| /* |
| * drivers/sbus/char/jsflash.c |
| * |
| * Copyright (C) 1991, 1992 Linus Torvalds (drivers/char/mem.c) |
| * Copyright (C) 1997 Eddie C. Dost (drivers/sbus/char/flash.c) |
| * Copyright (C) 1997-2000 Pavel Machek <pavel@ucw.cz> (drivers/block/nbd.c) |
| * Copyright (C) 1999-2000 Pete Zaitcev |
| * |
| * This driver is used to program OS into a Flash SIMM on |
| * Krups and Espresso platforms. |
| * |
| * TODO: do not allow erase/programming if file systems are mounted. |
| * TODO: Erase/program both banks of a 8MB SIMM. |
| * |
| * It is anticipated that programming an OS Flash will be a routine |
| * procedure. In the same time it is exeedingly dangerous because |
| * a user can program its OBP flash with OS image and effectively |
| * kill the machine. |
| * |
| * This driver uses an interface different from Eddie's flash.c |
| * as a silly safeguard. |
| * |
| * XXX The flash.c manipulates page caching characteristics in a certain |
| * dubious way; also it assumes that remap_pfn_range() can remap |
| * PCI bus locations, which may be false. ioremap() must be used |
| * instead. We should discuss this. |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/smp_lock.h> |
| #include <linux/types.h> |
| #include <linux/errno.h> |
| #include <linux/miscdevice.h> |
| #include <linux/slab.h> |
| #include <linux/fcntl.h> |
| #include <linux/poll.h> |
| #include <linux/init.h> |
| #include <linux/string.h> |
| #include <linux/genhd.h> |
| #include <linux/blkdev.h> |
| #include <asm/uaccess.h> |
| #include <asm/pgtable.h> |
| #include <asm/io.h> |
| #include <asm/pcic.h> |
| #include <asm/oplib.h> |
| |
| #include <asm/jsflash.h> /* ioctl arguments. <linux/> ?? */ |
| #define JSFIDSZ (sizeof(struct jsflash_ident_arg)) |
| #define JSFPRGSZ (sizeof(struct jsflash_program_arg)) |
| |
| /* |
| * Our device numbers have no business in system headers. |
| * The only thing a user knows is the device name /dev/jsflash. |
| * |
| * Block devices are laid out like this: |
| * minor+0 - Bootstrap, for 8MB SIMM 0x20400000[0x800000] |
| * minor+1 - Filesystem to mount, normally 0x20400400[0x7ffc00] |
| * minor+2 - Whole flash area for any case... 0x20000000[0x01000000] |
| * Total 3 minors per flash device. |
| * |
| * It is easier to have static size vectors, so we define |
| * a total minor range JSF_MAX, which must cover all minors. |
| */ |
| /* character device */ |
| #define JSF_MINOR 178 /* 178 is registered with hpa */ |
| /* block device */ |
| #define JSF_MAX 3 /* 3 minors wasted total so far. */ |
| #define JSF_NPART 3 /* 3 minors per flash device */ |
| #define JSF_PART_BITS 2 /* 2 bits of minors to cover JSF_NPART */ |
| #define JSF_PART_MASK 0x3 /* 2 bits mask */ |
| |
| /* |
| * Access functions. |
| * We could ioremap(), but it's easier this way. |
| */ |
| static unsigned int jsf_inl(unsigned long addr) |
| { |
| unsigned long retval; |
| |
| __asm__ __volatile__("lda [%1] %2, %0\n\t" : |
| "=r" (retval) : |
| "r" (addr), "i" (ASI_M_BYPASS)); |
| return retval; |
| } |
| |
| static void jsf_outl(unsigned long addr, __u32 data) |
| { |
| |
| __asm__ __volatile__("sta %0, [%1] %2\n\t" : : |
| "r" (data), "r" (addr), "i" (ASI_M_BYPASS) : |
| "memory"); |
| } |
| |
| /* |
| * soft carrier |
| */ |
| |
| struct jsfd_part { |
| unsigned long dbase; |
| unsigned long dsize; |
| }; |
| |
| struct jsflash { |
| unsigned long base; |
| unsigned long size; |
| unsigned long busy; /* In use? */ |
| struct jsflash_ident_arg id; |
| /* int mbase; */ /* Minor base, typically zero */ |
| struct jsfd_part dv[JSF_NPART]; |
| }; |
| |
| /* |
| * We do not map normal memory or obio as a safety precaution. |
| * But offsets are real, for ease of userland programming. |
| */ |
| #define JSF_BASE_TOP 0x30000000 |
| #define JSF_BASE_ALL 0x20000000 |
| |
| #define JSF_BASE_JK 0x20400000 |
| |
| /* |
| */ |
| static struct gendisk *jsfd_disk[JSF_MAX]; |
| |
| /* |
| * Let's pretend we may have several of these... |
| */ |
| static struct jsflash jsf0; |
| |
| /* |
| * Wait for AMD to finish its embedded algorithm. |
| * We use the Toggle bit DQ6 (0x40) because it does not |
| * depend on the data value as /DATA bit DQ7 does. |
| * |
| * XXX Do we need any timeout here? So far it never hanged, beware broken hw. |
| */ |
| static void jsf_wait(unsigned long p) { |
| unsigned int x1, x2; |
| |
| for (;;) { |
| x1 = jsf_inl(p); |
| x2 = jsf_inl(p); |
| if ((x1 & 0x40404040) == (x2 & 0x40404040)) return; |
| } |
| } |
| |
| /* |
| * Programming will only work if Flash is clean, |
| * we leave it to the programmer application. |
| * |
| * AMD must be programmed one byte at a time; |
| * thus, Simple Tech SIMM must be written 4 bytes at a time. |
| * |
| * Write waits for the chip to become ready after the write |
| * was finished. This is done so that application would read |
| * consistent data after the write is done. |
| */ |
| static void jsf_write4(unsigned long fa, u32 data) { |
| |
| jsf_outl(fa, 0xAAAAAAAA); /* Unlock 1 Write 1 */ |
| jsf_outl(fa, 0x55555555); /* Unlock 1 Write 2 */ |
| jsf_outl(fa, 0xA0A0A0A0); /* Byte Program */ |
| jsf_outl(fa, data); |
| |
| jsf_wait(fa); |
| } |
| |
| /* |
| */ |
| static void jsfd_read(char *buf, unsigned long p, size_t togo) { |
| union byte4 { |
| char s[4]; |
| unsigned int n; |
| } b; |
| |
| while (togo >= 4) { |
| togo -= 4; |
| b.n = jsf_inl(p); |
| memcpy(buf, b.s, 4); |
| p += 4; |
| buf += 4; |
| } |
| } |
| |
| static void jsfd_do_request(struct request_queue *q) |
| { |
| struct request *req; |
| |
| while ((req = elv_next_request(q)) != NULL) { |
| struct jsfd_part *jdp = req->rq_disk->private_data; |
| unsigned long offset = req->sector << 9; |
| size_t len = req->current_nr_sectors << 9; |
| |
| if ((offset + len) > jdp->dsize) { |
| end_request(req, 0); |
| continue; |
| } |
| |
| if (rq_data_dir(req) != READ) { |
| printk(KERN_ERR "jsfd: write\n"); |
| end_request(req, 0); |
| continue; |
| } |
| |
| if ((jdp->dbase & 0xff000000) != 0x20000000) { |
| printk(KERN_ERR "jsfd: bad base %x\n", (int)jdp->dbase); |
| end_request(req, 0); |
| continue; |
| } |
| |
| jsfd_read(req->buffer, jdp->dbase + offset, len); |
| |
| end_request(req, 1); |
| } |
| } |
| |
| /* |
| * The memory devices use the full 32/64 bits of the offset, and so we cannot |
| * check against negative addresses: they are ok. The return value is weird, |
| * though, in that case (0). |
| * |
| * also note that seeking relative to the "end of file" isn't supported: |
| * it has no meaning, so it returns -EINVAL. |
| */ |
| static loff_t jsf_lseek(struct file * file, loff_t offset, int orig) |
| { |
| loff_t ret; |
| |
| lock_kernel(); |
| switch (orig) { |
| case 0: |
| file->f_pos = offset; |
| ret = file->f_pos; |
| break; |
| case 1: |
| file->f_pos += offset; |
| ret = file->f_pos; |
| break; |
| default: |
| ret = -EINVAL; |
| } |
| unlock_kernel(); |
| return ret; |
| } |
| |
| /* |
| * OS SIMM Cannot be read in other size but a 32bits word. |
| */ |
| static ssize_t jsf_read(struct file * file, char __user * buf, |
| size_t togo, loff_t *ppos) |
| { |
| unsigned long p = *ppos; |
| char __user *tmp = buf; |
| |
| union byte4 { |
| char s[4]; |
| unsigned int n; |
| } b; |
| |
| if (p < JSF_BASE_ALL || p >= JSF_BASE_TOP) { |
| return 0; |
| } |
| |
| if ((p + togo) < p /* wrap */ |
| || (p + togo) >= JSF_BASE_TOP) { |
| togo = JSF_BASE_TOP - p; |
| } |
| |
| if (p < JSF_BASE_ALL && togo != 0) { |
| #if 0 /* __bzero XXX */ |
| size_t x = JSF_BASE_ALL - p; |
| if (x > togo) x = togo; |
| clear_user(tmp, x); |
| tmp += x; |
| p += x; |
| togo -= x; |
| #else |
| /* |
| * Implementation of clear_user() calls __bzero |
| * without regard to modversions, |
| * so we cannot build a module. |
| */ |
| return 0; |
| #endif |
| } |
| |
| while (togo >= 4) { |
| togo -= 4; |
| b.n = jsf_inl(p); |
| if (copy_to_user(tmp, b.s, 4)) |
| return -EFAULT; |
| tmp += 4; |
| p += 4; |
| } |
| |
| /* |
| * XXX Small togo may remain if 1 byte is ordered. |
| * It would be nice if we did a word size read and unpacked it. |
| */ |
| |
| *ppos = p; |
| return tmp-buf; |
| } |
| |
| static ssize_t jsf_write(struct file * file, const char __user * buf, |
| size_t count, loff_t *ppos) |
| { |
| return -ENOSPC; |
| } |
| |
| /* |
| */ |
| static int jsf_ioctl_erase(unsigned long arg) |
| { |
| unsigned long p; |
| |
| /* p = jsf0.base; hits wrong bank */ |
| p = 0x20400000; |
| |
| jsf_outl(p, 0xAAAAAAAA); /* Unlock 1 Write 1 */ |
| jsf_outl(p, 0x55555555); /* Unlock 1 Write 2 */ |
| jsf_outl(p, 0x80808080); /* Erase setup */ |
| jsf_outl(p, 0xAAAAAAAA); /* Unlock 2 Write 1 */ |
| jsf_outl(p, 0x55555555); /* Unlock 2 Write 2 */ |
| jsf_outl(p, 0x10101010); /* Chip erase */ |
| |
| #if 0 |
| /* |
| * This code is ok, except that counter based timeout |
| * has no place in this world. Let's just drop timeouts... |
| */ |
| { |
| int i; |
| __u32 x; |
| for (i = 0; i < 1000000; i++) { |
| x = jsf_inl(p); |
| if ((x & 0x80808080) == 0x80808080) break; |
| } |
| if ((x & 0x80808080) != 0x80808080) { |
| printk("jsf0: erase timeout with 0x%08x\n", x); |
| } else { |
| printk("jsf0: erase done with 0x%08x\n", x); |
| } |
| } |
| #else |
| jsf_wait(p); |
| #endif |
| |
| return 0; |
| } |
| |
| /* |
| * Program a block of flash. |
| * Very simple because we can do it byte by byte anyway. |
| */ |
| static int jsf_ioctl_program(void __user *arg) |
| { |
| struct jsflash_program_arg abuf; |
| char __user *uptr; |
| unsigned long p; |
| unsigned int togo; |
| union { |
| unsigned int n; |
| char s[4]; |
| } b; |
| |
| if (copy_from_user(&abuf, arg, JSFPRGSZ)) |
| return -EFAULT; |
| p = abuf.off; |
| togo = abuf.size; |
| if ((togo & 3) || (p & 3)) return -EINVAL; |
| |
| uptr = (char __user *) (unsigned long) abuf.data; |
| while (togo != 0) { |
| togo -= 4; |
| if (copy_from_user(&b.s[0], uptr, 4)) |
| return -EFAULT; |
| jsf_write4(p, b.n); |
| p += 4; |
| uptr += 4; |
| } |
| |
| return 0; |
| } |
| |
| static long jsf_ioctl(struct file *f, unsigned int cmd, unsigned long arg) |
| { |
| lock_kernel(); |
| int error = -ENOTTY; |
| void __user *argp = (void __user *)arg; |
| |
| if (!capable(CAP_SYS_ADMIN)) { |
| unlock_kernel(); |
| return -EPERM; |
| } |
| switch (cmd) { |
| case JSFLASH_IDENT: |
| if (copy_to_user(argp, &jsf0.id, JSFIDSZ)) { |
| unlock_kernel(); |
| return -EFAULT; |
| } |
| break; |
| case JSFLASH_ERASE: |
| error = jsf_ioctl_erase(arg); |
| break; |
| case JSFLASH_PROGRAM: |
| error = jsf_ioctl_program(argp); |
| break; |
| } |
| |
| unlock_kernel(); |
| return error; |
| } |
| |
| static int jsf_mmap(struct file * file, struct vm_area_struct * vma) |
| { |
| return -ENXIO; |
| } |
| |
| static int jsf_open(struct inode * inode, struct file * filp) |
| { |
| lock_kernel(); |
| if (jsf0.base == 0) { |
| unlock_kernel(); |
| return -ENXIO; |
| } |
| if (test_and_set_bit(0, (void *)&jsf0.busy) != 0) { |
| unlock_kernel(); |
| return -EBUSY; |
| } |
| |
| unlock_kernel(); |
| return 0; /* XXX What security? */ |
| } |
| |
| static int jsf_release(struct inode *inode, struct file *file) |
| { |
| jsf0.busy = 0; |
| return 0; |
| } |
| |
| static const struct file_operations jsf_fops = { |
| .owner = THIS_MODULE, |
| .llseek = jsf_lseek, |
| .read = jsf_read, |
| .write = jsf_write, |
| .unlocked_ioctl = jsf_ioctl, |
| .mmap = jsf_mmap, |
| .open = jsf_open, |
| .release = jsf_release, |
| }; |
| |
| static struct miscdevice jsf_dev = { JSF_MINOR, "jsflash", &jsf_fops }; |
| |
| static struct block_device_operations jsfd_fops = { |
| .owner = THIS_MODULE, |
| }; |
| |
| static int jsflash_init(void) |
| { |
| int rc; |
| struct jsflash *jsf; |
| int node; |
| char banner[128]; |
| struct linux_prom_registers reg0; |
| |
| node = prom_getchild(prom_root_node); |
| node = prom_searchsiblings(node, "flash-memory"); |
| if (node != 0 && node != -1) { |
| if (prom_getproperty(node, "reg", |
| (char *)®0, sizeof(reg0)) == -1) { |
| printk("jsflash: no \"reg\" property\n"); |
| return -ENXIO; |
| } |
| if (reg0.which_io != 0) { |
| printk("jsflash: bus number nonzero: 0x%x:%x\n", |
| reg0.which_io, reg0.phys_addr); |
| return -ENXIO; |
| } |
| /* |
| * Flash may be somewhere else, for instance on Ebus. |
| * So, don't do the following check for IIep flash space. |
| */ |
| #if 0 |
| if ((reg0.phys_addr >> 24) != 0x20) { |
| printk("jsflash: suspicious address: 0x%x:%x\n", |
| reg0.which_io, reg0.phys_addr); |
| return -ENXIO; |
| } |
| #endif |
| if ((int)reg0.reg_size <= 0) { |
| printk("jsflash: bad size 0x%x\n", (int)reg0.reg_size); |
| return -ENXIO; |
| } |
| } else { |
| /* XXX Remove this code once PROLL ID12 got widespread */ |
| printk("jsflash: no /flash-memory node, use PROLL >= 12\n"); |
| prom_getproperty(prom_root_node, "banner-name", banner, 128); |
| if (strcmp (banner, "JavaStation-NC") != 0 && |
| strcmp (banner, "JavaStation-E") != 0) { |
| return -ENXIO; |
| } |
| reg0.which_io = 0; |
| reg0.phys_addr = 0x20400000; |
| reg0.reg_size = 0x00800000; |
| } |
| |
| /* Let us be really paranoid for modifications to probing code. */ |
| /* extern enum sparc_cpu sparc_cpu_model; */ /* in <asm/system.h> */ |
| if (sparc_cpu_model != sun4m) { |
| /* We must be on sun4m because we use MMU Bypass ASI. */ |
| return -ENXIO; |
| } |
| |
| if (jsf0.base == 0) { |
| jsf = &jsf0; |
| |
| jsf->base = reg0.phys_addr; |
| jsf->size = reg0.reg_size; |
| |
| /* XXX Redo the userland interface. */ |
| jsf->id.off = JSF_BASE_ALL; |
| jsf->id.size = 0x01000000; /* 16M - all segments */ |
| strcpy(jsf->id.name, "Krups_all"); |
| |
| jsf->dv[0].dbase = jsf->base; |
| jsf->dv[0].dsize = jsf->size; |
| jsf->dv[1].dbase = jsf->base + 1024; |
| jsf->dv[1].dsize = jsf->size - 1024; |
| jsf->dv[2].dbase = JSF_BASE_ALL; |
| jsf->dv[2].dsize = 0x01000000; |
| |
| printk("Espresso Flash @0x%lx [%d MB]\n", jsf->base, |
| (int) (jsf->size / (1024*1024))); |
| } |
| |
| if ((rc = misc_register(&jsf_dev)) != 0) { |
| printk(KERN_ERR "jsf: unable to get misc minor %d\n", |
| JSF_MINOR); |
| jsf0.base = 0; |
| return rc; |
| } |
| |
| return 0; |
| } |
| |
| static struct request_queue *jsf_queue; |
| |
| static int jsfd_init(void) |
| { |
| static DEFINE_SPINLOCK(lock); |
| struct jsflash *jsf; |
| struct jsfd_part *jdp; |
| int err; |
| int i; |
| |
| if (jsf0.base == 0) |
| return -ENXIO; |
| |
| err = -ENOMEM; |
| for (i = 0; i < JSF_MAX; i++) { |
| struct gendisk *disk = alloc_disk(1); |
| if (!disk) |
| goto out; |
| jsfd_disk[i] = disk; |
| } |
| |
| if (register_blkdev(JSFD_MAJOR, "jsfd")) { |
| err = -EIO; |
| goto out; |
| } |
| |
| jsf_queue = blk_init_queue(jsfd_do_request, &lock); |
| if (!jsf_queue) { |
| err = -ENOMEM; |
| unregister_blkdev(JSFD_MAJOR, "jsfd"); |
| goto out; |
| } |
| |
| for (i = 0; i < JSF_MAX; i++) { |
| struct gendisk *disk = jsfd_disk[i]; |
| if ((i & JSF_PART_MASK) >= JSF_NPART) continue; |
| jsf = &jsf0; /* actually, &jsfv[i >> JSF_PART_BITS] */ |
| jdp = &jsf->dv[i&JSF_PART_MASK]; |
| |
| disk->major = JSFD_MAJOR; |
| disk->first_minor = i; |
| sprintf(disk->disk_name, "jsfd%d", i); |
| disk->fops = &jsfd_fops; |
| set_capacity(disk, jdp->dsize >> 9); |
| disk->private_data = jdp; |
| disk->queue = jsf_queue; |
| add_disk(disk); |
| set_disk_ro(disk, 1); |
| } |
| return 0; |
| out: |
| while (i--) |
| put_disk(jsfd_disk[i]); |
| return err; |
| } |
| |
| MODULE_LICENSE("GPL"); |
| |
| static int __init jsflash_init_module(void) { |
| int rc; |
| |
| if ((rc = jsflash_init()) == 0) { |
| jsfd_init(); |
| return 0; |
| } |
| return rc; |
| } |
| |
| static void __exit jsflash_cleanup_module(void) |
| { |
| int i; |
| |
| for (i = 0; i < JSF_MAX; i++) { |
| if ((i & JSF_PART_MASK) >= JSF_NPART) continue; |
| del_gendisk(jsfd_disk[i]); |
| put_disk(jsfd_disk[i]); |
| } |
| if (jsf0.busy) |
| printk("jsf0: cleaning busy unit\n"); |
| jsf0.base = 0; |
| jsf0.busy = 0; |
| |
| misc_deregister(&jsf_dev); |
| unregister_blkdev(JSFD_MAJOR, "jsfd"); |
| blk_cleanup_queue(jsf_queue); |
| } |
| |
| module_init(jsflash_init_module); |
| module_exit(jsflash_cleanup_module); |