| /* |
| * Board setup routines for the Artesyn Katana cPCI boards. |
| * |
| * Author: Tim Montgomery <timm@artesyncp.com> |
| * Maintained by: Mark A. Greer <mgreer@mvista.com> |
| * |
| * Based on code done by Rabeeh Khoury - rabeeh@galileo.co.il |
| * Based on code done by - Mark A. Greer <mgreer@mvista.com> |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License as published by the |
| * Free Software Foundation; either version 2 of the License, or (at your |
| * option) any later version. |
| */ |
| /* |
| * Supports the Artesyn 750i, 752i, and 3750. The 752i is virtually identical |
| * to the 750i except that it has an mv64460 bridge. |
| */ |
| #include <linux/config.h> |
| #include <linux/kernel.h> |
| #include <linux/pci.h> |
| #include <linux/kdev_t.h> |
| #include <linux/console.h> |
| #include <linux/initrd.h> |
| #include <linux/root_dev.h> |
| #include <linux/delay.h> |
| #include <linux/seq_file.h> |
| #include <linux/mtd/physmap.h> |
| #include <linux/mv643xx.h> |
| #include <linux/platform_device.h> |
| #ifdef CONFIG_BOOTIMG |
| #include <linux/bootimg.h> |
| #endif |
| #include <asm/io.h> |
| #include <asm/unistd.h> |
| #include <asm/page.h> |
| #include <asm/time.h> |
| #include <asm/smp.h> |
| #include <asm/todc.h> |
| #include <asm/bootinfo.h> |
| #include <asm/ppcboot.h> |
| #include <asm/mv64x60.h> |
| #include <platforms/katana.h> |
| #include <asm/machdep.h> |
| |
| static struct mv64x60_handle bh; |
| static katana_id_t katana_id; |
| static void __iomem *cpld_base; |
| static void __iomem *sram_base; |
| static u32 katana_flash_size_0; |
| static u32 katana_flash_size_1; |
| static u32 katana_bus_frequency; |
| static struct pci_controller katana_hose_a; |
| |
| unsigned char __res[sizeof(bd_t)]; |
| |
| /* PCI Interrupt routing */ |
| static int __init |
| katana_irq_lookup_750i(unsigned char idsel, unsigned char pin) |
| { |
| static char pci_irq_table[][4] = { |
| /* |
| * PCI IDSEL/INTPIN->INTLINE |
| * A B C D |
| */ |
| /* IDSEL 4 (PMC 1) */ |
| { KATANA_PCI_INTB_IRQ_750i, KATANA_PCI_INTC_IRQ_750i, |
| KATANA_PCI_INTD_IRQ_750i, KATANA_PCI_INTA_IRQ_750i }, |
| /* IDSEL 5 (PMC 2) */ |
| { KATANA_PCI_INTC_IRQ_750i, KATANA_PCI_INTD_IRQ_750i, |
| KATANA_PCI_INTA_IRQ_750i, KATANA_PCI_INTB_IRQ_750i }, |
| /* IDSEL 6 (T8110) */ |
| {KATANA_PCI_INTD_IRQ_750i, 0, 0, 0 }, |
| /* IDSEL 7 (unused) */ |
| {0, 0, 0, 0 }, |
| /* IDSEL 8 (Intel 82544) (752i only but doesn't harm 750i) */ |
| {KATANA_PCI_INTD_IRQ_750i, 0, 0, 0 }, |
| }; |
| const long min_idsel = 4, max_idsel = 8, irqs_per_slot = 4; |
| |
| return PCI_IRQ_TABLE_LOOKUP; |
| } |
| |
| static int __init |
| katana_irq_lookup_3750(unsigned char idsel, unsigned char pin) |
| { |
| static char pci_irq_table[][4] = { |
| /* |
| * PCI IDSEL/INTPIN->INTLINE |
| * A B C D |
| */ |
| { KATANA_PCI_INTA_IRQ_3750, 0, 0, 0 }, /* IDSEL 3 (BCM5691) */ |
| { KATANA_PCI_INTB_IRQ_3750, 0, 0, 0 }, /* IDSEL 4 (MV64360 #2)*/ |
| { KATANA_PCI_INTC_IRQ_3750, 0, 0, 0 }, /* IDSEL 5 (MV64360 #3)*/ |
| }; |
| const long min_idsel = 3, max_idsel = 5, irqs_per_slot = 4; |
| |
| return PCI_IRQ_TABLE_LOOKUP; |
| } |
| |
| static int __init |
| katana_map_irq(struct pci_dev *dev, unsigned char idsel, unsigned char pin) |
| { |
| switch (katana_id) { |
| case KATANA_ID_750I: |
| case KATANA_ID_752I: |
| return katana_irq_lookup_750i(idsel, pin); |
| |
| case KATANA_ID_3750: |
| return katana_irq_lookup_3750(idsel, pin); |
| |
| default: |
| printk(KERN_ERR "Bogus board ID\n"); |
| return 0; |
| } |
| } |
| |
| /* Board info retrieval routines */ |
| void __init |
| katana_get_board_id(void) |
| { |
| switch (in_8(cpld_base + KATANA_CPLD_PRODUCT_ID)) { |
| case KATANA_PRODUCT_ID_3750: |
| katana_id = KATANA_ID_3750; |
| break; |
| |
| case KATANA_PRODUCT_ID_750i: |
| katana_id = KATANA_ID_750I; |
| break; |
| |
| case KATANA_PRODUCT_ID_752i: |
| katana_id = KATANA_ID_752I; |
| break; |
| |
| default: |
| printk(KERN_ERR "Unsupported board\n"); |
| } |
| } |
| |
| int __init |
| katana_get_proc_num(void) |
| { |
| u16 val; |
| u8 save_exclude; |
| static int proc = -1; |
| static u8 first_time = 1; |
| |
| if (first_time) { |
| if (katana_id != KATANA_ID_3750) |
| proc = 0; |
| else { |
| save_exclude = mv64x60_pci_exclude_bridge; |
| mv64x60_pci_exclude_bridge = 0; |
| |
| early_read_config_word(bh.hose_b, 0, |
| PCI_DEVFN(0,0), PCI_DEVICE_ID, &val); |
| |
| mv64x60_pci_exclude_bridge = save_exclude; |
| |
| switch(val) { |
| case PCI_DEVICE_ID_KATANA_3750_PROC0: |
| proc = 0; |
| break; |
| |
| case PCI_DEVICE_ID_KATANA_3750_PROC1: |
| proc = 1; |
| break; |
| |
| case PCI_DEVICE_ID_KATANA_3750_PROC2: |
| proc = 2; |
| break; |
| |
| default: |
| printk(KERN_ERR "Bogus Device ID\n"); |
| } |
| } |
| |
| first_time = 0; |
| } |
| |
| return proc; |
| } |
| |
| static inline int |
| katana_is_monarch(void) |
| { |
| return in_8(cpld_base + KATANA_CPLD_BD_CFG_3) & |
| KATANA_CPLD_BD_CFG_3_MONARCH; |
| } |
| |
| static void __init |
| katana_setup_bridge(void) |
| { |
| struct pci_controller hose; |
| struct mv64x60_setup_info si; |
| void __iomem *vaddr; |
| int i; |
| u32 v; |
| u16 val, type; |
| u8 save_exclude; |
| |
| /* |
| * Some versions of the Katana firmware mistakenly change the vendor |
| * & device id fields in the bridge's pci device (visible via pci |
| * config accesses). This breaks mv64x60_init() because those values |
| * are used to identify the type of bridge that's there. Artesyn |
| * claims that the subsystem vendor/device id's will have the correct |
| * Marvell values so this code puts back the correct values from there. |
| */ |
| memset(&hose, 0, sizeof(hose)); |
| vaddr = ioremap(CONFIG_MV64X60_NEW_BASE, MV64x60_INTERNAL_SPACE_SIZE); |
| setup_indirect_pci_nomap(&hose, vaddr + MV64x60_PCI0_CONFIG_ADDR, |
| vaddr + MV64x60_PCI0_CONFIG_DATA); |
| save_exclude = mv64x60_pci_exclude_bridge; |
| mv64x60_pci_exclude_bridge = 0; |
| |
| early_read_config_word(&hose, 0, PCI_DEVFN(0, 0), PCI_VENDOR_ID, &val); |
| |
| if (val != PCI_VENDOR_ID_MARVELL) { |
| early_read_config_word(&hose, 0, PCI_DEVFN(0, 0), |
| PCI_SUBSYSTEM_VENDOR_ID, &val); |
| early_write_config_word(&hose, 0, PCI_DEVFN(0, 0), |
| PCI_VENDOR_ID, val); |
| early_read_config_word(&hose, 0, PCI_DEVFN(0, 0), |
| PCI_SUBSYSTEM_ID, &val); |
| early_write_config_word(&hose, 0, PCI_DEVFN(0, 0), |
| PCI_DEVICE_ID, val); |
| } |
| |
| /* |
| * While we're in here, set the hotswap register correctly. |
| * Turn off blue LED; mask ENUM#, clear insertion & extraction bits. |
| */ |
| early_read_config_dword(&hose, 0, PCI_DEVFN(0, 0), |
| MV64360_PCICFG_CPCI_HOTSWAP, &v); |
| v &= ~(1<<19); |
| v |= ((1<<17) | (1<<22) | (1<<23)); |
| early_write_config_dword(&hose, 0, PCI_DEVFN(0, 0), |
| MV64360_PCICFG_CPCI_HOTSWAP, v); |
| |
| /* While we're at it, grab the bridge type for later */ |
| early_read_config_word(&hose, 0, PCI_DEVFN(0, 0), PCI_DEVICE_ID, &type); |
| |
| mv64x60_pci_exclude_bridge = save_exclude; |
| iounmap(vaddr); |
| |
| memset(&si, 0, sizeof(si)); |
| |
| si.phys_reg_base = CONFIG_MV64X60_NEW_BASE; |
| |
| si.pci_1.enable_bus = 1; |
| si.pci_1.pci_io.cpu_base = KATANA_PCI1_IO_START_PROC_ADDR; |
| si.pci_1.pci_io.pci_base_hi = 0; |
| si.pci_1.pci_io.pci_base_lo = KATANA_PCI1_IO_START_PCI_ADDR; |
| si.pci_1.pci_io.size = KATANA_PCI1_IO_SIZE; |
| si.pci_1.pci_io.swap = MV64x60_CPU2PCI_SWAP_NONE; |
| si.pci_1.pci_mem[0].cpu_base = KATANA_PCI1_MEM_START_PROC_ADDR; |
| si.pci_1.pci_mem[0].pci_base_hi = KATANA_PCI1_MEM_START_PCI_HI_ADDR; |
| si.pci_1.pci_mem[0].pci_base_lo = KATANA_PCI1_MEM_START_PCI_LO_ADDR; |
| si.pci_1.pci_mem[0].size = KATANA_PCI1_MEM_SIZE; |
| si.pci_1.pci_mem[0].swap = MV64x60_CPU2PCI_SWAP_NONE; |
| si.pci_1.pci_cmd_bits = 0; |
| si.pci_1.latency_timer = 0x80; |
| |
| for (i = 0; i < MV64x60_CPU2MEM_WINDOWS; i++) { |
| #if defined(CONFIG_NOT_COHERENT_CACHE) |
| si.cpu_prot_options[i] = 0; |
| si.enet_options[i] = MV64360_ENET2MEM_SNOOP_NONE; |
| si.mpsc_options[i] = MV64360_MPSC2MEM_SNOOP_NONE; |
| si.idma_options[i] = MV64360_IDMA2MEM_SNOOP_NONE; |
| |
| si.pci_1.acc_cntl_options[i] = |
| MV64360_PCI_ACC_CNTL_SNOOP_NONE | |
| MV64360_PCI_ACC_CNTL_SWAP_NONE | |
| MV64360_PCI_ACC_CNTL_MBURST_128_BYTES | |
| MV64360_PCI_ACC_CNTL_RDSIZE_256_BYTES; |
| #else |
| si.cpu_prot_options[i] = 0; |
| si.enet_options[i] = MV64360_ENET2MEM_SNOOP_WB; |
| si.mpsc_options[i] = MV64360_MPSC2MEM_SNOOP_WB; |
| si.idma_options[i] = MV64360_IDMA2MEM_SNOOP_WB; |
| |
| si.pci_1.acc_cntl_options[i] = |
| MV64360_PCI_ACC_CNTL_SNOOP_WB | |
| MV64360_PCI_ACC_CNTL_SWAP_NONE | |
| MV64360_PCI_ACC_CNTL_MBURST_32_BYTES | |
| ((type == PCI_DEVICE_ID_MARVELL_MV64360) ? |
| MV64360_PCI_ACC_CNTL_RDSIZE_32_BYTES : |
| MV64360_PCI_ACC_CNTL_RDSIZE_256_BYTES); |
| #endif |
| } |
| |
| /* Lookup PCI host bridges */ |
| if (mv64x60_init(&bh, &si)) |
| printk(KERN_WARNING "Bridge initialization failed.\n"); |
| |
| pci_dram_offset = 0; /* sys mem at same addr on PCI & cpu bus */ |
| ppc_md.pci_swizzle = common_swizzle; |
| ppc_md.pci_map_irq = katana_map_irq; |
| ppc_md.pci_exclude_device = mv64x60_pci_exclude_device; |
| |
| mv64x60_set_bus(&bh, 1, 0); |
| bh.hose_b->first_busno = 0; |
| bh.hose_b->last_busno = 0xff; |
| |
| /* |
| * Need to access hotswap reg which is in the pci config area of the |
| * bridge's hose 0. Note that pcibios_alloc_controller() can't be used |
| * to alloc hose_a b/c that would make hose 0 known to the generic |
| * pci code which we don't want. |
| */ |
| bh.hose_a = &katana_hose_a; |
| setup_indirect_pci_nomap(bh.hose_a, |
| bh.v_base + MV64x60_PCI0_CONFIG_ADDR, |
| bh.v_base + MV64x60_PCI0_CONFIG_DATA); |
| } |
| |
| /* Bridge & platform setup routines */ |
| void __init |
| katana_intr_setup(void) |
| { |
| if (bh.type == MV64x60_TYPE_MV64460) /* As per instns from Marvell */ |
| mv64x60_clr_bits(&bh, MV64x60_CPU_MASTER_CNTL, 1 << 15); |
| |
| /* MPP 8, 9, and 10 */ |
| mv64x60_clr_bits(&bh, MV64x60_MPP_CNTL_1, 0xfff); |
| |
| /* MPP 14 */ |
| if ((katana_id == KATANA_ID_750I) || (katana_id == KATANA_ID_752I)) |
| mv64x60_clr_bits(&bh, MV64x60_MPP_CNTL_1, 0x0f000000); |
| |
| /* |
| * Define GPP 8,9,and 10 interrupt polarity as active low |
| * input signal and level triggered |
| */ |
| mv64x60_set_bits(&bh, MV64x60_GPP_LEVEL_CNTL, 0x700); |
| mv64x60_clr_bits(&bh, MV64x60_GPP_IO_CNTL, 0x700); |
| |
| if ((katana_id == KATANA_ID_750I) || (katana_id == KATANA_ID_752I)) { |
| mv64x60_set_bits(&bh, MV64x60_GPP_LEVEL_CNTL, (1<<14)); |
| mv64x60_clr_bits(&bh, MV64x60_GPP_IO_CNTL, (1<<14)); |
| } |
| |
| /* Config GPP intr ctlr to respond to level trigger */ |
| mv64x60_set_bits(&bh, MV64x60_COMM_ARBITER_CNTL, (1<<10)); |
| |
| if (bh.type == MV64x60_TYPE_MV64360) { |
| /* Erratum FEr PCI-#9 */ |
| mv64x60_clr_bits(&bh, MV64x60_PCI1_CMD, |
| (1<<4) | (1<<5) | (1<<6) | (1<<7)); |
| mv64x60_set_bits(&bh, MV64x60_PCI1_CMD, (1<<8) | (1<<9)); |
| } else { |
| mv64x60_clr_bits(&bh, MV64x60_PCI1_CMD, (1<<6) | (1<<7)); |
| mv64x60_set_bits(&bh, MV64x60_PCI1_CMD, |
| (1<<4) | (1<<5) | (1<<8) | (1<<9)); |
| } |
| |
| /* |
| * Dismiss and then enable interrupt on GPP interrupt cause |
| * for CPU #0 |
| */ |
| mv64x60_write(&bh, MV64x60_GPP_INTR_CAUSE, ~0x700); |
| mv64x60_set_bits(&bh, MV64x60_GPP_INTR_MASK, 0x700); |
| |
| if ((katana_id == KATANA_ID_750I) || (katana_id == KATANA_ID_752I)) { |
| mv64x60_write(&bh, MV64x60_GPP_INTR_CAUSE, ~(1<<14)); |
| mv64x60_set_bits(&bh, MV64x60_GPP_INTR_MASK, (1<<14)); |
| } |
| |
| /* |
| * Dismiss and then enable interrupt on CPU #0 high cause reg |
| * BIT25 summarizes GPP interrupts 8-15 |
| */ |
| mv64x60_set_bits(&bh, MV64360_IC_CPU0_INTR_MASK_HI, (1<<25)); |
| } |
| |
| void __init |
| katana_setup_peripherals(void) |
| { |
| u32 base; |
| |
| /* Set up windows for boot CS, soldered & socketed flash, and CPLD */ |
| mv64x60_set_32bit_window(&bh, MV64x60_CPU2BOOT_WIN, |
| KATANA_BOOT_WINDOW_BASE, KATANA_BOOT_WINDOW_SIZE, 0); |
| bh.ci->enable_window_32bit(&bh, MV64x60_CPU2BOOT_WIN); |
| |
| /* Assume firmware set up window sizes correctly for dev 0 & 1 */ |
| mv64x60_get_32bit_window(&bh, MV64x60_CPU2DEV_0_WIN, &base, |
| &katana_flash_size_0); |
| |
| if (katana_flash_size_0 > 0) { |
| mv64x60_set_32bit_window(&bh, MV64x60_CPU2DEV_0_WIN, |
| KATANA_SOLDERED_FLASH_BASE, katana_flash_size_0, 0); |
| bh.ci->enable_window_32bit(&bh, MV64x60_CPU2DEV_0_WIN); |
| } |
| |
| mv64x60_get_32bit_window(&bh, MV64x60_CPU2DEV_1_WIN, &base, |
| &katana_flash_size_1); |
| |
| if (katana_flash_size_1 > 0) { |
| mv64x60_set_32bit_window(&bh, MV64x60_CPU2DEV_1_WIN, |
| (KATANA_SOLDERED_FLASH_BASE + katana_flash_size_0), |
| katana_flash_size_1, 0); |
| bh.ci->enable_window_32bit(&bh, MV64x60_CPU2DEV_1_WIN); |
| } |
| |
| mv64x60_set_32bit_window(&bh, MV64x60_CPU2DEV_2_WIN, |
| KATANA_SOCKET_BASE, KATANA_SOCKETED_FLASH_SIZE, 0); |
| bh.ci->enable_window_32bit(&bh, MV64x60_CPU2DEV_2_WIN); |
| |
| mv64x60_set_32bit_window(&bh, MV64x60_CPU2DEV_3_WIN, |
| KATANA_CPLD_BASE, KATANA_CPLD_SIZE, 0); |
| bh.ci->enable_window_32bit(&bh, MV64x60_CPU2DEV_3_WIN); |
| cpld_base = ioremap(KATANA_CPLD_BASE, KATANA_CPLD_SIZE); |
| |
| mv64x60_set_32bit_window(&bh, MV64x60_CPU2SRAM_WIN, |
| KATANA_INTERNAL_SRAM_BASE, MV64360_SRAM_SIZE, 0); |
| bh.ci->enable_window_32bit(&bh, MV64x60_CPU2SRAM_WIN); |
| sram_base = ioremap(KATANA_INTERNAL_SRAM_BASE, MV64360_SRAM_SIZE); |
| |
| /* Set up Enet->SRAM window */ |
| mv64x60_set_32bit_window(&bh, MV64x60_ENET2MEM_4_WIN, |
| KATANA_INTERNAL_SRAM_BASE, MV64360_SRAM_SIZE, 0x2); |
| bh.ci->enable_window_32bit(&bh, MV64x60_ENET2MEM_4_WIN); |
| |
| /* Give enet r/w access to memory region */ |
| mv64x60_set_bits(&bh, MV64360_ENET2MEM_ACC_PROT_0, (0x3 << (4 << 1))); |
| mv64x60_set_bits(&bh, MV64360_ENET2MEM_ACC_PROT_1, (0x3 << (4 << 1))); |
| mv64x60_set_bits(&bh, MV64360_ENET2MEM_ACC_PROT_2, (0x3 << (4 << 1))); |
| |
| mv64x60_clr_bits(&bh, MV64x60_PCI1_PCI_DECODE_CNTL, (1 << 3)); |
| mv64x60_clr_bits(&bh, MV64x60_TIMR_CNTR_0_3_CNTL, |
| ((1 << 0) | (1 << 8) | (1 << 16) | (1 << 24))); |
| |
| /* Must wait until window set up before retrieving board id */ |
| katana_get_board_id(); |
| |
| /* Enumerate pci bus (must know board id before getting proc number) */ |
| if (katana_get_proc_num() == 0) |
| bh.hose_b->last_busno = pciauto_bus_scan(bh.hose_b, 0); |
| |
| #if defined(CONFIG_NOT_COHERENT_CACHE) |
| mv64x60_write(&bh, MV64360_SRAM_CONFIG, 0x00160000); |
| #else |
| mv64x60_write(&bh, MV64360_SRAM_CONFIG, 0x001600b2); |
| #endif |
| |
| /* |
| * Setting the SRAM to 0. Note that this generates parity errors on |
| * internal data path in SRAM since it's first time accessing it |
| * while after reset it's not configured. |
| */ |
| memset(sram_base, 0, MV64360_SRAM_SIZE); |
| |
| /* Only processor zero [on 3750] is an PCI interrupt controller */ |
| if (katana_get_proc_num() == 0) |
| katana_intr_setup(); |
| } |
| |
| static void __init |
| katana_enable_ipmi(void) |
| { |
| u8 reset_out; |
| |
| /* Enable access to IPMI ctlr by clearing IPMI PORTSEL bit in CPLD */ |
| reset_out = in_8(cpld_base + KATANA_CPLD_RESET_OUT); |
| reset_out &= ~KATANA_CPLD_RESET_OUT_PORTSEL; |
| out_8(cpld_base + KATANA_CPLD_RESET_OUT, reset_out); |
| } |
| |
| static void __init |
| katana_setup_arch(void) |
| { |
| if (ppc_md.progress) |
| ppc_md.progress("katana_setup_arch: enter", 0); |
| |
| set_tb(0, 0); |
| |
| #ifdef CONFIG_BLK_DEV_INITRD |
| if (initrd_start) |
| ROOT_DEV = Root_RAM0; |
| else |
| #endif |
| #ifdef CONFIG_ROOT_NFS |
| ROOT_DEV = Root_NFS; |
| #else |
| ROOT_DEV = Root_SDA2; |
| #endif |
| |
| /* |
| * Set up the L2CR register. |
| * |
| * 750FX has only L2E, L2PE (bits 2-8 are reserved) |
| * DD2.0 has bug that requires the L2 to be in WRT mode |
| * avoid dirty data in cache |
| */ |
| if (PVR_REV(mfspr(SPRN_PVR)) == 0x0200) { |
| printk(KERN_INFO "DD2.0 detected. Setting L2 cache" |
| "to Writethrough mode\n"); |
| _set_L2CR(L2CR_L2E | L2CR_L2PE | L2CR_L2WT); |
| } else |
| _set_L2CR(L2CR_L2E | L2CR_L2PE); |
| |
| if (ppc_md.progress) |
| ppc_md.progress("katana_setup_arch: calling setup_bridge", 0); |
| |
| katana_setup_bridge(); |
| katana_setup_peripherals(); |
| katana_enable_ipmi(); |
| |
| katana_bus_frequency = katana_bus_freq(cpld_base); |
| |
| printk(KERN_INFO "Artesyn Communication Products, LLC - Katana(TM)\n"); |
| if (ppc_md.progress) |
| ppc_md.progress("katana_setup_arch: exit", 0); |
| } |
| |
| void |
| katana_fixup_resources(struct pci_dev *dev) |
| { |
| u16 v16; |
| |
| pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, L1_CACHE_BYTES>>2); |
| |
| pci_read_config_word(dev, PCI_COMMAND, &v16); |
| v16 |= PCI_COMMAND_INVALIDATE | PCI_COMMAND_FAST_BACK; |
| pci_write_config_word(dev, PCI_COMMAND, v16); |
| } |
| |
| static const unsigned int cpu_750xx[32] = { /* 750FX & 750GX */ |
| 0, 0, 2, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,/* 0-15*/ |
| 16, 17, 18, 19, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 0 /*16-31*/ |
| }; |
| |
| static int |
| katana_get_cpu_freq(void) |
| { |
| unsigned long pll_cfg; |
| |
| pll_cfg = (mfspr(SPRN_HID1) & 0xf8000000) >> 27; |
| return katana_bus_frequency * cpu_750xx[pll_cfg]/2; |
| } |
| |
| /* Platform device data fixup routines. */ |
| #if defined(CONFIG_SERIAL_MPSC) |
| static void __init |
| katana_fixup_mpsc_pdata(struct platform_device *pdev) |
| { |
| struct mpsc_pdata *pdata = (struct mpsc_pdata *)pdev->dev.platform_data; |
| bd_t *bdp = (bd_t *)__res; |
| |
| if (bdp->bi_baudrate) |
| pdata->default_baud = bdp->bi_baudrate; |
| else |
| pdata->default_baud = KATANA_DEFAULT_BAUD; |
| |
| pdata->max_idle = 40; |
| pdata->brg_clk_src = KATANA_MPSC_CLK_SRC; |
| /* |
| * TCLK (not SysCLk) is routed to BRG, then to the MPSC. On most parts, |
| * TCLK == SysCLK but on 64460, they are separate pins. |
| * SysCLK can go up to 200 MHz but TCLK can only go up to 133 MHz. |
| */ |
| pdata->brg_clk_freq = min(katana_bus_frequency, MV64x60_TCLK_FREQ_MAX); |
| } |
| #endif |
| |
| #if defined(CONFIG_MV643XX_ETH) |
| static void __init |
| katana_fixup_eth_pdata(struct platform_device *pdev) |
| { |
| struct mv643xx_eth_platform_data *eth_pd; |
| static u16 phy_addr[] = { |
| KATANA_ETH0_PHY_ADDR, |
| KATANA_ETH1_PHY_ADDR, |
| KATANA_ETH2_PHY_ADDR, |
| }; |
| |
| eth_pd = pdev->dev.platform_data; |
| eth_pd->force_phy_addr = 1; |
| eth_pd->phy_addr = phy_addr[pdev->id]; |
| eth_pd->tx_queue_size = KATANA_ETH_TX_QUEUE_SIZE; |
| eth_pd->rx_queue_size = KATANA_ETH_RX_QUEUE_SIZE; |
| } |
| #endif |
| |
| #if defined(CONFIG_SYSFS) |
| static void __init |
| katana_fixup_mv64xxx_pdata(struct platform_device *pdev) |
| { |
| struct mv64xxx_pdata *pdata = (struct mv64xxx_pdata *) |
| pdev->dev.platform_data; |
| |
| /* Katana supports the mv64xxx hotswap register */ |
| pdata->hs_reg_valid = 1; |
| } |
| #endif |
| |
| static int __init |
| katana_platform_notify(struct device *dev) |
| { |
| static struct { |
| char *bus_id; |
| void ((*rtn)(struct platform_device *pdev)); |
| } dev_map[] = { |
| #if defined(CONFIG_SERIAL_MPSC) |
| { MPSC_CTLR_NAME ".0", katana_fixup_mpsc_pdata }, |
| { MPSC_CTLR_NAME ".1", katana_fixup_mpsc_pdata }, |
| #endif |
| #if defined(CONFIG_MV643XX_ETH) |
| { MV643XX_ETH_NAME ".0", katana_fixup_eth_pdata }, |
| { MV643XX_ETH_NAME ".1", katana_fixup_eth_pdata }, |
| { MV643XX_ETH_NAME ".2", katana_fixup_eth_pdata }, |
| #endif |
| #if defined(CONFIG_SYSFS) |
| { MV64XXX_DEV_NAME ".0", katana_fixup_mv64xxx_pdata }, |
| #endif |
| }; |
| struct platform_device *pdev; |
| int i; |
| |
| if (dev && dev->bus_id) |
| for (i=0; i<ARRAY_SIZE(dev_map); i++) |
| if (!strncmp(dev->bus_id, dev_map[i].bus_id, |
| BUS_ID_SIZE)) { |
| pdev = container_of(dev, |
| struct platform_device, dev); |
| dev_map[i].rtn(pdev); |
| } |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_MTD_PHYSMAP |
| |
| #ifndef MB |
| #define MB (1 << 20) |
| #endif |
| |
| /* |
| * MTD Layout depends on amount of soldered FLASH in system. Sizes in MB. |
| * |
| * FLASH Amount: 128 64 32 16 |
| * ------------- --- -- -- -- |
| * Monitor: 1 1 1 1 |
| * Primary Kernel: 1.5 1.5 1.5 1.5 |
| * Primary fs: 30 30 <end> <end> |
| * Secondary Kernel: 1.5 1.5 N/A N/A |
| * Secondary fs: <end> <end> N/A N/A |
| * User: <overlays entire FLASH except for "Monitor" section> |
| */ |
| static int __init |
| katana_setup_mtd(void) |
| { |
| u32 size; |
| int ptbl_entries; |
| static struct mtd_partition *ptbl; |
| |
| size = katana_flash_size_0 + katana_flash_size_1; |
| if (!size) |
| return -ENOMEM; |
| |
| ptbl_entries = (size >= (64*MB)) ? 6 : 4; |
| |
| if ((ptbl = kmalloc(ptbl_entries * sizeof(struct mtd_partition), |
| GFP_KERNEL)) == NULL) { |
| printk(KERN_WARNING "Can't alloc MTD partition table\n"); |
| return -ENOMEM; |
| } |
| memset(ptbl, 0, ptbl_entries * sizeof(struct mtd_partition)); |
| |
| ptbl[0].name = "Monitor"; |
| ptbl[0].size = KATANA_MTD_MONITOR_SIZE; |
| ptbl[1].name = "Primary Kernel"; |
| ptbl[1].offset = MTDPART_OFS_NXTBLK; |
| ptbl[1].size = 0x00180000; /* 1.5 MB */ |
| ptbl[2].name = "Primary Filesystem"; |
| ptbl[2].offset = MTDPART_OFS_APPEND; |
| ptbl[2].size = MTDPART_SIZ_FULL; /* Correct for 16 & 32 MB */ |
| ptbl[ptbl_entries-1].name = "User FLASH"; |
| ptbl[ptbl_entries-1].offset = KATANA_MTD_MONITOR_SIZE; |
| ptbl[ptbl_entries-1].size = MTDPART_SIZ_FULL; |
| |
| if (size >= (64*MB)) { |
| ptbl[2].size = 30*MB; |
| ptbl[3].name = "Secondary Kernel"; |
| ptbl[3].offset = MTDPART_OFS_NXTBLK; |
| ptbl[3].size = 0x00180000; /* 1.5 MB */ |
| ptbl[4].name = "Secondary Filesystem"; |
| ptbl[4].offset = MTDPART_OFS_APPEND; |
| ptbl[4].size = MTDPART_SIZ_FULL; |
| } |
| |
| physmap_map.size = size; |
| physmap_set_partitions(ptbl, ptbl_entries); |
| return 0; |
| } |
| arch_initcall(katana_setup_mtd); |
| #endif |
| |
| static void |
| katana_restart(char *cmd) |
| { |
| ulong i = 10000000; |
| |
| /* issue hard reset to the reset command register */ |
| out_8(cpld_base + KATANA_CPLD_RST_CMD, KATANA_CPLD_RST_CMD_HR); |
| |
| while (i-- > 0) ; |
| panic("restart failed\n"); |
| } |
| |
| static void |
| katana_halt(void) |
| { |
| u8 v; |
| |
| /* Turn on blue LED to indicate its okay to remove */ |
| if (katana_id == KATANA_ID_750I) { |
| u32 v; |
| u8 save_exclude; |
| |
| /* Set LOO bit in cPCI HotSwap reg of hose 0 to turn on LED. */ |
| save_exclude = mv64x60_pci_exclude_bridge; |
| mv64x60_pci_exclude_bridge = 0; |
| early_read_config_dword(bh.hose_a, 0, PCI_DEVFN(0, 0), |
| MV64360_PCICFG_CPCI_HOTSWAP, &v); |
| v &= 0xff; |
| v |= (1 << 19); |
| early_write_config_dword(bh.hose_a, 0, PCI_DEVFN(0, 0), |
| MV64360_PCICFG_CPCI_HOTSWAP, v); |
| mv64x60_pci_exclude_bridge = save_exclude; |
| } else if (katana_id == KATANA_ID_752I) { |
| v = in_8(cpld_base + HSL_PLD_BASE + HSL_PLD_HOT_SWAP_OFF); |
| v |= HSL_PLD_HOT_SWAP_LED_BIT; |
| out_8(cpld_base + HSL_PLD_BASE + HSL_PLD_HOT_SWAP_OFF, v); |
| } |
| |
| while (1) ; |
| /* NOTREACHED */ |
| } |
| |
| static void |
| katana_power_off(void) |
| { |
| katana_halt(); |
| /* NOTREACHED */ |
| } |
| |
| static int |
| katana_show_cpuinfo(struct seq_file *m) |
| { |
| char *s; |
| |
| seq_printf(m, "cpu freq\t: %dMHz\n", |
| (katana_get_cpu_freq() + 500000) / 1000000); |
| seq_printf(m, "bus freq\t: %ldMHz\n", |
| ((long)katana_bus_frequency + 500000) / 1000000); |
| seq_printf(m, "vendor\t\t: Artesyn Communication Products, LLC\n"); |
| |
| seq_printf(m, "board\t\t: "); |
| switch (katana_id) { |
| case KATANA_ID_3750: |
| seq_printf(m, "Katana 3750"); |
| break; |
| |
| case KATANA_ID_750I: |
| seq_printf(m, "Katana 750i"); |
| break; |
| |
| case KATANA_ID_752I: |
| seq_printf(m, "Katana 752i"); |
| break; |
| |
| default: |
| seq_printf(m, "Unknown"); |
| break; |
| } |
| seq_printf(m, " (product id: 0x%x)\n", |
| in_8(cpld_base + KATANA_CPLD_PRODUCT_ID)); |
| |
| seq_printf(m, "pci mode\t: %sMonarch\n", |
| katana_is_monarch()? "" : "Non-"); |
| seq_printf(m, "hardware rev\t: 0x%x\n", |
| in_8(cpld_base+KATANA_CPLD_HARDWARE_VER)); |
| seq_printf(m, "pld rev\t\t: 0x%x\n", |
| in_8(cpld_base + KATANA_CPLD_PLD_VER)); |
| |
| switch(bh.type) { |
| case MV64x60_TYPE_GT64260A: |
| s = "gt64260a"; |
| break; |
| case MV64x60_TYPE_GT64260B: |
| s = "gt64260b"; |
| break; |
| case MV64x60_TYPE_MV64360: |
| s = "mv64360"; |
| break; |
| case MV64x60_TYPE_MV64460: |
| s = "mv64460"; |
| break; |
| default: |
| s = "Unknown"; |
| } |
| seq_printf(m, "bridge type\t: %s\n", s); |
| seq_printf(m, "bridge rev\t: 0x%x\n", bh.rev); |
| #if defined(CONFIG_NOT_COHERENT_CACHE) |
| seq_printf(m, "coherency\t: %s\n", "off"); |
| #else |
| seq_printf(m, "coherency\t: %s\n", "on"); |
| #endif |
| |
| return 0; |
| } |
| |
| static void __init |
| katana_calibrate_decr(void) |
| { |
| u32 freq; |
| |
| freq = katana_bus_frequency / 4; |
| |
| printk(KERN_INFO "time_init: decrementer frequency = %lu.%.6lu MHz\n", |
| (long)freq / 1000000, (long)freq % 1000000); |
| |
| tb_ticks_per_jiffy = freq / HZ; |
| tb_to_us = mulhwu_scale_factor(freq, 1000000); |
| } |
| |
| /* |
| * The katana supports both uImage and zImage. If uImage, get the mem size |
| * from the bd info. If zImage, the bootwrapper adds a BI_MEMSIZE entry in |
| * the bi_rec data which is sucked out and put into boot_mem_size by |
| * parse_bootinfo(). MMU_init() will then use the boot_mem_size for the mem |
| * size and not call this routine. The only way this will fail is when a uImage |
| * is used but the fw doesn't pass in a valid bi_memsize. This should never |
| * happen, though. |
| */ |
| unsigned long __init |
| katana_find_end_of_memory(void) |
| { |
| bd_t *bdp = (bd_t *)__res; |
| return bdp->bi_memsize; |
| } |
| |
| #if defined(CONFIG_I2C_MV64XXX) && defined(CONFIG_SENSORS_M41T00) |
| extern ulong m41t00_get_rtc_time(void); |
| extern int m41t00_set_rtc_time(ulong); |
| |
| static int __init |
| katana_rtc_hookup(void) |
| { |
| struct timespec tv; |
| |
| ppc_md.get_rtc_time = m41t00_get_rtc_time; |
| ppc_md.set_rtc_time = m41t00_set_rtc_time; |
| |
| tv.tv_nsec = 0; |
| tv.tv_sec = (ppc_md.get_rtc_time)(); |
| do_settimeofday(&tv); |
| |
| return 0; |
| } |
| late_initcall(katana_rtc_hookup); |
| #endif |
| |
| #if defined(CONFIG_SERIAL_TEXT_DEBUG) && defined(CONFIG_SERIAL_MPSC_CONSOLE) |
| static void __init |
| katana_map_io(void) |
| { |
| io_block_mapping(0xf8100000, 0xf8100000, 0x00020000, _PAGE_IO); |
| } |
| #endif |
| |
| void __init |
| platform_init(unsigned long r3, unsigned long r4, unsigned long r5, |
| unsigned long r6, unsigned long r7) |
| { |
| parse_bootinfo(find_bootinfo()); |
| |
| /* ASSUMPTION: If both r3 (bd_t pointer) and r6 (cmdline pointer) |
| * are non-zero, then we should use the board info from the bd_t |
| * structure and the cmdline pointed to by r6 instead of the |
| * information from birecs, if any. Otherwise, use the information |
| * from birecs as discovered by the preceeding call to |
| * parse_bootinfo(). This rule should work with both PPCBoot, which |
| * uses a bd_t board info structure, and the kernel boot wrapper, |
| * which uses birecs. |
| */ |
| if (r3 && r6) { |
| /* copy board info structure */ |
| memcpy((void *)__res, (void *)(r3+KERNELBASE), sizeof(bd_t)); |
| /* copy command line */ |
| *(char *)(r7+KERNELBASE) = 0; |
| strcpy(cmd_line, (char *)(r6+KERNELBASE)); |
| } |
| |
| #ifdef CONFIG_BLK_DEV_INITRD |
| /* take care of initrd if we have one */ |
| if (r4) { |
| initrd_start = r4 + KERNELBASE; |
| initrd_end = r5 + KERNELBASE; |
| } |
| #endif /* CONFIG_BLK_DEV_INITRD */ |
| |
| isa_mem_base = 0; |
| |
| ppc_md.setup_arch = katana_setup_arch; |
| ppc_md.pcibios_fixup_resources = katana_fixup_resources; |
| ppc_md.show_cpuinfo = katana_show_cpuinfo; |
| ppc_md.init_IRQ = mv64360_init_irq; |
| ppc_md.get_irq = mv64360_get_irq; |
| ppc_md.restart = katana_restart; |
| ppc_md.power_off = katana_power_off; |
| ppc_md.halt = katana_halt; |
| ppc_md.find_end_of_memory = katana_find_end_of_memory; |
| ppc_md.calibrate_decr = katana_calibrate_decr; |
| |
| #if defined(CONFIG_SERIAL_TEXT_DEBUG) && defined(CONFIG_SERIAL_MPSC_CONSOLE) |
| ppc_md.setup_io_mappings = katana_map_io; |
| ppc_md.progress = mv64x60_mpsc_progress; |
| mv64x60_progress_init(CONFIG_MV64X60_NEW_BASE); |
| #endif |
| |
| #if defined(CONFIG_SERIAL_MPSC) || defined(CONFIG_MV643XX_ETH) |
| platform_notify = katana_platform_notify; |
| #endif |
| } |