| #include <linux/linkage.h> |
| #include <linux/config.h> |
| #include <linux/errno.h> |
| #include <linux/signal.h> |
| #include <linux/sched.h> |
| #include <linux/ioport.h> |
| #include <linux/interrupt.h> |
| #include <linux/timex.h> |
| #include <linux/slab.h> |
| #include <linux/random.h> |
| #include <linux/smp_lock.h> |
| #include <linux/init.h> |
| #include <linux/kernel_stat.h> |
| #include <linux/sysdev.h> |
| #include <linux/bitops.h> |
| |
| #include <asm/acpi.h> |
| #include <asm/atomic.h> |
| #include <asm/system.h> |
| #include <asm/io.h> |
| #include <asm/hw_irq.h> |
| #include <asm/pgtable.h> |
| #include <asm/delay.h> |
| #include <asm/desc.h> |
| #include <asm/apic.h> |
| |
| /* |
| * Common place to define all x86 IRQ vectors |
| * |
| * This builds up the IRQ handler stubs using some ugly macros in irq.h |
| * |
| * These macros create the low-level assembly IRQ routines that save |
| * register context and call do_IRQ(). do_IRQ() then does all the |
| * operations that are needed to keep the AT (or SMP IOAPIC) |
| * interrupt-controller happy. |
| */ |
| |
| #define BI(x,y) \ |
| BUILD_IRQ(x##y) |
| |
| #define BUILD_16_IRQS(x) \ |
| BI(x,0) BI(x,1) BI(x,2) BI(x,3) \ |
| BI(x,4) BI(x,5) BI(x,6) BI(x,7) \ |
| BI(x,8) BI(x,9) BI(x,a) BI(x,b) \ |
| BI(x,c) BI(x,d) BI(x,e) BI(x,f) |
| |
| #define BUILD_15_IRQS(x) \ |
| BI(x,0) BI(x,1) BI(x,2) BI(x,3) \ |
| BI(x,4) BI(x,5) BI(x,6) BI(x,7) \ |
| BI(x,8) BI(x,9) BI(x,a) BI(x,b) \ |
| BI(x,c) BI(x,d) BI(x,e) |
| |
| /* |
| * ISA PIC or low IO-APIC triggered (INTA-cycle or APIC) interrupts: |
| * (these are usually mapped to vectors 0x20-0x2f) |
| */ |
| BUILD_16_IRQS(0x0) |
| |
| #ifdef CONFIG_X86_LOCAL_APIC |
| /* |
| * The IO-APIC gives us many more interrupt sources. Most of these |
| * are unused but an SMP system is supposed to have enough memory ... |
| * sometimes (mostly wrt. hw bugs) we get corrupted vectors all |
| * across the spectrum, so we really want to be prepared to get all |
| * of these. Plus, more powerful systems might have more than 64 |
| * IO-APIC registers. |
| * |
| * (these are usually mapped into the 0x30-0xff vector range) |
| */ |
| BUILD_16_IRQS(0x1) BUILD_16_IRQS(0x2) BUILD_16_IRQS(0x3) |
| BUILD_16_IRQS(0x4) BUILD_16_IRQS(0x5) BUILD_16_IRQS(0x6) BUILD_16_IRQS(0x7) |
| BUILD_16_IRQS(0x8) BUILD_16_IRQS(0x9) BUILD_16_IRQS(0xa) BUILD_16_IRQS(0xb) |
| BUILD_16_IRQS(0xc) BUILD_16_IRQS(0xd) |
| |
| #ifdef CONFIG_PCI_MSI |
| BUILD_15_IRQS(0xe) |
| #endif |
| |
| #endif |
| |
| #undef BUILD_16_IRQS |
| #undef BUILD_15_IRQS |
| #undef BI |
| |
| |
| #define IRQ(x,y) \ |
| IRQ##x##y##_interrupt |
| |
| #define IRQLIST_16(x) \ |
| IRQ(x,0), IRQ(x,1), IRQ(x,2), IRQ(x,3), \ |
| IRQ(x,4), IRQ(x,5), IRQ(x,6), IRQ(x,7), \ |
| IRQ(x,8), IRQ(x,9), IRQ(x,a), IRQ(x,b), \ |
| IRQ(x,c), IRQ(x,d), IRQ(x,e), IRQ(x,f) |
| |
| #define IRQLIST_15(x) \ |
| IRQ(x,0), IRQ(x,1), IRQ(x,2), IRQ(x,3), \ |
| IRQ(x,4), IRQ(x,5), IRQ(x,6), IRQ(x,7), \ |
| IRQ(x,8), IRQ(x,9), IRQ(x,a), IRQ(x,b), \ |
| IRQ(x,c), IRQ(x,d), IRQ(x,e) |
| |
| void (*interrupt[NR_IRQS])(void) = { |
| IRQLIST_16(0x0), |
| |
| #ifdef CONFIG_X86_IO_APIC |
| IRQLIST_16(0x1), IRQLIST_16(0x2), IRQLIST_16(0x3), |
| IRQLIST_16(0x4), IRQLIST_16(0x5), IRQLIST_16(0x6), IRQLIST_16(0x7), |
| IRQLIST_16(0x8), IRQLIST_16(0x9), IRQLIST_16(0xa), IRQLIST_16(0xb), |
| IRQLIST_16(0xc), IRQLIST_16(0xd) |
| |
| #ifdef CONFIG_PCI_MSI |
| , IRQLIST_15(0xe) |
| #endif |
| |
| #endif |
| }; |
| |
| #undef IRQ |
| #undef IRQLIST_16 |
| #undef IRQLIST_14 |
| |
| /* |
| * This is the 'legacy' 8259A Programmable Interrupt Controller, |
| * present in the majority of PC/AT boxes. |
| * plus some generic x86 specific things if generic specifics makes |
| * any sense at all. |
| * this file should become arch/i386/kernel/irq.c when the old irq.c |
| * moves to arch independent land |
| */ |
| |
| DEFINE_SPINLOCK(i8259A_lock); |
| |
| static void end_8259A_irq (unsigned int irq) |
| { |
| if (irq > 256) { |
| char var; |
| printk("return %p stack %p ti %p\n", __builtin_return_address(0), &var, task_thread_info(current)); |
| |
| BUG(); |
| } |
| |
| if (!(irq_desc[irq].status & (IRQ_DISABLED|IRQ_INPROGRESS)) && |
| irq_desc[irq].action) |
| enable_8259A_irq(irq); |
| } |
| |
| #define shutdown_8259A_irq disable_8259A_irq |
| |
| static void mask_and_ack_8259A(unsigned int); |
| |
| static unsigned int startup_8259A_irq(unsigned int irq) |
| { |
| enable_8259A_irq(irq); |
| return 0; /* never anything pending */ |
| } |
| |
| static struct hw_interrupt_type i8259A_irq_type = { |
| .typename = "XT-PIC", |
| .startup = startup_8259A_irq, |
| .shutdown = shutdown_8259A_irq, |
| .enable = enable_8259A_irq, |
| .disable = disable_8259A_irq, |
| .ack = mask_and_ack_8259A, |
| .end = end_8259A_irq, |
| }; |
| |
| /* |
| * 8259A PIC functions to handle ISA devices: |
| */ |
| |
| /* |
| * This contains the irq mask for both 8259A irq controllers, |
| */ |
| static unsigned int cached_irq_mask = 0xffff; |
| |
| #define __byte(x,y) (((unsigned char *)&(y))[x]) |
| #define cached_21 (__byte(0,cached_irq_mask)) |
| #define cached_A1 (__byte(1,cached_irq_mask)) |
| |
| /* |
| * Not all IRQs can be routed through the IO-APIC, eg. on certain (older) |
| * boards the timer interrupt is not really connected to any IO-APIC pin, |
| * it's fed to the master 8259A's IR0 line only. |
| * |
| * Any '1' bit in this mask means the IRQ is routed through the IO-APIC. |
| * this 'mixed mode' IRQ handling costs nothing because it's only used |
| * at IRQ setup time. |
| */ |
| unsigned long io_apic_irqs; |
| |
| void disable_8259A_irq(unsigned int irq) |
| { |
| unsigned int mask = 1 << irq; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&i8259A_lock, flags); |
| cached_irq_mask |= mask; |
| if (irq & 8) |
| outb(cached_A1,0xA1); |
| else |
| outb(cached_21,0x21); |
| spin_unlock_irqrestore(&i8259A_lock, flags); |
| } |
| |
| void enable_8259A_irq(unsigned int irq) |
| { |
| unsigned int mask = ~(1 << irq); |
| unsigned long flags; |
| |
| spin_lock_irqsave(&i8259A_lock, flags); |
| cached_irq_mask &= mask; |
| if (irq & 8) |
| outb(cached_A1,0xA1); |
| else |
| outb(cached_21,0x21); |
| spin_unlock_irqrestore(&i8259A_lock, flags); |
| } |
| |
| int i8259A_irq_pending(unsigned int irq) |
| { |
| unsigned int mask = 1<<irq; |
| unsigned long flags; |
| int ret; |
| |
| spin_lock_irqsave(&i8259A_lock, flags); |
| if (irq < 8) |
| ret = inb(0x20) & mask; |
| else |
| ret = inb(0xA0) & (mask >> 8); |
| spin_unlock_irqrestore(&i8259A_lock, flags); |
| |
| return ret; |
| } |
| |
| void make_8259A_irq(unsigned int irq) |
| { |
| disable_irq_nosync(irq); |
| io_apic_irqs &= ~(1<<irq); |
| irq_desc[irq].handler = &i8259A_irq_type; |
| enable_irq(irq); |
| } |
| |
| /* |
| * This function assumes to be called rarely. Switching between |
| * 8259A registers is slow. |
| * This has to be protected by the irq controller spinlock |
| * before being called. |
| */ |
| static inline int i8259A_irq_real(unsigned int irq) |
| { |
| int value; |
| int irqmask = 1<<irq; |
| |
| if (irq < 8) { |
| outb(0x0B,0x20); /* ISR register */ |
| value = inb(0x20) & irqmask; |
| outb(0x0A,0x20); /* back to the IRR register */ |
| return value; |
| } |
| outb(0x0B,0xA0); /* ISR register */ |
| value = inb(0xA0) & (irqmask >> 8); |
| outb(0x0A,0xA0); /* back to the IRR register */ |
| return value; |
| } |
| |
| /* |
| * Careful! The 8259A is a fragile beast, it pretty |
| * much _has_ to be done exactly like this (mask it |
| * first, _then_ send the EOI, and the order of EOI |
| * to the two 8259s is important! |
| */ |
| static void mask_and_ack_8259A(unsigned int irq) |
| { |
| unsigned int irqmask = 1 << irq; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&i8259A_lock, flags); |
| /* |
| * Lightweight spurious IRQ detection. We do not want |
| * to overdo spurious IRQ handling - it's usually a sign |
| * of hardware problems, so we only do the checks we can |
| * do without slowing down good hardware unnecesserily. |
| * |
| * Note that IRQ7 and IRQ15 (the two spurious IRQs |
| * usually resulting from the 8259A-1|2 PICs) occur |
| * even if the IRQ is masked in the 8259A. Thus we |
| * can check spurious 8259A IRQs without doing the |
| * quite slow i8259A_irq_real() call for every IRQ. |
| * This does not cover 100% of spurious interrupts, |
| * but should be enough to warn the user that there |
| * is something bad going on ... |
| */ |
| if (cached_irq_mask & irqmask) |
| goto spurious_8259A_irq; |
| cached_irq_mask |= irqmask; |
| |
| handle_real_irq: |
| if (irq & 8) { |
| inb(0xA1); /* DUMMY - (do we need this?) */ |
| outb(cached_A1,0xA1); |
| outb(0x60+(irq&7),0xA0);/* 'Specific EOI' to slave */ |
| outb(0x62,0x20); /* 'Specific EOI' to master-IRQ2 */ |
| } else { |
| inb(0x21); /* DUMMY - (do we need this?) */ |
| outb(cached_21,0x21); |
| outb(0x60+irq,0x20); /* 'Specific EOI' to master */ |
| } |
| spin_unlock_irqrestore(&i8259A_lock, flags); |
| return; |
| |
| spurious_8259A_irq: |
| /* |
| * this is the slow path - should happen rarely. |
| */ |
| if (i8259A_irq_real(irq)) |
| /* |
| * oops, the IRQ _is_ in service according to the |
| * 8259A - not spurious, go handle it. |
| */ |
| goto handle_real_irq; |
| |
| { |
| static int spurious_irq_mask; |
| /* |
| * At this point we can be sure the IRQ is spurious, |
| * lets ACK and report it. [once per IRQ] |
| */ |
| if (!(spurious_irq_mask & irqmask)) { |
| printk(KERN_DEBUG "spurious 8259A interrupt: IRQ%d.\n", irq); |
| spurious_irq_mask |= irqmask; |
| } |
| atomic_inc(&irq_err_count); |
| /* |
| * Theoretically we do not have to handle this IRQ, |
| * but in Linux this does not cause problems and is |
| * simpler for us. |
| */ |
| goto handle_real_irq; |
| } |
| } |
| |
| void init_8259A(int auto_eoi) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&i8259A_lock, flags); |
| |
| outb(0xff, 0x21); /* mask all of 8259A-1 */ |
| outb(0xff, 0xA1); /* mask all of 8259A-2 */ |
| |
| /* |
| * outb_p - this has to work on a wide range of PC hardware. |
| */ |
| outb_p(0x11, 0x20); /* ICW1: select 8259A-1 init */ |
| outb_p(0x20 + 0, 0x21); /* ICW2: 8259A-1 IR0-7 mapped to 0x20-0x27 */ |
| outb_p(0x04, 0x21); /* 8259A-1 (the master) has a slave on IR2 */ |
| if (auto_eoi) |
| outb_p(0x03, 0x21); /* master does Auto EOI */ |
| else |
| outb_p(0x01, 0x21); /* master expects normal EOI */ |
| |
| outb_p(0x11, 0xA0); /* ICW1: select 8259A-2 init */ |
| outb_p(0x20 + 8, 0xA1); /* ICW2: 8259A-2 IR0-7 mapped to 0x28-0x2f */ |
| outb_p(0x02, 0xA1); /* 8259A-2 is a slave on master's IR2 */ |
| outb_p(0x01, 0xA1); /* (slave's support for AEOI in flat mode |
| is to be investigated) */ |
| |
| if (auto_eoi) |
| /* |
| * in AEOI mode we just have to mask the interrupt |
| * when acking. |
| */ |
| i8259A_irq_type.ack = disable_8259A_irq; |
| else |
| i8259A_irq_type.ack = mask_and_ack_8259A; |
| |
| udelay(100); /* wait for 8259A to initialize */ |
| |
| outb(cached_21, 0x21); /* restore master IRQ mask */ |
| outb(cached_A1, 0xA1); /* restore slave IRQ mask */ |
| |
| spin_unlock_irqrestore(&i8259A_lock, flags); |
| } |
| |
| static char irq_trigger[2]; |
| /** |
| * ELCR registers (0x4d0, 0x4d1) control edge/level of IRQ |
| */ |
| static void restore_ELCR(char *trigger) |
| { |
| outb(trigger[0], 0x4d0); |
| outb(trigger[1], 0x4d1); |
| } |
| |
| static void save_ELCR(char *trigger) |
| { |
| /* IRQ 0,1,2,8,13 are marked as reserved */ |
| trigger[0] = inb(0x4d0) & 0xF8; |
| trigger[1] = inb(0x4d1) & 0xDE; |
| } |
| |
| static int i8259A_resume(struct sys_device *dev) |
| { |
| init_8259A(0); |
| restore_ELCR(irq_trigger); |
| return 0; |
| } |
| |
| static int i8259A_suspend(struct sys_device *dev, pm_message_t state) |
| { |
| save_ELCR(irq_trigger); |
| return 0; |
| } |
| |
| static int i8259A_shutdown(struct sys_device *dev) |
| { |
| /* Put the i8259A into a quiescent state that |
| * the kernel initialization code can get it |
| * out of. |
| */ |
| outb(0xff, 0x21); /* mask all of 8259A-1 */ |
| outb(0xff, 0xA1); /* mask all of 8259A-1 */ |
| return 0; |
| } |
| |
| static struct sysdev_class i8259_sysdev_class = { |
| set_kset_name("i8259"), |
| .suspend = i8259A_suspend, |
| .resume = i8259A_resume, |
| .shutdown = i8259A_shutdown, |
| }; |
| |
| static struct sys_device device_i8259A = { |
| .id = 0, |
| .cls = &i8259_sysdev_class, |
| }; |
| |
| static int __init i8259A_init_sysfs(void) |
| { |
| int error = sysdev_class_register(&i8259_sysdev_class); |
| if (!error) |
| error = sysdev_register(&device_i8259A); |
| return error; |
| } |
| |
| device_initcall(i8259A_init_sysfs); |
| |
| /* |
| * IRQ2 is cascade interrupt to second interrupt controller |
| */ |
| |
| static struct irqaction irq2 = { no_action, 0, CPU_MASK_NONE, "cascade", NULL, NULL}; |
| |
| void __init init_ISA_irqs (void) |
| { |
| int i; |
| |
| #ifdef CONFIG_X86_LOCAL_APIC |
| init_bsp_APIC(); |
| #endif |
| init_8259A(0); |
| |
| for (i = 0; i < NR_IRQS; i++) { |
| irq_desc[i].status = IRQ_DISABLED; |
| irq_desc[i].action = NULL; |
| irq_desc[i].depth = 1; |
| |
| if (i < 16) { |
| /* |
| * 16 old-style INTA-cycle interrupts: |
| */ |
| irq_desc[i].handler = &i8259A_irq_type; |
| } else { |
| /* |
| * 'high' PCI IRQs filled in on demand |
| */ |
| irq_desc[i].handler = &no_irq_type; |
| } |
| } |
| } |
| |
| void apic_timer_interrupt(void); |
| void spurious_interrupt(void); |
| void error_interrupt(void); |
| void reschedule_interrupt(void); |
| void call_function_interrupt(void); |
| void invalidate_interrupt0(void); |
| void invalidate_interrupt1(void); |
| void invalidate_interrupt2(void); |
| void invalidate_interrupt3(void); |
| void invalidate_interrupt4(void); |
| void invalidate_interrupt5(void); |
| void invalidate_interrupt6(void); |
| void invalidate_interrupt7(void); |
| void thermal_interrupt(void); |
| void threshold_interrupt(void); |
| void i8254_timer_resume(void); |
| |
| static void setup_timer_hardware(void) |
| { |
| outb_p(0x34,0x43); /* binary, mode 2, LSB/MSB, ch 0 */ |
| udelay(10); |
| outb_p(LATCH & 0xff , 0x40); /* LSB */ |
| udelay(10); |
| outb(LATCH >> 8 , 0x40); /* MSB */ |
| } |
| |
| static int timer_resume(struct sys_device *dev) |
| { |
| setup_timer_hardware(); |
| return 0; |
| } |
| |
| void i8254_timer_resume(void) |
| { |
| setup_timer_hardware(); |
| } |
| |
| static struct sysdev_class timer_sysclass = { |
| set_kset_name("timer_pit"), |
| .resume = timer_resume, |
| }; |
| |
| static struct sys_device device_timer = { |
| .id = 0, |
| .cls = &timer_sysclass, |
| }; |
| |
| static int __init init_timer_sysfs(void) |
| { |
| int error = sysdev_class_register(&timer_sysclass); |
| if (!error) |
| error = sysdev_register(&device_timer); |
| return error; |
| } |
| |
| device_initcall(init_timer_sysfs); |
| |
| void __init init_IRQ(void) |
| { |
| int i; |
| |
| init_ISA_irqs(); |
| /* |
| * Cover the whole vector space, no vector can escape |
| * us. (some of these will be overridden and become |
| * 'special' SMP interrupts) |
| */ |
| for (i = 0; i < (NR_VECTORS - FIRST_EXTERNAL_VECTOR); i++) { |
| int vector = FIRST_EXTERNAL_VECTOR + i; |
| if (i >= NR_IRQS) |
| break; |
| if (vector != IA32_SYSCALL_VECTOR) |
| set_intr_gate(vector, interrupt[i]); |
| } |
| |
| #ifdef CONFIG_SMP |
| /* |
| * IRQ0 must be given a fixed assignment and initialized, |
| * because it's used before the IO-APIC is set up. |
| */ |
| set_intr_gate(FIRST_DEVICE_VECTOR, interrupt[0]); |
| |
| /* |
| * The reschedule interrupt is a CPU-to-CPU reschedule-helper |
| * IPI, driven by wakeup. |
| */ |
| set_intr_gate(RESCHEDULE_VECTOR, reschedule_interrupt); |
| |
| /* IPIs for invalidation */ |
| set_intr_gate(INVALIDATE_TLB_VECTOR_START+0, invalidate_interrupt0); |
| set_intr_gate(INVALIDATE_TLB_VECTOR_START+1, invalidate_interrupt1); |
| set_intr_gate(INVALIDATE_TLB_VECTOR_START+2, invalidate_interrupt2); |
| set_intr_gate(INVALIDATE_TLB_VECTOR_START+3, invalidate_interrupt3); |
| set_intr_gate(INVALIDATE_TLB_VECTOR_START+4, invalidate_interrupt4); |
| set_intr_gate(INVALIDATE_TLB_VECTOR_START+5, invalidate_interrupt5); |
| set_intr_gate(INVALIDATE_TLB_VECTOR_START+6, invalidate_interrupt6); |
| set_intr_gate(INVALIDATE_TLB_VECTOR_START+7, invalidate_interrupt7); |
| |
| /* IPI for generic function call */ |
| set_intr_gate(CALL_FUNCTION_VECTOR, call_function_interrupt); |
| #endif |
| set_intr_gate(THERMAL_APIC_VECTOR, thermal_interrupt); |
| set_intr_gate(THRESHOLD_APIC_VECTOR, threshold_interrupt); |
| |
| #ifdef CONFIG_X86_LOCAL_APIC |
| /* self generated IPI for local APIC timer */ |
| set_intr_gate(LOCAL_TIMER_VECTOR, apic_timer_interrupt); |
| |
| /* IPI vectors for APIC spurious and error interrupts */ |
| set_intr_gate(SPURIOUS_APIC_VECTOR, spurious_interrupt); |
| set_intr_gate(ERROR_APIC_VECTOR, error_interrupt); |
| #endif |
| |
| /* |
| * Set the clock to HZ Hz, we already have a valid |
| * vector now: |
| */ |
| setup_timer_hardware(); |
| |
| if (!acpi_ioapic) |
| setup_irq(2, &irq2); |
| } |