + buf_len < ofs + sizeof(struct jffs2_raw_inode)) { |
| buf_len = min_t(uint32_t, buf_size, jeb->offset + c->sector_size - ofs); |
| D1(printk(KERN_DEBUG "Fewer than %zd bytes (inode node) left to end of buf. Reading 0x%x at 0x%08x\n", |
| sizeof(struct jffs2_raw_inode), buf_len, ofs)); |
| err = jffs2_fill_scan_buf(c, buf, ofs, buf_len); |
| if (err) |
| return err; |
| buf_ofs = ofs; |
| node = (void *)buf; |
| } |
| err = jffs2_scan_inode_node(c, jeb, (void *)node, ofs); |
| if (err) return err; |
| ofs += PAD(je32_to_cpu(node->totlen)); |
| break; |
| |
| case JFFS2_NODETYPE_DIRENT: |
| if (buf_ofs + buf_len < ofs + je32_to_cpu(node->totlen)) { |
| buf_len = min_t(uint32_t, buf_size, jeb->offset + c->sector_size - ofs); |
| D1(printk(KERN_DEBUG "Fewer than %d bytes (dirent node) left to end of buf. Reading 0x%x at 0x%08x\n", |
| je32_to_cpu(node->totlen), buf_len, ofs)); |
| err = jffs2_fill_scan_buf(c, buf, ofs, buf_len); |
| if (err) |
| return err; |
| buf_ofs = ofs; |
| node = (void *)buf; |
| } |
| err = jffs2_scan_dirent_node(c, jeb, (void *)node, ofs); |
| if (err) return err; |
| ofs += PAD(je32_to_cpu(node->totlen)); |
| break; |
| |
| case JFFS2_NODETYPE_CLEANMARKER: |
| D1(printk(KERN_DEBUG "CLEANMARKER node found at 0x%08x\n", ofs)); |
| if (je32_to_cpu(node->totlen) != c->cleanmarker_size) { |
| printk(KERN_NOTICE "CLEANMARKER node found at 0x%08x has totlen 0x%x != normal 0x%x\n", |
| ofs, je32_to_cpu(node->totlen), c->cleanmarker_size); |
| DIRTY_SPACE(PAD(sizeof(struct jffs2_unknown_node))); |
| ofs += PAD(sizeof(struct jffs2_unknown_node)); |
| } else if (jeb->first_node) { |
| printk(KERN_NOTICE "CLEANMARKER node found at 0x%08x, not first node in block (0x%08x)\n", ofs, jeb->offset); |
| DIRTY_SPACE(PAD(sizeof(struct jffs2_unknown_node))); |
| ofs += PAD(sizeof(struct jffs2_unknown_node)); |
| } else { |
| struct jffs2_raw_node_ref *marker_ref = jffs2_alloc_raw_node_ref(); |
| if (!marker_ref) { |
| printk(KERN_NOTICE "Failed to allocate node ref for clean marker\n"); |
| return -ENOMEM; |
| } |
| marker_ref->next_in_ino = NULL; |
| marker_ref->next_phys = NULL; |
| marker_ref->flash_offset = ofs | REF_NORMAL; |
| marker_ref->__totlen = c->cleanmarker_size; |
| jeb->first_node = jeb->last_node = marker_ref; |
| |
| USED_SPACE(PAD(c->cleanmarker_size)); |
| ofs += PAD(c->cleanmarker_size); |
| } |
| break; |
| |
| case JFFS2_NODETYPE_PADDING: |
| DIRTY_SPACE(PAD(je32_to_cpu(node->totlen))); |
| ofs += PAD(je32_to_cpu(node->totlen)); |
| break; |
| |
| default: |
| switch (je16_to_cpu(node->nodetype) & JFFS2_COMPAT_MASK) { |
| case JFFS2_FEATURE_ROCOMPAT: |
| printk(KERN_NOTICE "Read-only compatible feature node (0x%04x) found at offset 0x%08x\n", je16_to_cpu(node->nodetype), ofs); |
| c->flags |= JFFS2_SB_FLAG_RO; |
| if (!(jffs2_is_readonly(c))) |
| return -EROFS; |
| DIRTY_SPACE(PAD(je32_to_cpu(node->totlen))); |
| ofs += PAD(je32_to_cpu(node->totlen)); |
| break; |
| |
| case JFFS2_FEATURE_INCOMPAT: |
| printk(KERN_NOTICE "Incompatible feature node (0x%04x) found at offset 0x%08x\n", je16_to_cpu(node->nodetype), ofs); |
| return -EINVAL; |
| |
| case JFFS2_FEATURE_RWCOMPAT_DELETE: |
| D1(printk(KERN_NOTICE "Unknown but compatible feature node (0x%04x) found at offset 0x%08x\n", je16_to_cpu(node->nodetype), ofs)); |
| DIRTY_SPACE(PAD(je32_to_cpu(node->totlen))); |
| ofs += PAD(je32_to_cpu(node->totlen)); |
| break; |
| |
| case JFFS2_FEATURE_RWCOMPAT_COPY: |
| D1(printk(KERN_NOTICE "Unknown but compatible feature node (0x%04x) found at offset 0x%08x\n", je16_to_cpu(node->nodetype), ofs)); |
| USED_SPACE(PAD(je32_to_cpu(node->totlen))); |
| ofs += PAD(je32_to_cpu(node->totlen)); |
| break; |
| } |
| } |
| } |
| |
| |
| D1(printk(KERN_DEBUG "Block at 0x%08x: free 0x%08x, dirty 0x%08x, unchecked 0x%08x, used 0x%08x\n", jeb->offset, |
| jeb->free_size, jeb->dirty_size, jeb->unchecked_size, jeb->used_size)); |
| |
| /* mark_node_obsolete can add to wasted !! */ |
| if (jeb->wasted_size) { |
| jeb->dirty_size += jeb->wasted_size; |
| c->dirty_size += jeb->wasted_size; |
| c->wasted_size -= jeb->wasted_size; |
| jeb->wasted_size = 0; |
| } |
| |
| if ((jeb->used_size + jeb->unchecked_size) == PAD(c->cleanmarker_size) && !jeb->dirty_size |
| && (!jeb->first_node || !jeb->first_node->next_in_ino) ) |
| return BLK_STATE_CLEANMARKER; |
| |
| /* move blocks with max 4 byte dirty space to cleanlist */ |
| else if (!ISDIRTY(c->sector_size - (jeb->used_size + jeb->unchecked_size))) { |
| c->dirty_size -= jeb->dirty_size; |
| c->wasted_size += jeb->dirty_size; |
| jeb->wasted_size += jeb->dirty_size; |
| jeb->dirty_size = 0; |
| return BLK_STATE_CLEAN; |
| } else if (jeb->used_size || jeb->unchecked_size) |
| return BLK_STATE_PARTDIRTY; |
| else |
| return BLK_STATE_ALLDIRTY; |
| } |
| |
| static struct jffs2_inode_cache *jffs2_scan_make_ino_cache(struct jffs2_sb_info *c, uint32_t ino) |
| { |
| struct jffs2_inode_cache *ic; |
| |
| ic = jffs2_get_ino_cache(c, ino); |
| if (ic) |
| return ic; |
| |
| if (ino > c->highest_ino) |
| c->highest_ino = ino; |
| |
| ic = jffs2_alloc_inode_cache(); |
| if (!ic) { |
| printk(KERN_NOTICE "jffs2_scan_make_inode_cache(): allocation of inode cache failed\n"); |
| return NULL; |
| } |
| memset(ic, 0, sizeof(*ic)); |
| |
| ic->ino = ino; |
| ic->nodes = (void *)ic; |
| jffs2_add_ino_cache(c, ic); |
| if (ino == 1) |
| ic->nlink = 1; |
| return ic; |
| } |
| |
| static int jffs2_scan_inode_node(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, |
| struct jffs2_raw_inode *ri, uint32_t ofs) |
| { |
| struct jffs2_raw_node_ref *raw; |
| struct jffs2_inode_cache *ic; |
| uint32_t ino = je32_to_cpu(ri->ino); |
| |
| D1(printk(KERN_DEBUG "jffs2_scan_inode_node(): Node at 0x%08x\n", ofs)); |
| |
| /* We do very little here now. Just check the ino# to which we should attribute |
| this node; we can do all the CRC checking etc. later. There's a tradeoff here -- |
| we used to scan the flash once only, reading everything we want from it into |
| memory, then building all our in-core data structures and freeing the extra |
| information. Now we allow the first part of the mount to complete a lot quicker, |
| but we have to go _back_ to the flash in order to finish the CRC checking, etc. |
| Which means that the _full_ amount of time to get to proper write mode with GC |
| operational may actually be _longer_ than before. Sucks to be me. */ |
| |
| raw = jffs2_alloc_raw_node_ref(); |
| if (!raw) { |
| printk(KERN_NOTICE "jffs2_scan_inode_node(): allocation of node reference failed\n"); |
| return -ENOMEM; |
| } |
| |
| ic = jffs2_get_ino_cache(c, ino); |
| if (!ic) { |
| /* Inocache get failed. Either we read a bogus ino# or it's just genuinely the |
| first node we found for this inode. Do a CRC check to protect against the former |
| case */ |
| uint32_t crc = crc32(0, ri, sizeof(*ri)-8); |
| |
| if (crc != je32_to_cpu(ri->node_crc)) { |
| printk(KERN_NOTICE "jffs2_scan_inode_node(): CRC failed on node at 0x%08x: Read 0x%08x, calculated 0x%08x\n", |
| ofs, je32_to_cpu(ri->node_crc), crc); |
| /* We believe totlen because the CRC on the node _header_ was OK, just the node itself failed. */ |
| DIRTY_SPACE(PAD(je32_to_cpu(ri->totlen))); |
| jffs2_free_raw_node_ref(raw); |
| return 0; |
| } |
| ic = jffs2_scan_make_ino_cache(c, ino); |
| if (!ic) { |
| jffs2_free_raw_node_ref(raw); |
| return -ENOMEM; |
| } |
| } |
| |
| /* Wheee. It worked */ |
| |
| raw->flash_offset = ofs | REF_UNCHECKED; |
| raw->__totlen = PAD(je32_to_cpu(ri->totlen)); |
| raw->next_phys = NULL; |
| raw->next_in_ino = ic->nodes; |
| |
| ic->nodes = raw; |
| if (!jeb->first_node) |
| jeb->first_node = raw; |
| if (jeb->last_node) |
| jeb->last_node->next_phys = raw; |
| jeb->last_node = raw; |
| |
| D1(printk(KERN_DEBUG "Node is ino #%u, version %d. Range 0x%x-0x%x\n", |
| je32_to_cpu(ri->ino), je32_to_cpu(ri->version), |
| je32_to_cpu(ri->offset), |
| je32_to_cpu(ri->offset)+je32_to_cpu(ri->dsize))); |
| |
| pseudo_random += je32_to_cpu(ri->version); |
| |
| UNCHECKED_SPACE(PAD(je32_to_cpu(ri->totlen))); |
| return 0; |
| } |
| |
| static int jffs2_scan_dirent_node(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, |
| struct jffs2_raw_dirent *rd, uint32_t ofs) |
| { |
| struct jffs2_raw_node_ref *raw; |
| struct jffs2_full_dirent *fd; |
| struct jffs2_inode_cache *ic; |
| uint32_t crc; |
| |
| D1(printk(KERN_DEBUG "jffs2_scan_dirent_node(): Node at 0x%08x\n", ofs)); |
| |
| /* We don't get here unless the node is still valid, so we don't have to |
| mask in the ACCURATE bit any more. */ |
| crc = crc32(0, rd, sizeof(*rd)-8); |
| |
| if (crc != je32_to_cpu(rd->node_crc)) { |
| printk(KERN_NOTICE "jffs2_scan_dirent_node(): Node CRC failed on node at 0x%08x: Read 0x%08x, calculated 0x%08x\n", |
| ofs, je32_to_cpu(rd->node_crc), crc); |
| /* We believe totlen because the CRC on the node _header_ was OK, just the node itself failed. */ |
| DIRTY_SPACE(PAD(je32_to_cpu(rd->totlen))); |
| return 0; |
| } |
| |
| pseudo_random += je32_to_cpu(rd->version); |
| |
| fd = jffs2_alloc_full_dirent(rd->nsize+1); |
| if (!fd) { |
| return -ENOMEM; |
| } |
| memcpy(&fd->name, rd->name, rd->nsize); |
| fd->name[rd->nsize] = 0; |
| |
| crc = crc32(0, fd->name, rd->nsize); |
| if (crc != je32_to_cpu(rd->name_crc)) { |
| printk(KERN_NOTICE "jffs2_scan_dirent_node(): Name CRC failed on node at 0x%08x: Read 0x%08x, calculated 0x%08x\n", |
| ofs, je32_to_cpu(rd->name_crc), crc); |
| D1(printk(KERN_NOTICE "Name for which CRC failed is (now) '%s', ino #%d\n", fd->name, je32_to_cpu(rd->ino))); |
| jffs2_free_full_dirent(fd); |
| /* FIXME: Why do we believe totlen? */ |
| /* We believe totlen because the CRC on the node _header_ was OK, just the name failed. */ |
| DIRTY_SPACE(PAD(je32_to_cpu(rd->totlen))); |
| return 0; |
| } |
| raw = jffs2_alloc_raw_node_ref(); |
| if (!raw) { |
| jffs2_free_full_dirent(fd); |
| printk(KERN_NOTICE "jffs2_scan_dirent_node(): allocation of node reference failed\n"); |
| return -ENOMEM; |
| } |
| ic = jffs2_scan_make_ino_cache(c, je32_to_cpu(rd->pino)); |
| if (!ic) { |
| jffs2_free_full_dirent(fd); |
| jffs2_free_raw_node_ref(raw); |
| return -ENOMEM; |
| } |
| |
| raw->__totlen = PAD(je32_to_cpu(rd->totlen)); |
| raw->flash_offset = ofs | REF_PRISTINE; |
| raw->next_phys = NULL; |
| raw->next_in_ino = ic->nodes; |
| ic->nodes = raw; |
| if (!jeb->first_node) |
| jeb->first_node = raw; |
| if (jeb->last_node) |
| jeb->last_node->next_phys = raw; |
| jeb->last_node = raw; |
| |
| fd->raw = raw; |
| fd->next = NULL; |
| fd->version = je32_to_cpu(rd->version); |
| fd->ino = je32_to_cpu(rd->ino); |
| fd->nhash = full_name_hash(fd->name, rd->nsize); |
| fd->type = rd->type; |
| USED_SPACE(PAD(je32_to_cpu(rd->totlen))); |
| jffs2_add_fd_to_list(c, fd, &ic->scan_dents); |
| |
| return 0; |
| } |
| |
| static int count_list(struct list_head *l) |
| { |
| uint32_t count = 0; |
| struct list_head *tmp; |
| |
| list_for_each(tmp, l) { |
| count++; |
| } |
| return count; |
| } |
| |
| /* Note: This breaks if list_empty(head). I don't care. You |
| might, if you copy this code and use it elsewhere :) */ |
| static void rotate_list(struct list_head *head, uint32_t count) |
| { |
| struct list_head *n = head->next; |
| |
| list_del(head); |
| while(count--) { |
| n = n->next; |
| } |
| list_add(head, n); |
| } |
| |
| void jffs2_rotate_lists(struct jffs2_sb_info *c) |
| { |
| uint32_t x; |
| uint32_t rotateby; |
| |
| x = count_list(&c->clean_list); |
| if (x) { |
| rotateby = pseudo_random % x; |
| D1(printk(KERN_DEBUG "Rotating clean_list by %d\n", rotateby)); |
| |
| rotate_list((&c->clean_list), rotateby); |
| |
| D1(printk(KERN_DEBUG "Erase block at front of clean_list is at %08x\n", |
| list_entry(c->clean_list.next, struct jffs2_eraseblock, list)->offset)); |
| } else { |
| D1(printk(KERN_DEBUG "Not rotating empty clean_list\n")); |
| } |
| |
| x = count_list(&c->very_dirty_list); |
| if (x) { |
| rotateby = pseudo_random % x; |
| D1(printk(KERN_DEBUG "Rotating very_dirty_list by %d\n", rotateby)); |
| |
| rotate_list((&c->very_dirty_list), rotateby); |
| |
| D1(printk(KERN_DEBUG "Erase block at front of very_dirty_list is at %08x\n", |
| list_entry(c->very_dirty_list.next, struct jffs2_eraseblock, list)->offset)); |
| } else { |
| D1(printk(KERN_DEBUG "Not rotating empty very_dirty_list\n")); |
| } |
| |
| x = count_list(&c->dirty_list); |
| if (x) { |
| rotateby = pseudo_random % x; |
| D1(printk(KERN_DEBUG "Rotating dirty_list by %d\n", rotateby)); |
| |
| rotate_list((&c->dirty_list), rotateby); |
| |
| D1(printk(KERN_DEBUG "Erase block at front of dirty_list is at %08x\n", |
| list_entry(c->dirty_list.next, struct jffs2_eraseblock, list)->offset)); |
| } else { |
| D1(printk(KERN_DEBUG "Not rotating empty dirty_list\n")); |
| } |
| |
| x = count_list(&c->erasable_list); |
| if (x) { |
| rotateby = pseudo_random % x; |
| D1(printk(KERN_DEBUG "Rotating erasable_list by %d\n", rotateby)); |
| |
| rotate_list((&c->erasable_list), rotateby); |
| |
| D1(printk(KERN_DEBUG "Erase block at front of erasable_list is at %08x\n", |
| list_entry(c->erasable_list.next, struct jffs2_eraseblock, list)->offset)); |
| } else { |
| D1(printk(KERN_DEBUG "Not rotating empty erasable_list\n")); |
| } |
| |
| if (c->nr_erasing_blocks) { |
| rotateby = pseudo_random % c->nr_erasing_blocks; |
| D1(printk(KERN_DEBUG "Rotating erase_pending_list by %d\n", rotateby)); |
| |
| rotate_list((&c->erase_pending_list), rotateby); |
| |
| D1(printk(KERN_DEBUG "Erase block at front of erase_pending_list is at %08x\n", |
| list_entry(c->erase_pending_list.next, struct jffs2_eraseblock, list)->offset)); |
| } else { |
| D1(printk(KERN_DEBUG "Not rotating empty erase_pending_list\n")); |
| } |
| |
| if (c->nr_free_blocks) { |
| rotateby = pseudo_random % c->nr_free_blocks; |
| D1(printk(KERN_DEBUG "Rotating free_list by %d\n", rotateby)); |
| |
| rotate_list((&c->free_list), rotateby); |
| |
| D1(printk(KERN_DEBUG "Erase block at front of free_list is at %08x\n", |
| list_entry(c->free_list.next, struct jffs2_eraseblock, list)->offset)); |
| } else { |
| D1(printk(KERN_DEBUG "Not rotating empty free_list\n")); |
| } |
| } |