| /* |
| * INET An implementation of the TCP/IP protocol suite for the LINUX |
| * operating system. INET is implemented using the BSD Socket |
| * interface as the means of communication with the user level. |
| * |
| * Implementation of the Transmission Control Protocol(TCP). |
| * |
| * Version: $Id: tcp_ipv4.c,v 1.240 2002/02/01 22:01:04 davem Exp $ |
| * |
| * IPv4 specific functions |
| * |
| * |
| * code split from: |
| * linux/ipv4/tcp.c |
| * linux/ipv4/tcp_input.c |
| * linux/ipv4/tcp_output.c |
| * |
| * See tcp.c for author information |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| */ |
| |
| /* |
| * Changes: |
| * David S. Miller : New socket lookup architecture. |
| * This code is dedicated to John Dyson. |
| * David S. Miller : Change semantics of established hash, |
| * half is devoted to TIME_WAIT sockets |
| * and the rest go in the other half. |
| * Andi Kleen : Add support for syncookies and fixed |
| * some bugs: ip options weren't passed to |
| * the TCP layer, missed a check for an |
| * ACK bit. |
| * Andi Kleen : Implemented fast path mtu discovery. |
| * Fixed many serious bugs in the |
| * open_request handling and moved |
| * most of it into the af independent code. |
| * Added tail drop and some other bugfixes. |
| * Added new listen sematics. |
| * Mike McLagan : Routing by source |
| * Juan Jose Ciarlante: ip_dynaddr bits |
| * Andi Kleen: various fixes. |
| * Vitaly E. Lavrov : Transparent proxy revived after year |
| * coma. |
| * Andi Kleen : Fix new listen. |
| * Andi Kleen : Fix accept error reporting. |
| * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which |
| * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind |
| * a single port at the same time. |
| */ |
| |
| #include <linux/config.h> |
| |
| #include <linux/types.h> |
| #include <linux/fcntl.h> |
| #include <linux/module.h> |
| #include <linux/random.h> |
| #include <linux/cache.h> |
| #include <linux/jhash.h> |
| #include <linux/init.h> |
| #include <linux/times.h> |
| |
| #include <net/icmp.h> |
| #include <net/tcp.h> |
| #include <net/ipv6.h> |
| #include <net/inet_common.h> |
| #include <net/xfrm.h> |
| |
| #include <linux/inet.h> |
| #include <linux/ipv6.h> |
| #include <linux/stddef.h> |
| #include <linux/proc_fs.h> |
| #include <linux/seq_file.h> |
| |
| extern int sysctl_ip_dynaddr; |
| int sysctl_tcp_tw_reuse; |
| int sysctl_tcp_low_latency; |
| |
| /* Check TCP sequence numbers in ICMP packets. */ |
| #define ICMP_MIN_LENGTH 8 |
| |
| /* Socket used for sending RSTs */ |
| static struct socket *tcp_socket; |
| |
| void tcp_v4_send_check(struct sock *sk, struct tcphdr *th, int len, |
| struct sk_buff *skb); |
| |
| struct tcp_hashinfo __cacheline_aligned tcp_hashinfo = { |
| .__tcp_lhash_lock = RW_LOCK_UNLOCKED, |
| .__tcp_lhash_users = ATOMIC_INIT(0), |
| .__tcp_lhash_wait |
| = __WAIT_QUEUE_HEAD_INITIALIZER(tcp_hashinfo.__tcp_lhash_wait), |
| .__tcp_portalloc_lock = SPIN_LOCK_UNLOCKED |
| }; |
| |
| /* |
| * This array holds the first and last local port number. |
| * For high-usage systems, use sysctl to change this to |
| * 32768-61000 |
| */ |
| int sysctl_local_port_range[2] = { 1024, 4999 }; |
| int tcp_port_rover = 1024 - 1; |
| |
| static __inline__ int tcp_hashfn(__u32 laddr, __u16 lport, |
| __u32 faddr, __u16 fport) |
| { |
| int h = (laddr ^ lport) ^ (faddr ^ fport); |
| h ^= h >> 16; |
| h ^= h >> 8; |
| return h & (tcp_ehash_size - 1); |
| } |
| |
| static __inline__ int tcp_sk_hashfn(struct sock *sk) |
| { |
| struct inet_sock *inet = inet_sk(sk); |
| __u32 laddr = inet->rcv_saddr; |
| __u16 lport = inet->num; |
| __u32 faddr = inet->daddr; |
| __u16 fport = inet->dport; |
| |
| return tcp_hashfn(laddr, lport, faddr, fport); |
| } |
| |
| /* Allocate and initialize a new TCP local port bind bucket. |
| * The bindhash mutex for snum's hash chain must be held here. |
| */ |
| struct tcp_bind_bucket *tcp_bucket_create(struct tcp_bind_hashbucket *head, |
| unsigned short snum) |
| { |
| struct tcp_bind_bucket *tb = kmem_cache_alloc(tcp_bucket_cachep, |
| SLAB_ATOMIC); |
| if (tb) { |
| tb->port = snum; |
| tb->fastreuse = 0; |
| INIT_HLIST_HEAD(&tb->owners); |
| hlist_add_head(&tb->node, &head->chain); |
| } |
| return tb; |
| } |
| |
| /* Caller must hold hashbucket lock for this tb with local BH disabled */ |
| void tcp_bucket_destroy(struct tcp_bind_bucket *tb) |
| { |
| if (hlist_empty(&tb->owners)) { |
| __hlist_del(&tb->node); |
| kmem_cache_free(tcp_bucket_cachep, tb); |
| } |
| } |
| |
| /* Caller must disable local BH processing. */ |
| static __inline__ void __tcp_inherit_port(struct sock *sk, struct sock *child) |
| { |
| struct tcp_bind_hashbucket *head = |
| &tcp_bhash[tcp_bhashfn(inet_sk(child)->num)]; |
| struct tcp_bind_bucket *tb; |
| |
| spin_lock(&head->lock); |
| tb = tcp_sk(sk)->bind_hash; |
| sk_add_bind_node(child, &tb->owners); |
| tcp_sk(child)->bind_hash = tb; |
| spin_unlock(&head->lock); |
| } |
| |
| inline void tcp_inherit_port(struct sock *sk, struct sock *child) |
| { |
| local_bh_disable(); |
| __tcp_inherit_port(sk, child); |
| local_bh_enable(); |
| } |
| |
| void tcp_bind_hash(struct sock *sk, struct tcp_bind_bucket *tb, |
| unsigned short snum) |
| { |
| inet_sk(sk)->num = snum; |
| sk_add_bind_node(sk, &tb->owners); |
| tcp_sk(sk)->bind_hash = tb; |
| } |
| |
| static inline int tcp_bind_conflict(struct sock *sk, struct tcp_bind_bucket *tb) |
| { |
| const u32 sk_rcv_saddr = tcp_v4_rcv_saddr(sk); |
| struct sock *sk2; |
| struct hlist_node *node; |
| int reuse = sk->sk_reuse; |
| |
| sk_for_each_bound(sk2, node, &tb->owners) { |
| if (sk != sk2 && |
| !tcp_v6_ipv6only(sk2) && |
| (!sk->sk_bound_dev_if || |
| !sk2->sk_bound_dev_if || |
| sk->sk_bound_dev_if == sk2->sk_bound_dev_if)) { |
| if (!reuse || !sk2->sk_reuse || |
| sk2->sk_state == TCP_LISTEN) { |
| const u32 sk2_rcv_saddr = tcp_v4_rcv_saddr(sk2); |
| if (!sk2_rcv_saddr || !sk_rcv_saddr || |
| sk2_rcv_saddr == sk_rcv_saddr) |
| break; |
| } |
| } |
| } |
| return node != NULL; |
| } |
| |
| /* Obtain a reference to a local port for the given sock, |
| * if snum is zero it means select any available local port. |
| */ |
| static int tcp_v4_get_port(struct sock *sk, unsigned short snum) |
| { |
| struct tcp_bind_hashbucket *head; |
| struct hlist_node *node; |
| struct tcp_bind_bucket *tb; |
| int ret; |
| |
| local_bh_disable(); |
| if (!snum) { |
| int low = sysctl_local_port_range[0]; |
| int high = sysctl_local_port_range[1]; |
| int remaining = (high - low) + 1; |
| int rover; |
| |
| spin_lock(&tcp_portalloc_lock); |
| if (tcp_port_rover < low) |
| rover = low; |
| else |
| rover = tcp_port_rover; |
| do { |
| rover++; |
| if (rover > high) |
| rover = low; |
| head = &tcp_bhash[tcp_bhashfn(rover)]; |
| spin_lock(&head->lock); |
| tb_for_each(tb, node, &head->chain) |
| if (tb->port == rover) |
| goto next; |
| break; |
| next: |
| spin_unlock(&head->lock); |
| } while (--remaining > 0); |
| tcp_port_rover = rover; |
| spin_unlock(&tcp_portalloc_lock); |
| |
| /* Exhausted local port range during search? */ |
| ret = 1; |
| if (remaining <= 0) |
| goto fail; |
| |
| /* OK, here is the one we will use. HEAD is |
| * non-NULL and we hold it's mutex. |
| */ |
| snum = rover; |
| } else { |
| head = &tcp_bhash[tcp_bhashfn(snum)]; |
| spin_lock(&head->lock); |
| tb_for_each(tb, node, &head->chain) |
| if (tb->port == snum) |
| goto tb_found; |
| } |
| tb = NULL; |
| goto tb_not_found; |
| tb_found: |
| if (!hlist_empty(&tb->owners)) { |
| if (sk->sk_reuse > 1) |
| goto success; |
| if (tb->fastreuse > 0 && |
| sk->sk_reuse && sk->sk_state != TCP_LISTEN) { |
| goto success; |
| } else { |
| ret = 1; |
| if (tcp_bind_conflict(sk, tb)) |
| goto fail_unlock; |
| } |
| } |
| tb_not_found: |
| ret = 1; |
| if (!tb && (tb = tcp_bucket_create(head, snum)) == NULL) |
| goto fail_unlock; |
| if (hlist_empty(&tb->owners)) { |
| if (sk->sk_reuse && sk->sk_state != TCP_LISTEN) |
| tb->fastreuse = 1; |
| else |
| tb->fastreuse = 0; |
| } else if (tb->fastreuse && |
| (!sk->sk_reuse || sk->sk_state == TCP_LISTEN)) |
| tb->fastreuse = 0; |
| success: |
| if (!tcp_sk(sk)->bind_hash) |
| tcp_bind_hash(sk, tb, snum); |
| BUG_TRAP(tcp_sk(sk)->bind_hash == tb); |
| ret = 0; |
| |
| fail_unlock: |
| spin_unlock(&head->lock); |
| fail: |
| local_bh_enable(); |
| return ret; |
| } |
| |
| /* Get rid of any references to a local port held by the |
| * given sock. |
| */ |
| static void __tcp_put_port(struct sock *sk) |
| { |
| struct inet_sock *inet = inet_sk(sk); |
| struct tcp_bind_hashbucket *head = &tcp_bhash[tcp_bhashfn(inet->num)]; |
| struct tcp_bind_bucket *tb; |
| |
| spin_lock(&head->lock); |
| tb = tcp_sk(sk)->bind_hash; |
| __sk_del_bind_node(sk); |
| tcp_sk(sk)->bind_hash = NULL; |
| inet->num = 0; |
| tcp_bucket_destroy(tb); |
| spin_unlock(&head->lock); |
| } |
| |
| void tcp_put_port(struct sock *sk) |
| { |
| local_bh_disable(); |
| __tcp_put_port(sk); |
| local_bh_enable(); |
| } |
| |
| /* This lock without WQ_FLAG_EXCLUSIVE is good on UP and it can be very bad on SMP. |
| * Look, when several writers sleep and reader wakes them up, all but one |
| * immediately hit write lock and grab all the cpus. Exclusive sleep solves |
| * this, _but_ remember, it adds useless work on UP machines (wake up each |
| * exclusive lock release). It should be ifdefed really. |
| */ |
| |
| void tcp_listen_wlock(void) |
| { |
| write_lock(&tcp_lhash_lock); |
| |
| if (atomic_read(&tcp_lhash_users)) { |
| DEFINE_WAIT(wait); |
| |
| for (;;) { |
| prepare_to_wait_exclusive(&tcp_lhash_wait, |
| &wait, TASK_UNINTERRUPTIBLE); |
| if (!atomic_read(&tcp_lhash_users)) |
| break; |
| write_unlock_bh(&tcp_lhash_lock); |
| schedule(); |
| write_lock_bh(&tcp_lhash_lock); |
| } |
| |
| finish_wait(&tcp_lhash_wait, &wait); |
| } |
| } |
| |
| static __inline__ void __tcp_v4_hash(struct sock *sk, const int listen_possible) |
| { |
| struct hlist_head *list; |
| rwlock_t *lock; |
| |
| BUG_TRAP(sk_unhashed(sk)); |
| if (listen_possible && sk->sk_state == TCP_LISTEN) { |
| list = &tcp_listening_hash[tcp_sk_listen_hashfn(sk)]; |
| lock = &tcp_lhash_lock; |
| tcp_listen_wlock(); |
| } else { |
| list = &tcp_ehash[(sk->sk_hashent = tcp_sk_hashfn(sk))].chain; |
| lock = &tcp_ehash[sk->sk_hashent].lock; |
| write_lock(lock); |
| } |
| __sk_add_node(sk, list); |
| sock_prot_inc_use(sk->sk_prot); |
| write_unlock(lock); |
| if (listen_possible && sk->sk_state == TCP_LISTEN) |
| wake_up(&tcp_lhash_wait); |
| } |
| |
| static void tcp_v4_hash(struct sock *sk) |
| { |
| if (sk->sk_state != TCP_CLOSE) { |
| local_bh_disable(); |
| __tcp_v4_hash(sk, 1); |
| local_bh_enable(); |
| } |
| } |
| |
| void tcp_unhash(struct sock *sk) |
| { |
| rwlock_t *lock; |
| |
| if (sk_unhashed(sk)) |
| goto ende; |
| |
| if (sk->sk_state == TCP_LISTEN) { |
| local_bh_disable(); |
| tcp_listen_wlock(); |
| lock = &tcp_lhash_lock; |
| } else { |
| struct tcp_ehash_bucket *head = &tcp_ehash[sk->sk_hashent]; |
| lock = &head->lock; |
| write_lock_bh(&head->lock); |
| } |
| |
| if (__sk_del_node_init(sk)) |
| sock_prot_dec_use(sk->sk_prot); |
| write_unlock_bh(lock); |
| |
| ende: |
| if (sk->sk_state == TCP_LISTEN) |
| wake_up(&tcp_lhash_wait); |
| } |
| |
| /* Don't inline this cruft. Here are some nice properties to |
| * exploit here. The BSD API does not allow a listening TCP |
| * to specify the remote port nor the remote address for the |
| * connection. So always assume those are both wildcarded |
| * during the search since they can never be otherwise. |
| */ |
| static struct sock *__tcp_v4_lookup_listener(struct hlist_head *head, u32 daddr, |
| unsigned short hnum, int dif) |
| { |
| struct sock *result = NULL, *sk; |
| struct hlist_node *node; |
| int score, hiscore; |
| |
| hiscore=-1; |
| sk_for_each(sk, node, head) { |
| struct inet_sock *inet = inet_sk(sk); |
| |
| if (inet->num == hnum && !ipv6_only_sock(sk)) { |
| __u32 rcv_saddr = inet->rcv_saddr; |
| |
| score = (sk->sk_family == PF_INET ? 1 : 0); |
| if (rcv_saddr) { |
| if (rcv_saddr != daddr) |
| continue; |
| score+=2; |
| } |
| if (sk->sk_bound_dev_if) { |
| if (sk->sk_bound_dev_if != dif) |
| continue; |
| score+=2; |
| } |
| if (score == 5) |
| return sk; |
| if (score > hiscore) { |
| hiscore = score; |
| result = sk; |
| } |
| } |
| } |
| return result; |
| } |
| |
| /* Optimize the common listener case. */ |
| static inline struct sock *tcp_v4_lookup_listener(u32 daddr, |
| unsigned short hnum, int dif) |
| { |
| struct sock *sk = NULL; |
| struct hlist_head *head; |
| |
| read_lock(&tcp_lhash_lock); |
| head = &tcp_listening_hash[tcp_lhashfn(hnum)]; |
| if (!hlist_empty(head)) { |
| struct inet_sock *inet = inet_sk((sk = __sk_head(head))); |
| |
| if (inet->num == hnum && !sk->sk_node.next && |
| (!inet->rcv_saddr || inet->rcv_saddr == daddr) && |
| (sk->sk_family == PF_INET || !ipv6_only_sock(sk)) && |
| !sk->sk_bound_dev_if) |
| goto sherry_cache; |
| sk = __tcp_v4_lookup_listener(head, daddr, hnum, dif); |
| } |
| if (sk) { |
| sherry_cache: |
| sock_hold(sk); |
| } |
| read_unlock(&tcp_lhash_lock); |
| return sk; |
| } |
| |
| /* Sockets in TCP_CLOSE state are _always_ taken out of the hash, so |
| * we need not check it for TCP lookups anymore, thanks Alexey. -DaveM |
| * |
| * Local BH must be disabled here. |
| */ |
| |
| static inline struct sock *__tcp_v4_lookup_established(u32 saddr, u16 sport, |
| u32 daddr, u16 hnum, |
| int dif) |
| { |
| struct tcp_ehash_bucket *head; |
| TCP_V4_ADDR_COOKIE(acookie, saddr, daddr) |
| __u32 ports = TCP_COMBINED_PORTS(sport, hnum); |
| struct sock *sk; |
| struct hlist_node *node; |
| /* Optimize here for direct hit, only listening connections can |
| * have wildcards anyways. |
| */ |
| int hash = tcp_hashfn(daddr, hnum, saddr, sport); |
| head = &tcp_ehash[hash]; |
| read_lock(&head->lock); |
| sk_for_each(sk, node, &head->chain) { |
| if (TCP_IPV4_MATCH(sk, acookie, saddr, daddr, ports, dif)) |
| goto hit; /* You sunk my battleship! */ |
| } |
| |
| /* Must check for a TIME_WAIT'er before going to listener hash. */ |
| sk_for_each(sk, node, &(head + tcp_ehash_size)->chain) { |
| if (TCP_IPV4_TW_MATCH(sk, acookie, saddr, daddr, ports, dif)) |
| goto hit; |
| } |
| sk = NULL; |
| out: |
| read_unlock(&head->lock); |
| return sk; |
| hit: |
| sock_hold(sk); |
| goto out; |
| } |
| |
| static inline struct sock *__tcp_v4_lookup(u32 saddr, u16 sport, |
| u32 daddr, u16 hnum, int dif) |
| { |
| struct sock *sk = __tcp_v4_lookup_established(saddr, sport, |
| daddr, hnum, dif); |
| |
| return sk ? : tcp_v4_lookup_listener(daddr, hnum, dif); |
| } |
| |
| inline struct sock *tcp_v4_lookup(u32 saddr, u16 sport, u32 daddr, |
| u16 dport, int dif) |
| { |
| struct sock *sk; |
| |
| local_bh_disable(); |
| sk = __tcp_v4_lookup(saddr, sport, daddr, ntohs(dport), dif); |
| local_bh_enable(); |
| |
| return sk; |
| } |
| |
| EXPORT_SYMBOL_GPL(tcp_v4_lookup); |
| |
| static inline __u32 tcp_v4_init_sequence(struct sock *sk, struct sk_buff *skb) |
| { |
| return secure_tcp_sequence_number(skb->nh.iph->daddr, |
| skb->nh.iph->saddr, |
| skb->h.th->dest, |
| skb->h.th->source); |
| } |
| |
| /* called with local bh disabled */ |
| static int __tcp_v4_check_established(struct sock *sk, __u16 lport, |
| struct tcp_tw_bucket **twp) |
| { |
| struct inet_sock *inet = inet_sk(sk); |
| u32 daddr = inet->rcv_saddr; |
| u32 saddr = inet->daddr; |
| int dif = sk->sk_bound_dev_if; |
| TCP_V4_ADDR_COOKIE(acookie, saddr, daddr) |
| __u32 ports = TCP_COMBINED_PORTS(inet->dport, lport); |
| int hash = tcp_hashfn(daddr, lport, saddr, inet->dport); |
| struct tcp_ehash_bucket *head = &tcp_ehash[hash]; |
| struct sock *sk2; |
| struct hlist_node *node; |
| struct tcp_tw_bucket *tw; |
| |
| write_lock(&head->lock); |
| |
| /* Check TIME-WAIT sockets first. */ |
| sk_for_each(sk2, node, &(head + tcp_ehash_size)->chain) { |
| tw = (struct tcp_tw_bucket *)sk2; |
| |
| if (TCP_IPV4_TW_MATCH(sk2, acookie, saddr, daddr, ports, dif)) { |
| struct tcp_sock *tp = tcp_sk(sk); |
| |
| /* With PAWS, it is safe from the viewpoint |
| of data integrity. Even without PAWS it |
| is safe provided sequence spaces do not |
| overlap i.e. at data rates <= 80Mbit/sec. |
| |
| Actually, the idea is close to VJ's one, |
| only timestamp cache is held not per host, |
| but per port pair and TW bucket is used |
| as state holder. |
| |
| If TW bucket has been already destroyed we |
| fall back to VJ's scheme and use initial |
| timestamp retrieved from peer table. |
| */ |
| if (tw->tw_ts_recent_stamp && |
| (!twp || (sysctl_tcp_tw_reuse && |
| xtime.tv_sec - |
| tw->tw_ts_recent_stamp > 1))) { |
| if ((tp->write_seq = |
| tw->tw_snd_nxt + 65535 + 2) == 0) |
| tp->write_seq = 1; |
| tp->rx_opt.ts_recent = tw->tw_ts_recent; |
| tp->rx_opt.ts_recent_stamp = tw->tw_ts_recent_stamp; |
| sock_hold(sk2); |
| goto unique; |
| } else |
| goto not_unique; |
| } |
| } |
| tw = NULL; |
| |
| /* And established part... */ |
| sk_for_each(sk2, node, &head->chain) { |
| if (TCP_IPV4_MATCH(sk2, acookie, saddr, daddr, ports, dif)) |
| goto not_unique; |
| } |
| |
| unique: |
| /* Must record num and sport now. Otherwise we will see |
| * in hash table socket with a funny identity. */ |
| inet->num = lport; |
| inet->sport = htons(lport); |
| sk->sk_hashent = hash; |
| BUG_TRAP(sk_unhashed(sk)); |
| __sk_add_node(sk, &head->chain); |
| sock_prot_inc_use(sk->sk_prot); |
| write_unlock(&head->lock); |
| |
| if (twp) { |
| *twp = tw; |
| NET_INC_STATS_BH(LINUX_MIB_TIMEWAITRECYCLED); |
| } else if (tw) { |
| /* Silly. Should hash-dance instead... */ |
| tcp_tw_deschedule(tw); |
| NET_INC_STATS_BH(LINUX_MIB_TIMEWAITRECYCLED); |
| |
| tcp_tw_put(tw); |
| } |
| |
| return 0; |
| |
| not_unique: |
| write_unlock(&head->lock); |
| return -EADDRNOTAVAIL; |
| } |
| |
| static inline u32 connect_port_offset(const struct sock *sk) |
| { |
| const struct inet_sock *inet = inet_sk(sk); |
| |
| return secure_tcp_port_ephemeral(inet->rcv_saddr, inet->daddr, |
| inet->dport); |
| } |
| |
| /* |
| * Bind a port for a connect operation and hash it. |
| */ |
| static inline int tcp_v4_hash_connect(struct sock *sk) |
| { |
| unsigned short snum = inet_sk(sk)->num; |
| struct tcp_bind_hashbucket *head; |
| struct tcp_bind_bucket *tb; |
| int ret; |
| |
| if (!snum) { |
| int low = sysctl_local_port_range[0]; |
| int high = sysctl_local_port_range[1]; |
| int range = high - low; |
| int i; |
| int port; |
| static u32 hint; |
| u32 offset = hint + connect_port_offset(sk); |
| struct hlist_node *node; |
| struct tcp_tw_bucket *tw = NULL; |
| |
| local_bh_disable(); |
| for (i = 1; i <= range; i++) { |
| port = low + (i + offset) % range; |
| head = &tcp_bhash[tcp_bhashfn(port)]; |
| spin_lock(&head->lock); |
| |
| /* Does not bother with rcv_saddr checks, |
| * because the established check is already |
| * unique enough. |
| */ |
| tb_for_each(tb, node, &head->chain) { |
| if (tb->port == port) { |
| BUG_TRAP(!hlist_empty(&tb->owners)); |
| if (tb->fastreuse >= 0) |
| goto next_port; |
| if (!__tcp_v4_check_established(sk, |
| port, |
| &tw)) |
| goto ok; |
| goto next_port; |
| } |
| } |
| |
| tb = tcp_bucket_create(head, port); |
| if (!tb) { |
| spin_unlock(&head->lock); |
| break; |
| } |
| tb->fastreuse = -1; |
| goto ok; |
| |
| next_port: |
| spin_unlock(&head->lock); |
| } |
| local_bh_enable(); |
| |
| return -EADDRNOTAVAIL; |
| |
| ok: |
| hint += i; |
| |
| /* Head lock still held and bh's disabled */ |
| tcp_bind_hash(sk, tb, port); |
| if (sk_unhashed(sk)) { |
| inet_sk(sk)->sport = htons(port); |
| __tcp_v4_hash(sk, 0); |
| } |
| spin_unlock(&head->lock); |
| |
| if (tw) { |
| tcp_tw_deschedule(tw); |
| tcp_tw_put(tw); |
| } |
| |
| ret = 0; |
| goto out; |
| } |
| |
| head = &tcp_bhash[tcp_bhashfn(snum)]; |
| tb = tcp_sk(sk)->bind_hash; |
| spin_lock_bh(&head->lock); |
| if (sk_head(&tb->owners) == sk && !sk->sk_bind_node.next) { |
| __tcp_v4_hash(sk, 0); |
| spin_unlock_bh(&head->lock); |
| return 0; |
| } else { |
| spin_unlock(&head->lock); |
| /* No definite answer... Walk to established hash table */ |
| ret = __tcp_v4_check_established(sk, snum, NULL); |
| out: |
| local_bh_enable(); |
| return ret; |
| } |
| } |
| |
| /* This will initiate an outgoing connection. */ |
| int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) |
| { |
| struct inet_sock *inet = inet_sk(sk); |
| struct tcp_sock *tp = tcp_sk(sk); |
| struct sockaddr_in *usin = (struct sockaddr_in *)uaddr; |
| struct rtable *rt; |
| u32 daddr, nexthop; |
| int tmp; |
| int err; |
| |
| if (addr_len < sizeof(struct sockaddr_in)) |
| return -EINVAL; |
| |
| if (usin->sin_family != AF_INET) |
| return -EAFNOSUPPORT; |
| |
| nexthop = daddr = usin->sin_addr.s_addr; |
| if (inet->opt && inet->opt->srr) { |
| if (!daddr) |
| return -EINVAL; |
| nexthop = inet->opt->faddr; |
| } |
| |
| tmp = ip_route_connect(&rt, nexthop, inet->saddr, |
| RT_CONN_FLAGS(sk), sk->sk_bound_dev_if, |
| IPPROTO_TCP, |
| inet->sport, usin->sin_port, sk); |
| if (tmp < 0) |
| return tmp; |
| |
| if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) { |
| ip_rt_put(rt); |
| return -ENETUNREACH; |
| } |
| |
| if (!inet->opt || !inet->opt->srr) |
| daddr = rt->rt_dst; |
| |
| if (!inet->saddr) |
| inet->saddr = rt->rt_src; |
| inet->rcv_saddr = inet->saddr; |
| |
| if (tp->rx_opt.ts_recent_stamp && inet->daddr != daddr) { |
| /* Reset inherited state */ |
| tp->rx_opt.ts_recent = 0; |
| tp->rx_opt.ts_recent_stamp = 0; |
| tp->write_seq = 0; |
| } |
| |
| if (sysctl_tcp_tw_recycle && |
| !tp->rx_opt.ts_recent_stamp && rt->rt_dst == daddr) { |
| struct inet_peer *peer = rt_get_peer(rt); |
| |
| /* VJ's idea. We save last timestamp seen from |
| * the destination in peer table, when entering state TIME-WAIT |
| * and initialize rx_opt.ts_recent from it, when trying new connection. |
| */ |
| |
| if (peer && peer->tcp_ts_stamp + TCP_PAWS_MSL >= xtime.tv_sec) { |
| tp->rx_opt.ts_recent_stamp = peer->tcp_ts_stamp; |
| tp->rx_opt.ts_recent = peer->tcp_ts; |
| } |
| } |
| |
| inet->dport = usin->sin_port; |
| inet->daddr = daddr; |
| |
| tp->ext_header_len = 0; |
| if (inet->opt) |
| tp->ext_header_len = inet->opt->optlen; |
| |
| tp->rx_opt.mss_clamp = 536; |
| |
| /* Socket identity is still unknown (sport may be zero). |
| * However we set state to SYN-SENT and not releasing socket |
| * lock select source port, enter ourselves into the hash tables and |
| * complete initialization after this. |
| */ |
| tcp_set_state(sk, TCP_SYN_SENT); |
| err = tcp_v4_hash_connect(sk); |
| if (err) |
| goto failure; |
| |
| err = ip_route_newports(&rt, inet->sport, inet->dport, sk); |
| if (err) |
| goto failure; |
| |
| /* OK, now commit destination to socket. */ |
| __sk_dst_set(sk, &rt->u.dst); |
| tcp_v4_setup_caps(sk, &rt->u.dst); |
| |
| if (!tp->write_seq) |
| tp->write_seq = secure_tcp_sequence_number(inet->saddr, |
| inet->daddr, |
| inet->sport, |
| usin->sin_port); |
| |
| inet->id = tp->write_seq ^ jiffies; |
| |
| err = tcp_connect(sk); |
| rt = NULL; |
| if (err) |
| goto failure; |
| |
| return 0; |
| |
| failure: |
| /* This unhashes the socket and releases the local port, if necessary. */ |
| tcp_set_state(sk, TCP_CLOSE); |
| ip_rt_put(rt); |
| sk->sk_route_caps = 0; |
| inet->dport = 0; |
| return err; |
| } |
| |
| static __inline__ int tcp_v4_iif(struct sk_buff *skb) |
| { |
| return ((struct rtable *)skb->dst)->rt_iif; |
| } |
| |
| static __inline__ u32 tcp_v4_synq_hash(u32 raddr, u16 rport, u32 rnd) |
| { |
| return (jhash_2words(raddr, (u32) rport, rnd) & (TCP_SYNQ_HSIZE - 1)); |
| } |
| |
| static struct open_request *tcp_v4_search_req(struct tcp_sock *tp, |
| struct open_request ***prevp, |
| __u16 rport, |
| __u32 raddr, __u32 laddr) |
| { |
| struct tcp_listen_opt *lopt = tp->listen_opt; |
| struct open_request *req, **prev; |
| |
| for (prev = &lopt->syn_table[tcp_v4_synq_hash(raddr, rport, lopt->hash_rnd)]; |
| (req = *prev) != NULL; |
| prev = &req->dl_next) { |
| const struct inet_request_sock *ireq = inet_rsk(req); |
| |
| if (ireq->rmt_port == rport && |
| ireq->rmt_addr == raddr && |
| ireq->loc_addr == laddr && |
| TCP_INET_FAMILY(req->class->family)) { |
| BUG_TRAP(!req->sk); |
| *prevp = prev; |
| break; |
| } |
| } |
| |
| return req; |
| } |
| |
| static void tcp_v4_synq_add(struct sock *sk, struct open_request *req) |
| { |
| struct tcp_sock *tp = tcp_sk(sk); |
| struct tcp_listen_opt *lopt = tp->listen_opt; |
| u32 h = tcp_v4_synq_hash(inet_rsk(req)->rmt_addr, inet_rsk(req)->rmt_port, lopt->hash_rnd); |
| |
| req->expires = jiffies + TCP_TIMEOUT_INIT; |
| req->retrans = 0; |
| req->sk = NULL; |
| req->dl_next = lopt->syn_table[h]; |
| |
| write_lock(&tp->syn_wait_lock); |
| lopt->syn_table[h] = req; |
| write_unlock(&tp->syn_wait_lock); |
| |
| tcp_synq_added(sk); |
| } |
| |
| |
| /* |
| * This routine does path mtu discovery as defined in RFC1191. |
| */ |
| static inline void do_pmtu_discovery(struct sock *sk, struct iphdr *iph, |
| u32 mtu) |
| { |
| struct dst_entry *dst; |
| struct inet_sock *inet = inet_sk(sk); |
| struct tcp_sock *tp = tcp_sk(sk); |
| |
| /* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs |
| * send out by Linux are always <576bytes so they should go through |
| * unfragmented). |
| */ |
| if (sk->sk_state == TCP_LISTEN) |
| return; |
| |
| /* We don't check in the destentry if pmtu discovery is forbidden |
| * on this route. We just assume that no packet_to_big packets |
| * are send back when pmtu discovery is not active. |
| * There is a small race when the user changes this flag in the |
| * route, but I think that's acceptable. |
| */ |
| if ((dst = __sk_dst_check(sk, 0)) == NULL) |
| return; |
| |
| dst->ops->update_pmtu(dst, mtu); |
| |
| /* Something is about to be wrong... Remember soft error |
| * for the case, if this connection will not able to recover. |
| */ |
| if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst)) |
| sk->sk_err_soft = EMSGSIZE; |
| |
| mtu = dst_mtu(dst); |
| |
| if (inet->pmtudisc != IP_PMTUDISC_DONT && |
| tp->pmtu_cookie > mtu) { |
| tcp_sync_mss(sk, mtu); |
| |
| /* Resend the TCP packet because it's |
| * clear that the old packet has been |
| * dropped. This is the new "fast" path mtu |
| * discovery. |
| */ |
| tcp_simple_retransmit(sk); |
| } /* else let the usual retransmit timer handle it */ |
| } |
| |
| /* |
| * This routine is called by the ICMP module when it gets some |
| * sort of error condition. If err < 0 then the socket should |
| * be closed and the error returned to the user. If err > 0 |
| * it's just the icmp type << 8 | icmp code. After adjustment |
| * header points to the first 8 bytes of the tcp header. We need |
| * to find the appropriate port. |
| * |
| * The locking strategy used here is very "optimistic". When |
| * someone else accesses the socket the ICMP is just dropped |
| * and for some paths there is no check at all. |
| * A more general error queue to queue errors for later handling |
| * is probably better. |
| * |
| */ |
| |
| void tcp_v4_err(struct sk_buff *skb, u32 info) |
| { |
| struct iphdr *iph = (struct iphdr *)skb->data; |
| struct tcphdr *th = (struct tcphdr *)(skb->data + (iph->ihl << 2)); |
| struct tcp_sock *tp; |
| struct inet_sock *inet; |
| int type = skb->h.icmph->type; |
| int code = skb->h.icmph->code; |
| struct sock *sk; |
| __u32 seq; |
| int err; |
| |
| if (skb->len < (iph->ihl << 2) + 8) { |
| ICMP_INC_STATS_BH(ICMP_MIB_INERRORS); |
| return; |
| } |
| |
| sk = tcp_v4_lookup(iph->daddr, th->dest, iph->saddr, |
| th->source, tcp_v4_iif(skb)); |
| if (!sk) { |
| ICMP_INC_STATS_BH(ICMP_MIB_INERRORS); |
| return; |
| } |
| if (sk->sk_state == TCP_TIME_WAIT) { |
| tcp_tw_put((struct tcp_tw_bucket *)sk); |
| return; |
| } |
| |
| bh_lock_sock(sk); |
| /* If too many ICMPs get dropped on busy |
| * servers this needs to be solved differently. |
| */ |
| if (sock_owned_by_user(sk)) |
| NET_INC_STATS_BH(LINUX_MIB_LOCKDROPPEDICMPS); |
| |
| if (sk->sk_state == TCP_CLOSE) |
| goto out; |
| |
| tp = tcp_sk(sk); |
| seq = ntohl(th->seq); |
| if (sk->sk_state != TCP_LISTEN && |
| !between(seq, tp->snd_una, tp->snd_nxt)) { |
| NET_INC_STATS(LINUX_MIB_OUTOFWINDOWICMPS); |
| goto out; |
| } |
| |
| switch (type) { |
| case ICMP_SOURCE_QUENCH: |
| /* Just silently ignore these. */ |
| goto out; |
| case ICMP_PARAMETERPROB: |
| err = EPROTO; |
| break; |
| case ICMP_DEST_UNREACH: |
| if (code > NR_ICMP_UNREACH) |
| goto out; |
| |
| if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */ |
| if (!sock_owned_by_user(sk)) |
| do_pmtu_discovery(sk, iph, info); |
| goto out; |
| } |
| |
| err = icmp_err_convert[code].errno; |
| break; |
| case ICMP_TIME_EXCEEDED: |
| err = EHOSTUNREACH; |
| break; |
| default: |
| goto out; |
| } |
| |
| switch (sk->sk_state) { |
| struct open_request *req, **prev; |
| case TCP_LISTEN: |
| if (sock_owned_by_user(sk)) |
| goto out; |
| |
| req = tcp_v4_search_req(tp, &prev, th->dest, |
| iph->daddr, iph->saddr); |
| if (!req) |
| goto out; |
| |
| /* ICMPs are not backlogged, hence we cannot get |
| an established socket here. |
| */ |
| BUG_TRAP(!req->sk); |
| |
| if (seq != tcp_rsk(req)->snt_isn) { |
| NET_INC_STATS_BH(LINUX_MIB_OUTOFWINDOWICMPS); |
| goto out; |
| } |
| |
| /* |
| * Still in SYN_RECV, just remove it silently. |
| * There is no good way to pass the error to the newly |
| * created socket, and POSIX does not want network |
| * errors returned from accept(). |
| */ |
| tcp_synq_drop(sk, req, prev); |
| goto out; |
| |
| case TCP_SYN_SENT: |
| case TCP_SYN_RECV: /* Cannot happen. |
| It can f.e. if SYNs crossed. |
| */ |
| if (!sock_owned_by_user(sk)) { |
| TCP_INC_STATS_BH(TCP_MIB_ATTEMPTFAILS); |
| sk->sk_err = err; |
| |
| sk->sk_error_report(sk); |
| |
| tcp_done(sk); |
| } else { |
| sk->sk_err_soft = err; |
| } |
| goto out; |
| } |
| |
| /* If we've already connected we will keep trying |
| * until we time out, or the user gives up. |
| * |
| * rfc1122 4.2.3.9 allows to consider as hard errors |
| * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too, |
| * but it is obsoleted by pmtu discovery). |
| * |
| * Note, that in modern internet, where routing is unreliable |
| * and in each dark corner broken firewalls sit, sending random |
| * errors ordered by their masters even this two messages finally lose |
| * their original sense (even Linux sends invalid PORT_UNREACHs) |
| * |
| * Now we are in compliance with RFCs. |
| * --ANK (980905) |
| */ |
| |
| inet = inet_sk(sk); |
| if (!sock_owned_by_user(sk) && inet->recverr) { |
| sk->sk_err = err; |
| sk->sk_error_report(sk); |
| } else { /* Only an error on timeout */ |
| sk->sk_err_soft = err; |
| } |
| |
| out: |
| bh_unlock_sock(sk); |
| sock_put(sk); |
| } |
| |
| /* This routine computes an IPv4 TCP checksum. */ |
| void tcp_v4_send_check(struct sock *sk, struct tcphdr *th, int len, |
| struct sk_buff *skb) |
| { |
| struct inet_sock *inet = inet_sk(sk); |
| |
| if (skb->ip_summed == CHECKSUM_HW) { |
| th->check = ~tcp_v4_check(th, len, inet->saddr, inet->daddr, 0); |
| skb->csum = offsetof(struct tcphdr, check); |
| } else { |
| th->check = tcp_v4_check(th, len, inet->saddr, inet->daddr, |
| csum_partial((char *)th, |
| th->doff << 2, |
| skb->csum)); |
| } |
| } |
| |
| /* |
| * This routine will send an RST to the other tcp. |
| * |
| * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.) |
| * for reset. |
| * Answer: if a packet caused RST, it is not for a socket |
| * existing in our system, if it is matched to a socket, |
| * it is just duplicate segment or bug in other side's TCP. |
| * So that we build reply only basing on parameters |
| * arrived with segment. |
| * Exception: precedence violation. We do not implement it in any case. |
| */ |
| |
| static void tcp_v4_send_reset(struct sk_buff *skb) |
| { |
| struct tcphdr *th = skb->h.th; |
| struct tcphdr rth; |
| struct ip_reply_arg arg; |
| |
| /* Never send a reset in response to a reset. */ |
| if (th->rst) |
| return; |
| |
| if (((struct rtable *)skb->dst)->rt_type != RTN_LOCAL) |
| return; |
| |
| /* Swap the send and the receive. */ |
| memset(&rth, 0, sizeof(struct tcphdr)); |
| rth.dest = th->source; |
| rth.source = th->dest; |
| rth.doff = sizeof(struct tcphdr) / 4; |
| rth.rst = 1; |
| |
| if (th->ack) { |
| rth.seq = th->ack_seq; |
| } else { |
| rth.ack = 1; |
| rth.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin + |
| skb->len - (th->doff << 2)); |
| } |
| |
| memset(&arg, 0, sizeof arg); |
| arg.iov[0].iov_base = (unsigned char *)&rth; |
| arg.iov[0].iov_len = sizeof rth; |
| arg.csum = csum_tcpudp_nofold(skb->nh.iph->daddr, |
| skb->nh.iph->saddr, /*XXX*/ |
| sizeof(struct tcphdr), IPPROTO_TCP, 0); |
| arg.csumoffset = offsetof(struct tcphdr, check) / 2; |
| |
| ip_send_reply(tcp_socket->sk, skb, &arg, sizeof rth); |
| |
| TCP_INC_STATS_BH(TCP_MIB_OUTSEGS); |
| TCP_INC_STATS_BH(TCP_MIB_OUTRSTS); |
| } |
| |
| /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states |
| outside socket context is ugly, certainly. What can I do? |
| */ |
| |
| static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack, |
| u32 win, u32 ts) |
| { |
| struct tcphdr *th = skb->h.th; |
| struct { |
| struct tcphdr th; |
| u32 tsopt[3]; |
| } rep; |
| struct ip_reply_arg arg; |
| |
| memset(&rep.th, 0, sizeof(struct tcphdr)); |
| memset(&arg, 0, sizeof arg); |
| |
| arg.iov[0].iov_base = (unsigned char *)&rep; |
| arg.iov[0].iov_len = sizeof(rep.th); |
| if (ts) { |
| rep.tsopt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | |
| (TCPOPT_TIMESTAMP << 8) | |
| TCPOLEN_TIMESTAMP); |
| rep.tsopt[1] = htonl(tcp_time_stamp); |
| rep.tsopt[2] = htonl(ts); |
| arg.iov[0].iov_len = sizeof(rep); |
| } |
| |
| /* Swap the send and the receive. */ |
| rep.th.dest = th->source; |
| rep.th.source = th->dest; |
| rep.th.doff = arg.iov[0].iov_len / 4; |
| rep.th.seq = htonl(seq); |
| rep.th.ack_seq = htonl(ack); |
| rep.th.ack = 1; |
| rep.th.window = htons(win); |
| |
| arg.csum = csum_tcpudp_nofold(skb->nh.iph->daddr, |
| skb->nh.iph->saddr, /*XXX*/ |
| arg.iov[0].iov_len, IPPROTO_TCP, 0); |
| arg.csumoffset = offsetof(struct tcphdr, check) / 2; |
| |
| ip_send_reply(tcp_socket->sk, skb, &arg, arg.iov[0].iov_len); |
| |
| TCP_INC_STATS_BH(TCP_MIB_OUTSEGS); |
| } |
| |
| static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb) |
| { |
| struct tcp_tw_bucket *tw = (struct tcp_tw_bucket *)sk; |
| |
| tcp_v4_send_ack(skb, tw->tw_snd_nxt, tw->tw_rcv_nxt, |
| tw->tw_rcv_wnd >> tw->tw_rcv_wscale, tw->tw_ts_recent); |
| |
| tcp_tw_put(tw); |
| } |
| |
| static void tcp_v4_or_send_ack(struct sk_buff *skb, struct open_request *req) |
| { |
| tcp_v4_send_ack(skb, tcp_rsk(req)->snt_isn + 1, tcp_rsk(req)->rcv_isn + 1, req->rcv_wnd, |
| req->ts_recent); |
| } |
| |
| static struct dst_entry* tcp_v4_route_req(struct sock *sk, |
| struct open_request *req) |
| { |
| struct rtable *rt; |
| const struct inet_request_sock *ireq = inet_rsk(req); |
| struct ip_options *opt = inet_rsk(req)->opt; |
| struct flowi fl = { .oif = sk->sk_bound_dev_if, |
| .nl_u = { .ip4_u = |
| { .daddr = ((opt && opt->srr) ? |
| opt->faddr : |
| ireq->rmt_addr), |
| .saddr = ireq->loc_addr, |
| .tos = RT_CONN_FLAGS(sk) } }, |
| .proto = IPPROTO_TCP, |
| .uli_u = { .ports = |
| { .sport = inet_sk(sk)->sport, |
| .dport = ireq->rmt_port } } }; |
| |
| if (ip_route_output_flow(&rt, &fl, sk, 0)) { |
| IP_INC_STATS_BH(IPSTATS_MIB_OUTNOROUTES); |
| return NULL; |
| } |
| if (opt && opt->is_strictroute && rt->rt_dst != rt->rt_gateway) { |
| ip_rt_put(rt); |
| IP_INC_STATS_BH(IPSTATS_MIB_OUTNOROUTES); |
| return NULL; |
| } |
| return &rt->u.dst; |
| } |
| |
| /* |
| * Send a SYN-ACK after having received an ACK. |
| * This still operates on a open_request only, not on a big |
| * socket. |
| */ |
| static int tcp_v4_send_synack(struct sock *sk, struct open_request *req, |
| struct dst_entry *dst) |
| { |
| const struct inet_request_sock *ireq = inet_rsk(req); |
| int err = -1; |
| struct sk_buff * skb; |
| |
| /* First, grab a route. */ |
| if (!dst && (dst = tcp_v4_route_req(sk, req)) == NULL) |
| goto out; |
| |
| skb = tcp_make_synack(sk, dst, req); |
| |
| if (skb) { |
| struct tcphdr *th = skb->h.th; |
| |
| th->check = tcp_v4_check(th, skb->len, |
| ireq->loc_addr, |
| ireq->rmt_addr, |
| csum_partial((char *)th, skb->len, |
| skb->csum)); |
| |
| err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr, |
| ireq->rmt_addr, |
| ireq->opt); |
| if (err == NET_XMIT_CN) |
| err = 0; |
| } |
| |
| out: |
| dst_release(dst); |
| return err; |
| } |
| |
| /* |
| * IPv4 open_request destructor. |
| */ |
| static void tcp_v4_or_free(struct open_request *req) |
| { |
| if (inet_rsk(req)->opt) |
| kfree(inet_rsk(req)->opt); |
| } |
| |
| static inline void syn_flood_warning(struct sk_buff *skb) |
| { |
| static unsigned long warntime; |
| |
| if (time_after(jiffies, (warntime + HZ * 60))) { |
| warntime = jiffies; |
| printk(KERN_INFO |
| "possible SYN flooding on port %d. Sending cookies.\n", |
| ntohs(skb->h.th->dest)); |
| } |
| } |
| |
| /* |
| * Save and compile IPv4 options into the open_request if needed. |
| */ |
| static inline struct ip_options *tcp_v4_save_options(struct sock *sk, |
| struct sk_buff *skb) |
| { |
| struct ip_options *opt = &(IPCB(skb)->opt); |
| struct ip_options *dopt = NULL; |
| |
| if (opt && opt->optlen) { |
| int opt_size = optlength(opt); |
| dopt = kmalloc(opt_size, GFP_ATOMIC); |
| if (dopt) { |
| if (ip_options_echo(dopt, skb)) { |
| kfree(dopt); |
| dopt = NULL; |
| } |
| } |
| } |
| return dopt; |
| } |
| |
| /* |
| * Maximum number of SYN_RECV sockets in queue per LISTEN socket. |
| * One SYN_RECV socket costs about 80bytes on a 32bit machine. |
| * It would be better to replace it with a global counter for all sockets |
| * but then some measure against one socket starving all other sockets |
| * would be needed. |
| * |
| * It was 128 by default. Experiments with real servers show, that |
| * it is absolutely not enough even at 100conn/sec. 256 cures most |
| * of problems. This value is adjusted to 128 for very small machines |
| * (<=32Mb of memory) and to 1024 on normal or better ones (>=256Mb). |
| * Further increasing requires to change hash table size. |
| */ |
| int sysctl_max_syn_backlog = 256; |
| |
| struct or_calltable or_ipv4 = { |
| .family = PF_INET, |
| .obj_size = sizeof(struct tcp_request_sock), |
| .rtx_syn_ack = tcp_v4_send_synack, |
| .send_ack = tcp_v4_or_send_ack, |
| .destructor = tcp_v4_or_free, |
| .send_reset = tcp_v4_send_reset, |
| }; |
| |
| int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb) |
| { |
| struct inet_request_sock *ireq; |
| struct tcp_options_received tmp_opt; |
| struct open_request *req; |
| __u32 saddr = skb->nh.iph->saddr; |
| __u32 daddr = skb->nh.iph->daddr; |
| __u32 isn = TCP_SKB_CB(skb)->when; |
| struct dst_entry *dst = NULL; |
| #ifdef CONFIG_SYN_COOKIES |
| int want_cookie = 0; |
| #else |
| #define want_cookie 0 /* Argh, why doesn't gcc optimize this :( */ |
| #endif |
| |
| /* Never answer to SYNs send to broadcast or multicast */ |
| if (((struct rtable *)skb->dst)->rt_flags & |
| (RTCF_BROADCAST | RTCF_MULTICAST)) |
| goto drop; |
| |
| /* TW buckets are converted to open requests without |
| * limitations, they conserve resources and peer is |
| * evidently real one. |
| */ |
| if (tcp_synq_is_full(sk) && !isn) { |
| #ifdef CONFIG_SYN_COOKIES |
| if (sysctl_tcp_syncookies) { |
| want_cookie = 1; |
| } else |
| #endif |
| goto drop; |
| } |
| |
| /* Accept backlog is full. If we have already queued enough |
| * of warm entries in syn queue, drop request. It is better than |
| * clogging syn queue with openreqs with exponentially increasing |
| * timeout. |
| */ |
| if (sk_acceptq_is_full(sk) && tcp_synq_young(sk) > 1) |
| goto drop; |
| |
| req = tcp_openreq_alloc(&or_ipv4); |
| if (!req) |
| goto drop; |
| |
| tcp_clear_options(&tmp_opt); |
| tmp_opt.mss_clamp = 536; |
| tmp_opt.user_mss = tcp_sk(sk)->rx_opt.user_mss; |
| |
| tcp_parse_options(skb, &tmp_opt, 0); |
| |
| if (want_cookie) { |
| tcp_clear_options(&tmp_opt); |
| tmp_opt.saw_tstamp = 0; |
| } |
| |
| if (tmp_opt.saw_tstamp && !tmp_opt.rcv_tsval) { |
| /* Some OSes (unknown ones, but I see them on web server, which |
| * contains information interesting only for windows' |
| * users) do not send their stamp in SYN. It is easy case. |
| * We simply do not advertise TS support. |
| */ |
| tmp_opt.saw_tstamp = 0; |
| tmp_opt.tstamp_ok = 0; |
| } |
| tmp_opt.tstamp_ok = tmp_opt.saw_tstamp; |
| |
| tcp_openreq_init(req, &tmp_opt, skb); |
| |
| ireq = inet_rsk(req); |
| ireq->loc_addr = daddr; |
| ireq->rmt_addr = saddr; |
| ireq->opt = tcp_v4_save_options(sk, skb); |
| if (!want_cookie) |
| TCP_ECN_create_request(req, skb->h.th); |
| |
| if (want_cookie) { |
| #ifdef CONFIG_SYN_COOKIES |
| syn_flood_warning(skb); |
| #endif |
| isn = cookie_v4_init_sequence(sk, skb, &req->mss); |
| } else if (!isn) { |
| struct inet_peer *peer = NULL; |
| |
| /* VJ's idea. We save last timestamp seen |
| * from the destination in peer table, when entering |
| * state TIME-WAIT, and check against it before |
| * accepting new connection request. |
| * |
| * If "isn" is not zero, this request hit alive |
| * timewait bucket, so that all the necessary checks |
| * are made in the function processing timewait state. |
| */ |
| if (tmp_opt.saw_tstamp && |
| sysctl_tcp_tw_recycle && |
| (dst = tcp_v4_route_req(sk, req)) != NULL && |
| (peer = rt_get_peer((struct rtable *)dst)) != NULL && |
| peer->v4daddr == saddr) { |
| if (xtime.tv_sec < peer->tcp_ts_stamp + TCP_PAWS_MSL && |
| (s32)(peer->tcp_ts - req->ts_recent) > |
| TCP_PAWS_WINDOW) { |
| NET_INC_STATS_BH(LINUX_MIB_PAWSPASSIVEREJECTED); |
| dst_release(dst); |
| goto drop_and_free; |
| } |
| } |
| /* Kill the following clause, if you dislike this way. */ |
| else if (!sysctl_tcp_syncookies && |
| (sysctl_max_syn_backlog - tcp_synq_len(sk) < |
| (sysctl_max_syn_backlog >> 2)) && |
| (!peer || !peer->tcp_ts_stamp) && |
| (!dst || !dst_metric(dst, RTAX_RTT))) { |
| /* Without syncookies last quarter of |
| * backlog is filled with destinations, |
| * proven to be alive. |
| * It means that we continue to communicate |
| * to destinations, already remembered |
| * to the moment of synflood. |
| */ |
| NETDEBUG(if (net_ratelimit()) \ |
| printk(KERN_DEBUG "TCP: drop open " |
| "request from %u.%u." |
| "%u.%u/%u\n", \ |
| NIPQUAD(saddr), |
| ntohs(skb->h.th->source))); |
| dst_release(dst); |
| goto drop_and_free; |
| } |
| |
| isn = tcp_v4_init_sequence(sk, skb); |
| } |
| tcp_rsk(req)->snt_isn = isn; |
| |
| if (tcp_v4_send_synack(sk, req, dst)) |
| goto drop_and_free; |
| |
| if (want_cookie) { |
| tcp_openreq_free(req); |
| } else { |
| tcp_v4_synq_add(sk, req); |
| } |
| return 0; |
| |
| drop_and_free: |
| tcp_openreq_free(req); |
| drop: |
| TCP_INC_STATS_BH(TCP_MIB_ATTEMPTFAILS); |
| return 0; |
| } |
| |
| |
| /* |
| * The three way handshake has completed - we got a valid synack - |
| * now create the new socket. |
| */ |
| struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb, |
| struct open_request *req, |
| struct dst_entry *dst) |
| { |
| struct inet_request_sock *ireq; |
| struct inet_sock *newinet; |
| struct tcp_sock *newtp; |
| struct sock *newsk; |
| |
| if (sk_acceptq_is_full(sk)) |
| goto exit_overflow; |
| |
| if (!dst && (dst = tcp_v4_route_req(sk, req)) == NULL) |
| goto exit; |
| |
| newsk = tcp_create_openreq_child(sk, req, skb); |
| if (!newsk) |
| goto exit; |
| |
| newsk->sk_dst_cache = dst; |
| tcp_v4_setup_caps(newsk, dst); |
| |
| newtp = tcp_sk(newsk); |
| newinet = inet_sk(newsk); |
| ireq = inet_rsk(req); |
| newinet->daddr = ireq->rmt_addr; |
| newinet->rcv_saddr = ireq->loc_addr; |
| newinet->saddr = ireq->loc_addr; |
| newinet->opt = ireq->opt; |
| ireq->opt = NULL; |
| newinet->mc_index = tcp_v4_iif(skb); |
| newinet->mc_ttl = skb->nh.iph->ttl; |
| newtp->ext_header_len = 0; |
| if (newinet->opt) |
| newtp->ext_header_len = newinet->opt->optlen; |
| newinet->id = newtp->write_seq ^ jiffies; |
| |
| tcp_sync_mss(newsk, dst_mtu(dst)); |
| newtp->advmss = dst_metric(dst, RTAX_ADVMSS); |
| tcp_initialize_rcv_mss(newsk); |
| |
| __tcp_v4_hash(newsk, 0); |
| __tcp_inherit_port(sk, newsk); |
| |
| return newsk; |
| |
| exit_overflow: |
| NET_INC_STATS_BH(LINUX_MIB_LISTENOVERFLOWS); |
| exit: |
| NET_INC_STATS_BH(LINUX_MIB_LISTENDROPS); |
| dst_release(dst); |
| return NULL; |
| } |
| |
| static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb) |
| { |
| struct tcphdr *th = skb->h.th; |
| struct iphdr *iph = skb->nh.iph; |
| struct tcp_sock *tp = tcp_sk(sk); |
| struct sock *nsk; |
| struct open_request **prev; |
| /* Find possible connection requests. */ |
| struct open_request *req = tcp_v4_search_req(tp, &prev, th->source, |
| iph->saddr, iph->daddr); |
| if (req) |
| return tcp_check_req(sk, skb, req, prev); |
| |
| nsk = __tcp_v4_lookup_established(skb->nh.iph->saddr, |
| th->source, |
| skb->nh.iph->daddr, |
| ntohs(th->dest), |
| tcp_v4_iif(skb)); |
| |
| if (nsk) { |
| if (nsk->sk_state != TCP_TIME_WAIT) { |
| bh_lock_sock(nsk); |
| return nsk; |
| } |
| tcp_tw_put((struct tcp_tw_bucket *)nsk); |
| return NULL; |
| } |
| |
| #ifdef CONFIG_SYN_COOKIES |
| if (!th->rst && !th->syn && th->ack) |
| sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt)); |
| #endif |
| return sk; |
| } |
| |
| static int tcp_v4_checksum_init(struct sk_buff *skb) |
| { |
| if (skb->ip_summed == CHECKSUM_HW) { |
| skb->ip_summed = CHECKSUM_UNNECESSARY; |
| if (!tcp_v4_check(skb->h.th, skb->len, skb->nh.iph->saddr, |
| skb->nh.iph->daddr, skb->csum)) |
| return 0; |
| |
| NETDEBUG(if (net_ratelimit()) |
| printk(KERN_DEBUG "hw tcp v4 csum failed\n")); |
| skb->ip_summed = CHECKSUM_NONE; |
| } |
| if (skb->len <= 76) { |
| if (tcp_v4_check(skb->h.th, skb->len, skb->nh.iph->saddr, |
| skb->nh.iph->daddr, |
| skb_checksum(skb, 0, skb->len, 0))) |
| return -1; |
| skb->ip_summed = CHECKSUM_UNNECESSARY; |
| } else { |
| skb->csum = ~tcp_v4_check(skb->h.th, skb->len, |
| skb->nh.iph->saddr, |
| skb->nh.iph->daddr, 0); |
| } |
| return 0; |
| } |
| |
| |
| /* The socket must have it's spinlock held when we get |
| * here. |
| * |
| * We have a potential double-lock case here, so even when |
| * doing backlog processing we use the BH locking scheme. |
| * This is because we cannot sleep with the original spinlock |
| * held. |
| */ |
| int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb) |
| { |
| if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */ |
| TCP_CHECK_TIMER(sk); |
| if (tcp_rcv_established(sk, skb, skb->h.th, skb->len)) |
| goto reset; |
| TCP_CHECK_TIMER(sk); |
| return 0; |
| } |
| |
| if (skb->len < (skb->h.th->doff << 2) || tcp_checksum_complete(skb)) |
| goto csum_err; |
| |
| if (sk->sk_state == TCP_LISTEN) { |
| struct sock *nsk = tcp_v4_hnd_req(sk, skb); |
| if (!nsk) |
| goto discard; |
| |
| if (nsk != sk) { |
| if (tcp_child_process(sk, nsk, skb)) |
| goto reset; |
| return 0; |
| } |
| } |
| |
| TCP_CHECK_TIMER(sk); |
| if (tcp_rcv_state_process(sk, skb, skb->h.th, skb->len)) |
| goto reset; |
| TCP_CHECK_TIMER(sk); |
| return 0; |
| |
| reset: |
| tcp_v4_send_reset(skb); |
| discard: |
| kfree_skb(skb); |
| /* Be careful here. If this function gets more complicated and |
| * gcc suffers from register pressure on the x86, sk (in %ebx) |
| * might be destroyed here. This current version compiles correctly, |
| * but you have been warned. |
| */ |
| return 0; |
| |
| csum_err: |
| TCP_INC_STATS_BH(TCP_MIB_INERRS); |
| goto discard; |
| } |
| |
| /* |
| * From tcp_input.c |
| */ |
| |
| int tcp_v4_rcv(struct sk_buff *skb) |
| { |
| struct tcphdr *th; |
| struct sock *sk; |
| int ret; |
| |
| if (skb->pkt_type != PACKET_HOST) |
| goto discard_it; |
| |
| /* Count it even if it's bad */ |
| TCP_INC_STATS_BH(TCP_MIB_INSEGS); |
| |
| if (!pskb_may_pull(skb, sizeof(struct tcphdr))) |
| goto discard_it; |
| |
| th = skb->h.th; |
| |
| if (th->doff < sizeof(struct tcphdr) / 4) |
| goto bad_packet; |
| if (!pskb_may_pull(skb, th->doff * 4)) |
| goto discard_it; |
| |
| /* An explanation is required here, I think. |
| * Packet length and doff are validated by header prediction, |
| * provided case of th->doff==0 is elimineted. |
| * So, we defer the checks. */ |
| if ((skb->ip_summed != CHECKSUM_UNNECESSARY && |
| tcp_v4_checksum_init(skb) < 0)) |
| goto bad_packet; |
| |
| th = skb->h.th; |
| TCP_SKB_CB(skb)->seq = ntohl(th->seq); |
| TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin + |
| skb->len - th->doff * 4); |
| TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq); |
| TCP_SKB_CB(skb)->when = 0; |
| TCP_SKB_CB(skb)->flags = skb->nh.iph->tos; |
| TCP_SKB_CB(skb)->sacked = 0; |
| |
| sk = __tcp_v4_lookup(skb->nh.iph->saddr, th->source, |
| skb->nh.iph->daddr, ntohs(th->dest), |
| tcp_v4_iif(skb)); |
| |
| if (!sk) |
| goto no_tcp_socket; |
| |
| process: |
| if (sk->sk_state == TCP_TIME_WAIT) |
| goto do_time_wait; |
| |
| if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) |
| goto discard_and_relse; |
| |
| if (sk_filter(sk, skb, 0)) |
| goto discard_and_relse; |
| |
| skb->dev = NULL; |
| |
| bh_lock_sock(sk); |
| ret = 0; |
| if (!sock_owned_by_user(sk)) { |
| if (!tcp_prequeue(sk, skb)) |
| ret = tcp_v4_do_rcv(sk, skb); |
| } else |
| sk_add_backlog(sk, skb); |
| bh_unlock_sock(sk); |
| |
| sock_put(sk); |
| |
| return ret; |
| |
| no_tcp_socket: |
| if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) |
| goto discard_it; |
| |
| if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) { |
| bad_packet: |
| TCP_INC_STATS_BH(TCP_MIB_INERRS); |
| } else { |
| tcp_v4_send_reset(skb); |
| } |
| |
| discard_it: |
| /* Discard frame. */ |
| kfree_skb(skb); |
| return 0; |
| |
| discard_and_relse: |
| sock_put(sk); |
| goto discard_it; |
| |
| do_time_wait: |
| if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) { |
| tcp_tw_put((struct tcp_tw_bucket *) sk); |
| goto discard_it; |
| } |
| |
| if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) { |
| TCP_INC_STATS_BH(TCP_MIB_INERRS); |
| tcp_tw_put((struct tcp_tw_bucket *) sk); |
| goto discard_it; |
| } |
| switch (tcp_timewait_state_process((struct tcp_tw_bucket *)sk, |
| skb, th, skb->len)) { |
| case TCP_TW_SYN: { |
| struct sock *sk2 = tcp_v4_lookup_listener(skb->nh.iph->daddr, |
| ntohs(th->dest), |
| tcp_v4_iif(skb)); |
| if (sk2) { |
| tcp_tw_deschedule((struct tcp_tw_bucket *)sk); |
| tcp_tw_put((struct tcp_tw_bucket *)sk); |
| sk = sk2; |
| goto process; |
| } |
| /* Fall through to ACK */ |
| } |
| case TCP_TW_ACK: |
| tcp_v4_timewait_ack(sk, skb); |
| break; |
| case TCP_TW_RST: |
| goto no_tcp_socket; |
| case TCP_TW_SUCCESS:; |
| } |
| goto discard_it; |
| } |
| |
| /* With per-bucket locks this operation is not-atomic, so that |
| * this version is not worse. |
| */ |
| static void __tcp_v4_rehash(struct sock *sk) |
| { |
| sk->sk_prot->unhash(sk); |
| sk->sk_prot->hash(sk); |
| } |
| |
| static int tcp_v4_reselect_saddr(struct sock *sk) |
| { |
| struct inet_sock *inet = inet_sk(sk); |
| int err; |
| struct rtable *rt; |
| __u32 old_saddr = inet->saddr; |
| __u32 new_saddr; |
| __u32 daddr = inet->daddr; |
| |
| if (inet->opt && inet->opt->srr) |
| daddr = inet->opt->faddr; |
| |
| /* Query new route. */ |
| err = ip_route_connect(&rt, daddr, 0, |
| RT_CONN_FLAGS(sk), |
| sk->sk_bound_dev_if, |
| IPPROTO_TCP, |
| inet->sport, inet->dport, sk); |
| if (err) |
| return err; |
| |
| __sk_dst_set(sk, &rt->u.dst); |
| tcp_v4_setup_caps(sk, &rt->u.dst); |
| |
| new_saddr = rt->rt_src; |
| |
| if (new_saddr == old_saddr) |
| return 0; |
| |
| if (sysctl_ip_dynaddr > 1) { |
| printk(KERN_INFO "tcp_v4_rebuild_header(): shifting inet->" |
| "saddr from %d.%d.%d.%d to %d.%d.%d.%d\n", |
| NIPQUAD(old_saddr), |
| NIPQUAD(new_saddr)); |
| } |
| |
| inet->saddr = new_saddr; |
| inet->rcv_saddr = new_saddr; |
| |
| /* XXX The only one ugly spot where we need to |
| * XXX really change the sockets identity after |
| * XXX it has entered the hashes. -DaveM |
| * |
| * Besides that, it does not check for connection |
| * uniqueness. Wait for troubles. |
| */ |
| __tcp_v4_rehash(sk); |
| return 0; |
| } |
| |
| int tcp_v4_rebuild_header(struct sock *sk) |
| { |
| struct inet_sock *inet = inet_sk(sk); |
| struct rtable *rt = (struct rtable *)__sk_dst_check(sk, 0); |
| u32 daddr; |
| int err; |
| |
| /* Route is OK, nothing to do. */ |
| if (rt) |
| return 0; |
| |
| /* Reroute. */ |
| daddr = inet->daddr; |
| if (inet->opt && inet->opt->srr) |
| daddr = inet->opt->faddr; |
| |
| { |
| struct flowi fl = { .oif = sk->sk_bound_dev_if, |
| .nl_u = { .ip4_u = |
| { .daddr = daddr, |
| .saddr = inet->saddr, |
| .tos = RT_CONN_FLAGS(sk) } }, |
| .proto = IPPROTO_TCP, |
| .uli_u = { .ports = |
| { .sport = inet->sport, |
| .dport = inet->dport } } }; |
| |
| err = ip_route_output_flow(&rt, &fl, sk, 0); |
| } |
| if (!err) { |
| __sk_dst_set(sk, &rt->u.dst); |
| tcp_v4_setup_caps(sk, &rt->u.dst); |
| return 0; |
| } |
| |
| /* Routing failed... */ |
| sk->sk_route_caps = 0; |
| |
| if (!sysctl_ip_dynaddr || |
| sk->sk_state != TCP_SYN_SENT || |
| (sk->sk_userlocks & SOCK_BINDADDR_LOCK) || |
| (err = tcp_v4_reselect_saddr(sk)) != 0) |
| sk->sk_err_soft = -err; |
| |
| return err; |
| } |
| |
| static void v4_addr2sockaddr(struct sock *sk, struct sockaddr * uaddr) |
| { |
| struct sockaddr_in *sin = (struct sockaddr_in *) uaddr; |
| struct inet_sock *inet = inet_sk(sk); |
| |
| sin->sin_family = AF_INET; |
| sin->sin_addr.s_addr = inet->daddr; |
| sin->sin_port = inet->dport; |
| } |
| |
| /* VJ's idea. Save last timestamp seen from this destination |
| * and hold it at least for normal timewait interval to use for duplicate |
| * segment detection in subsequent connections, before they enter synchronized |
| * state. |
| */ |
| |
| int tcp_v4_remember_stamp(struct sock *sk) |
| { |
| struct inet_sock *inet = inet_sk(sk); |
| struct tcp_sock *tp = tcp_sk(sk); |
| struct rtable *rt = (struct rtable *)__sk_dst_get(sk); |
| struct inet_peer *peer = NULL; |
| int release_it = 0; |
| |
| if (!rt || rt->rt_dst != inet->daddr) { |
| peer = inet_getpeer(inet->daddr, 1); |
| release_it = 1; |
| } else { |
| if (!rt->peer) |
| rt_bind_peer(rt, 1); |
| peer = rt->peer; |
| } |
| |
| if (peer) { |
| if ((s32)(peer->tcp_ts - tp->rx_opt.ts_recent) <= 0 || |
| (peer->tcp_ts_stamp + TCP_PAWS_MSL < xtime.tv_sec && |
| peer->tcp_ts_stamp <= tp->rx_opt.ts_recent_stamp)) { |
| peer->tcp_ts_stamp = tp->rx_opt.ts_recent_stamp; |
| peer->tcp_ts = tp->rx_opt.ts_recent; |
| } |
| if (release_it) |
| inet_putpeer(peer); |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| int tcp_v4_tw_remember_stamp(struct tcp_tw_bucket *tw) |
| { |
| struct inet_peer *peer = NULL; |
| |
| peer = inet_getpeer(tw->tw_daddr, 1); |
| |
| if (peer) { |
| if ((s32)(peer->tcp_ts - tw->tw_ts_recent) <= 0 || |
| (peer->tcp_ts_stamp + TCP_PAWS_MSL < xtime.tv_sec && |
| peer->tcp_ts_stamp <= tw->tw_ts_recent_stamp)) { |
| peer->tcp_ts_stamp = tw->tw_ts_recent_stamp; |
| peer->tcp_ts = tw->tw_ts_recent; |
| } |
| inet_putpeer(peer); |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| struct tcp_func ipv4_specific = { |
| .queue_xmit = ip_queue_xmit, |
| .send_check = tcp_v4_send_check, |
| .rebuild_header = tcp_v4_rebuild_header, |
| .conn_request = tcp_v4_conn_request, |
| .syn_recv_sock = tcp_v4_syn_recv_sock, |
| .remember_stamp = tcp_v4_remember_stamp, |
| .net_header_len = sizeof(struct iphdr), |
| .setsockopt = ip_setsockopt, |
| .getsockopt = ip_getsockopt, |
| .addr2sockaddr = v4_addr2sockaddr, |
| .sockaddr_len = sizeof(struct sockaddr_in), |
| }; |
| |
| /* NOTE: A lot of things set to zero explicitly by call to |
| * sk_alloc() so need not be done here. |
| */ |
| static int tcp_v4_init_sock(struct sock *sk) |
| { |
| struct tcp_sock *tp = tcp_sk(sk); |
| |
| skb_queue_head_init(&tp->out_of_order_queue); |
| tcp_init_xmit_timers(sk); |
| tcp_prequeue_init(tp); |
| |
| tp->rto = TCP_TIMEOUT_INIT; |
| tp->mdev = TCP_TIMEOUT_INIT; |
| |
| /* So many TCP implementations out there (incorrectly) count the |
| * initial SYN frame in their delayed-ACK and congestion control |
| * algorithms that we must have the following bandaid to talk |
| * efficiently to them. -DaveM |
| */ |
| tp->snd_cwnd = 2; |
| |
| /* See draft-stevens-tcpca-spec-01 for discussion of the |
| * initialization of these values. |
| */ |
| tp->snd_ssthresh = 0x7fffffff; /* Infinity */ |
| tp->snd_cwnd_clamp = ~0; |
| tp->mss_cache_std = tp->mss_cache = 536; |
| |
| tp->reordering = sysctl_tcp_reordering; |
| |
| sk->sk_state = TCP_CLOSE; |
| |
| sk->sk_write_space = sk_stream_write_space; |
| sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); |
| |
| tp->af_specific = &ipv4_specific; |
| |
| sk->sk_sndbuf = sysctl_tcp_wmem[1]; |
| sk->sk_rcvbuf = sysctl_tcp_rmem[1]; |
| |
| atomic_inc(&tcp_sockets_allocated); |
| |
| return 0; |
| } |
| |
| int tcp_v4_destroy_sock(struct sock *sk) |
| { |
| struct tcp_sock *tp = tcp_sk(sk); |
| |
| tcp_clear_xmit_timers(sk); |
| |
| /* Cleanup up the write buffer. */ |
| sk_stream_writequeue_purge(sk); |
| |
| /* Cleans up our, hopefully empty, out_of_order_queue. */ |
| __skb_queue_purge(&tp->out_of_order_queue); |
| |
| /* Clean prequeue, it must be empty really */ |
| __skb_queue_purge(&tp->ucopy.prequeue); |
| |
| /* Clean up a referenced TCP bind bucket. */ |
| if (tp->bind_hash) |
| tcp_put_port(sk); |
| |
| /* |
| * If sendmsg cached page exists, toss it. |
| */ |
| if (sk->sk_sndmsg_page) { |
| __free_page(sk->sk_sndmsg_page); |
| sk->sk_sndmsg_page = NULL; |
| } |
| |
| atomic_dec(&tcp_sockets_allocated); |
| |
| return 0; |
| } |
| |
| EXPORT_SYMBOL(tcp_v4_destroy_sock); |
| |
| #ifdef CONFIG_PROC_FS |
| /* Proc filesystem TCP sock list dumping. */ |
| |
| static inline struct tcp_tw_bucket *tw_head(struct hlist_head *head) |
| { |
| return hlist_empty(head) ? NULL : |
| list_entry(head->first, struct tcp_tw_bucket, tw_node); |
| } |
| |
| static inline struct tcp_tw_bucket *tw_next(struct tcp_tw_bucket *tw) |
| { |
| return tw->tw_node.next ? |
| hlist_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL; |
| } |
| |
| static void *listening_get_next(struct seq_file *seq, void *cur) |
| { |
| struct tcp_sock *tp; |
| struct hlist_node *node; |
| struct sock *sk = cur; |
| struct tcp_iter_state* st = seq->private; |
| |
| if (!sk) { |
| st->bucket = 0; |
| sk = sk_head(&tcp_listening_hash[0]); |
| goto get_sk; |
| } |
| |
| ++st->num; |
| |
| if (st->state == TCP_SEQ_STATE_OPENREQ) { |
| struct open_request *req = cur; |
| |
| tp = tcp_sk(st->syn_wait_sk); |
| req = req->dl_next; |
| while (1) { |
| while (req) { |
| if (req->class->family == st->family) { |
| cur = req; |
| goto out; |
| } |
| req = req->dl_next; |
| } |
| if (++st->sbucket >= TCP_SYNQ_HSIZE) |
| break; |
| get_req: |
| req = tp->listen_opt->syn_table[st->sbucket]; |
| } |
| sk = sk_next(st->syn_wait_sk); |
| st->state = TCP_SEQ_STATE_LISTENING; |
| read_unlock_bh(&tp->syn_wait_lock); |
| } else { |
| tp = tcp_sk(sk); |
| read_lock_bh(&tp->syn_wait_lock); |
| if (tp->listen_opt && tp->listen_opt->qlen) |
| goto start_req; |
| read_unlock_bh(&tp->syn_wait_lock); |
| sk = sk_next(sk); |
| } |
| get_sk: |
| sk_for_each_from(sk, node) { |
| if (sk->sk_family == st->family) { |
| cur = sk; |
| goto out; |
| } |
| tp = tcp_sk(sk); |
| read_lock_bh(&tp->syn_wait_lock); |
| if (tp->listen_opt && tp->listen_opt->qlen) { |
| start_req: |
| st->uid = sock_i_uid(sk); |
| st->syn_wait_sk = sk; |
| st->state = TCP_SEQ_STATE_OPENREQ; |
| st->sbucket = 0; |
| goto get_req; |
| } |
| read_unlock_bh(&tp->syn_wait_lock); |
| } |
| if (++st->bucket < TCP_LHTABLE_SIZE) { |
| sk = sk_head(&tcp_listening_hash[st->bucket]); |
| goto get_sk; |
| } |
| cur = NULL; |
| out: |
| return cur; |
| } |
| |
| static void *listening_get_idx(struct seq_file *seq, loff_t *pos) |
| { |
| void *rc = listening_get_next(seq, NULL); |
| |
| while (rc && *pos) { |
| rc = listening_get_next(seq, rc); |
| --*pos; |
| } |
| return rc; |
| } |
| |
| static void *established_get_first(struct seq_file *seq) |
| { |
| struct tcp_iter_state* st = seq->private; |
| void *rc = NULL; |
| |
| for (st->bucket = 0; st->bucket < tcp_ehash_size; ++st->bucket) { |
| struct sock *sk; |
| struct hlist_node *node; |
| struct tcp_tw_bucket *tw; |
| |
| /* We can reschedule _before_ having picked the target: */ |
| cond_resched_softirq(); |
| |
| read_lock(&tcp_ehash[st->bucket].lock); |
| sk_for_each(sk, node, &tcp_ehash[st->bucket].chain) { |
| if (sk->sk_family != st->family) { |
| continue; |
| } |
| rc = sk; |
| goto out; |
| } |
| st->state = TCP_SEQ_STATE_TIME_WAIT; |
| tw_for_each(tw, node, |
| &tcp_ehash[st->bucket + tcp_ehash_size].chain) { |
| if (tw->tw_family != st->family) { |
| continue; |
| } |
| rc = tw; |
| goto out; |
| } |
| read_unlock(&tcp_ehash[st->bucket].lock); |
| st->state = TCP_SEQ_STATE_ESTABLISHED; |
| } |
| out: |
| return rc; |
| } |
| |
| static void *established_get_next(struct seq_file *seq, void *cur) |
| { |
| struct sock *sk = cur; |
| struct tcp_tw_bucket *tw; |
| struct hlist_node *node; |
| struct tcp_iter_state* st = seq->private; |
| |
| ++st->num; |
| |
| if (st->state == TCP_SEQ_STATE_TIME_WAIT) { |
| tw = cur; |
| tw = tw_next(tw); |
| get_tw: |
| while (tw && tw->tw_family != st->family) { |
| tw = tw_next(tw); |
| } |
| if (tw) { |
| cur = tw; |
| goto out; |
| } |
| read_unlock(&tcp_ehash[st->bucket].lock); |
| st->state = TCP_SEQ_STATE_ESTABLISHED; |
| |
| /* We can reschedule between buckets: */ |
| cond_resched_softirq(); |
| |
| if (++st->bucket < tcp_ehash_size) { |
| read_lock(&tcp_ehash[st->bucket].lock); |
| sk = sk_head(&tcp_ehash[st->bucket].chain); |
| } else { |
| cur = NULL; |
| goto out; |
| } |
| } else |
| sk = sk_next(sk); |
| |
| sk_for_each_from(sk, node) { |
| if (sk->sk_family == st->family) |
| goto found; |
| } |
| |
| st->state = TCP_SEQ_STATE_TIME_WAIT; |
| tw = tw_head(&tcp_ehash[st->bucket + tcp_ehash_size].chain); |
| goto get_tw; |
| found: |
| cur = sk; |
| out: |
| return cur; |
| } |
| |
| static void *established_get_idx(struct seq_file *seq, loff_t pos) |
| { |
| void *rc = established_get_first(seq); |
| |
| while (rc && pos) { |
| rc = established_get_next(seq, rc); |
| --pos; |
| } |
| return rc; |
| } |
| |
| static void *tcp_get_idx(struct seq_file *seq, loff_t pos) |
| { |
| void *rc; |
| struct tcp_iter_state* st = seq->private; |
| |
| tcp_listen_lock(); |
| st->state = TCP_SEQ_STATE_LISTENING; |
| rc = listening_get_idx(seq, &pos); |
| |
| if (!rc) { |
| tcp_listen_unlock(); |
| local_bh_disable(); |
| st->state = TCP_SEQ_STATE_ESTABLISHED; |
| rc = established_get_idx(seq, pos); |
| } |
| |
| return rc; |
| } |
| |
| static void *tcp_seq_start(struct seq_file *seq, loff_t *pos) |
| { |
| struct tcp_iter_state* st = seq->private; |
| st->state = TCP_SEQ_STATE_LISTENING; |
| st->num = 0; |
| return *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN; |
| } |
| |
| static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos) |
| { |
| void *rc = NULL; |
| struct tcp_iter_state* st; |
| |
| if (v == SEQ_START_TOKEN) { |
| rc = tcp_get_idx(seq, 0); |
| goto out; |
| } |
| st = seq->private; |
| |
| switch (st->state) { |
| case TCP_SEQ_STATE_OPENREQ: |
| case TCP_SEQ_STATE_LISTENING: |
| rc = listening_get_next(seq, v); |
| if (!rc) { |
| tcp_listen_unlock(); |
| local_bh_disable(); |
| st->state = TCP_SEQ_STATE_ESTABLISHED; |
| rc = established_get_first(seq); |
| } |
| break; |
| case TCP_SEQ_STATE_ESTABLISHED: |
| case TCP_SEQ_STATE_TIME_WAIT: |
| rc = established_get_next(seq, v); |
| break; |
| } |
| out: |
| ++*pos; |
| return rc; |
| } |
| |
| static void tcp_seq_stop(struct seq_file *seq, void *v) |
| { |
| struct tcp_iter_state* st = seq->private; |
| |
| switch (st->state) { |
| case TCP_SEQ_STATE_OPENREQ: |
| if (v) { |
| struct tcp_sock *tp = tcp_sk(st->syn_wait_sk); |
| read_unlock_bh(&tp->syn_wait_lock); |
| } |
| case TCP_SEQ_STATE_LISTENING: |
| if (v != SEQ_START_TOKEN) |
| tcp_listen_unlock(); |
| break; |
| case TCP_SEQ_STATE_TIME_WAIT: |
| case TCP_SEQ_STATE_ESTABLISHED: |
| if (v) |
| read_unlock(&tcp_ehash[st->bucket].lock); |
| local_bh_enable(); |
| break; |
| } |
| } |
| |
| static int tcp_seq_open(struct inode *inode, struct file *file) |
| { |
| struct tcp_seq_afinfo *afinfo = PDE(inode)->data; |
| struct seq_file *seq; |
| struct tcp_iter_state *s; |
| int rc; |
| |
| if (unlikely(afinfo == NULL)) |
| return -EINVAL; |
| |
| s = kmalloc(sizeof(*s), GFP_KERNEL); |
| if (!s) |
| return -ENOMEM; |
| memset(s, 0, sizeof(*s)); |
| s->family = afinfo->family; |
| s->seq_ops.start = tcp_seq_start; |
| s->seq_ops.next = tcp_seq_next; |
| s->seq_ops.show = afinfo->seq_show; |
| s->seq_ops.stop = tcp_seq_stop; |
| |
| rc = seq_open(file, &s->seq_ops); |
| if (rc) |
| goto out_kfree; |
| seq = file->private_data; |
| seq->private = s; |
| out: |
| return rc; |
| out_kfree: |
| kfree(s); |
| goto out; |
| } |
| |
| int tcp_proc_register(struct tcp_seq_afinfo *afinfo) |
| { |
| int rc = 0; |
| struct proc_dir_entry *p; |
| |
| if (!afinfo) |
| return -EINVAL; |
| afinfo->seq_fops->owner = afinfo->owner; |
| afinfo->seq_fops->open = tcp_seq_open; |
| afinfo->seq_fops->read = seq_read; |
| afinfo->seq_fops->llseek = seq_lseek; |
| afinfo->seq_fops->release = seq_release_private; |
| |
| p = proc_net_fops_create(afinfo->name, S_IRUGO, afinfo->seq_fops); |
| if (p) |
| p->data = afinfo; |
| else |
| rc = -ENOMEM; |
| return rc; |
| } |
| |
| void tcp_proc_unregister(struct tcp_seq_afinfo *afinfo) |
| { |
| if (!afinfo) |
| return; |
| proc_net_remove(afinfo->name); |
| memset(afinfo->seq_fops, 0, sizeof(*afinfo->seq_fops)); |
| } |
| |
| static void get_openreq4(struct sock *sk, struct open_request *req, |
| char *tmpbuf, int i, int uid) |
| { |
| const struct inet_request_sock *ireq = inet_rsk(req); |
| int ttd = req->expires - jiffies; |
| |
| sprintf(tmpbuf, "%4d: %08X:%04X %08X:%04X" |
| " %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %p", |
| i, |
| ireq->loc_addr, |
| ntohs(inet_sk(sk)->sport), |
| ireq->rmt_addr, |
| ntohs(ireq->rmt_port), |
| TCP_SYN_RECV, |
| 0, 0, /* could print option size, but that is af dependent. */ |
| 1, /* timers active (only the expire timer) */ |
| jiffies_to_clock_t(ttd), |
| req->retrans, |
| uid, |
| 0, /* non standard timer */ |
| 0, /* open_requests have no inode */ |
| atomic_read(&sk->sk_refcnt), |
| req); |
| } |
| |
| static void get_tcp4_sock(struct sock *sp, char *tmpbuf, int i) |
| { |
| int timer_active; |
| unsigned long timer_expires; |
| struct tcp_sock *tp = tcp_sk(sp); |
| struct inet_sock *inet = inet_sk(sp); |
| unsigned int dest = inet->daddr; |
| unsigned int src = inet->rcv_saddr; |
| __u16 destp = ntohs(inet->dport); |
| __u16 srcp = ntohs(inet->sport); |
| |
| if (tp->pending == TCP_TIME_RETRANS) { |
| timer_active = 1; |
| timer_expires = tp->timeout; |
| } else if (tp->pending == TCP_TIME_PROBE0) { |
| timer_active = 4; |
| timer_expires = tp->timeout; |
| } else if (timer_pending(&sp->sk_timer)) { |
| timer_active = 2; |
| timer_expires = sp->sk_timer.expires; |
| } else { |
| timer_active = 0; |
| timer_expires = jiffies; |
| } |
| |
| sprintf(tmpbuf, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX " |
| "%08X %5d %8d %lu %d %p %u %u %u %u %d", |
| i, src, srcp, dest, destp, sp->sk_state, |
| tp->write_seq - tp->snd_una, tp->rcv_nxt - tp->copied_seq, |
| timer_active, |
| jiffies_to_clock_t(timer_expires - jiffies), |
| tp->retransmits, |
| sock_i_uid(sp), |
| tp->probes_out, |
| sock_i_ino(sp), |
| atomic_read(&sp->sk_refcnt), sp, |
| tp->rto, tp->ack.ato, (tp->ack.quick << 1) | tp->ack.pingpong, |
| tp->snd_cwnd, |
| tp->snd_ssthresh >= 0xFFFF ? -1 : tp->snd_ssthresh); |
| } |
| |
| static void get_timewait4_sock(struct tcp_tw_bucket *tw, char *tmpbuf, int i) |
| { |
| unsigned int dest, src; |
| __u16 destp, srcp; |
| int ttd = tw->tw_ttd - jiffies; |
| |
| if (ttd < 0) |
| ttd = 0; |
| |
| dest = tw->tw_daddr; |
| src = tw->tw_rcv_saddr; |
| destp = ntohs(tw->tw_dport); |
| srcp = ntohs(tw->tw_sport); |
| |
| sprintf(tmpbuf, "%4d: %08X:%04X %08X:%04X" |
| " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %p", |
| i, src, srcp, dest, destp, tw->tw_substate, 0, 0, |
| 3, jiffies_to_clock_t(ttd), 0, 0, 0, 0, |
| atomic_read(&tw->tw_refcnt), tw); |
| } |
| |
| #define TMPSZ 150 |
| |
| static int tcp4_seq_show(struct seq_file *seq, void *v) |
| { |
| struct tcp_iter_state* st; |
| char tmpbuf[TMPSZ + 1]; |
| |
| if (v == SEQ_START_TOKEN) { |
| seq_printf(seq, "%-*s\n", TMPSZ - 1, |
| " sl local_address rem_address st tx_queue " |
| "rx_queue tr tm->when retrnsmt uid timeout " |
| "inode"); |
| goto out; |
| } |
| st = seq->private; |
| |
| switch (st->state) { |
| case TCP_SEQ_STATE_LISTENING: |
| case TCP_SEQ_STATE_ESTABLISHED: |
| get_tcp4_sock(v, tmpbuf, st->num); |
| break; |
| case TCP_SEQ_STATE_OPENREQ: |
| get_openreq4(st->syn_wait_sk, v, tmpbuf, st->num, st->uid); |
| break; |
| case TCP_SEQ_STATE_TIME_WAIT: |
| get_timewait4_sock(v, tmpbuf, st->num); |
| break; |
| } |
| seq_printf(seq, "%-*s\n", TMPSZ - 1, tmpbuf); |
| out: |
| return 0; |
| } |
| |
| static struct file_operations tcp4_seq_fops; |
| static struct tcp_seq_afinfo tcp4_seq_afinfo = { |
| .owner = THIS_MODULE, |
| .name = "tcp", |
| .family = AF_INET, |
| .seq_show = tcp4_seq_show, |
| .seq_fops = &tcp4_seq_fops, |
| }; |
| |
| int __init tcp4_proc_init(void) |
| { |
| return tcp_proc_register(&tcp4_seq_afinfo); |
| } |
| |
| void tcp4_proc_exit(void) |
| { |
| tcp_proc_unregister(&tcp4_seq_afinfo); |
| } |
| #endif /* CONFIG_PROC_FS */ |
| |
| struct proto tcp_prot = { |
| .name = "TCP", |
| .owner = THIS_MODULE, |
| .close = tcp_close, |
| .connect = tcp_v4_connect, |
| .disconnect = tcp_disconnect, |
| .accept = tcp_accept, |
| .ioctl = tcp_ioctl, |
| .init = tcp_v4_init_sock, |
| .destroy = tcp_v4_destroy_sock, |
| .shutdown = tcp_shutdown, |
| .setsockopt = tcp_setsockopt, |
| .getsockopt = tcp_getsockopt, |
| .sendmsg = tcp_sendmsg, |
| .recvmsg = tcp_recvmsg, |
| .backlog_rcv = tcp_v4_do_rcv, |
| .hash = tcp_v4_hash, |
| .unhash = tcp_unhash, |
| .get_port = tcp_v4_get_port, |
| .enter_memory_pressure = tcp_enter_memory_pressure, |
| .sockets_allocated = &tcp_sockets_allocated, |
| .memory_allocated = &tcp_memory_allocated, |
| .memory_pressure = &tcp_memory_pressure, |
| .sysctl_mem = sysctl_tcp_mem, |
| .sysctl_wmem = sysctl_tcp_wmem, |
| .sysctl_rmem = sysctl_tcp_rmem, |
| .max_header = MAX_TCP_HEADER, |
| .obj_size = sizeof(struct tcp_sock), |
| .rsk_prot = &or_ipv4, |
| }; |
| |
| |
| |
| void __init tcp_v4_init(struct net_proto_family *ops) |
| { |
| int err = sock_create_kern(PF_INET, SOCK_RAW, IPPROTO_TCP, &tcp_socket); |
| if (err < 0) |
| panic("Failed to create the TCP control socket.\n"); |
| tcp_socket->sk->sk_allocation = GFP_ATOMIC; |
| inet_sk(tcp_socket->sk)->uc_ttl = -1; |
| |
| /* Unhash it so that IP input processing does not even |
| * see it, we do not wish this socket to see incoming |
| * packets. |
| */ |
| tcp_socket->sk->sk_prot->unhash(tcp_socket->sk); |
| } |
| |
| EXPORT_SYMBOL(ipv4_specific); |
| EXPORT_SYMBOL(tcp_bind_hash); |
| EXPORT_SYMBOL(tcp_bucket_create); |
| EXPORT_SYMBOL(tcp_hashinfo); |
| EXPORT_SYMBOL(tcp_inherit_port); |
| EXPORT_SYMBOL(tcp_listen_wlock); |
| EXPORT_SYMBOL(tcp_port_rover); |
| EXPORT_SYMBOL(tcp_prot); |
| EXPORT_SYMBOL(tcp_put_port); |
| EXPORT_SYMBOL(tcp_unhash); |
| EXPORT_SYMBOL(tcp_v4_conn_request); |
| EXPORT_SYMBOL(tcp_v4_connect); |
| EXPORT_SYMBOL(tcp_v4_do_rcv); |
| EXPORT_SYMBOL(tcp_v4_rebuild_header); |
| EXPORT_SYMBOL(tcp_v4_remember_stamp); |
| EXPORT_SYMBOL(tcp_v4_send_check); |
| EXPORT_SYMBOL(tcp_v4_syn_recv_sock); |
| |
| #ifdef CONFIG_PROC_FS |
| EXPORT_SYMBOL(tcp_proc_register); |
| EXPORT_SYMBOL(tcp_proc_unregister); |
| #endif |
| EXPORT_SYMBOL(sysctl_local_port_range); |
| EXPORT_SYMBOL(sysctl_max_syn_backlog); |
| EXPORT_SYMBOL(sysctl_tcp_low_latency); |
| EXPORT_SYMBOL(sysctl_tcp_tw_reuse); |
| |