| /* |
| * Linux-DVB Driver for DiBcom's second generation DiB7000P (PC). |
| * |
| * Copyright (C) 2005-7 DiBcom (http://www.dibcom.fr/) |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License as |
| * published by the Free Software Foundation, version 2. |
| */ |
| #include <linux/kernel.h> |
| #include <linux/slab.h> |
| #include <linux/i2c.h> |
| |
| #include "dvb_math.h" |
| #include "dvb_frontend.h" |
| |
| #include "dib7000p.h" |
| |
| static int debug; |
| module_param(debug, int, 0644); |
| MODULE_PARM_DESC(debug, "turn on debugging (default: 0)"); |
| |
| static int buggy_sfn_workaround; |
| module_param(buggy_sfn_workaround, int, 0644); |
| MODULE_PARM_DESC(buggy_sfn_workaround, "Enable work-around for buggy SFNs (default: 0)"); |
| |
| #define dprintk(args...) do { if (debug) { printk(KERN_DEBUG "DiB7000P: "); printk(args); printk("\n"); } } while (0) |
| |
| struct dib7000p_state { |
| struct dvb_frontend demod; |
| struct dib7000p_config cfg; |
| |
| u8 i2c_addr; |
| struct i2c_adapter *i2c_adap; |
| |
| struct dibx000_i2c_master i2c_master; |
| |
| u16 wbd_ref; |
| |
| u8 current_band; |
| u32 current_bandwidth; |
| struct dibx000_agc_config *current_agc; |
| u32 timf; |
| |
| u8 div_force_off : 1; |
| u8 div_state : 1; |
| u16 div_sync_wait; |
| |
| u8 agc_state; |
| |
| u16 gpio_dir; |
| u16 gpio_val; |
| |
| u8 sfn_workaround_active :1; |
| }; |
| |
| enum dib7000p_power_mode { |
| DIB7000P_POWER_ALL = 0, |
| DIB7000P_POWER_ANALOG_ADC, |
| DIB7000P_POWER_INTERFACE_ONLY, |
| }; |
| |
| static u16 dib7000p_read_word(struct dib7000p_state *state, u16 reg) |
| { |
| u8 wb[2] = { reg >> 8, reg & 0xff }; |
| u8 rb[2]; |
| struct i2c_msg msg[2] = { |
| { .addr = state->i2c_addr >> 1, .flags = 0, .buf = wb, .len = 2 }, |
| { .addr = state->i2c_addr >> 1, .flags = I2C_M_RD, .buf = rb, .len = 2 }, |
| }; |
| |
| if (i2c_transfer(state->i2c_adap, msg, 2) != 2) |
| dprintk("i2c read error on %d",reg); |
| |
| return (rb[0] << 8) | rb[1]; |
| } |
| |
| static int dib7000p_write_word(struct dib7000p_state *state, u16 reg, u16 val) |
| { |
| u8 b[4] = { |
| (reg >> 8) & 0xff, reg & 0xff, |
| (val >> 8) & 0xff, val & 0xff, |
| }; |
| struct i2c_msg msg = { |
| .addr = state->i2c_addr >> 1, .flags = 0, .buf = b, .len = 4 |
| }; |
| return i2c_transfer(state->i2c_adap, &msg, 1) != 1 ? -EREMOTEIO : 0; |
| } |
| static void dib7000p_write_tab(struct dib7000p_state *state, u16 *buf) |
| { |
| u16 l = 0, r, *n; |
| n = buf; |
| l = *n++; |
| while (l) { |
| r = *n++; |
| |
| do { |
| dib7000p_write_word(state, r, *n++); |
| r++; |
| } while (--l); |
| l = *n++; |
| } |
| } |
| |
| static int dib7000p_set_output_mode(struct dib7000p_state *state, int mode) |
| { |
| int ret = 0; |
| u16 outreg, fifo_threshold, smo_mode; |
| |
| outreg = 0; |
| fifo_threshold = 1792; |
| smo_mode = (dib7000p_read_word(state, 235) & 0x0050) | (1 << 1); |
| |
| dprintk( "setting output mode for demod %p to %d", |
| &state->demod, mode); |
| |
| switch (mode) { |
| case OUTMODE_MPEG2_PAR_GATED_CLK: // STBs with parallel gated clock |
| outreg = (1 << 10); /* 0x0400 */ |
| break; |
| case OUTMODE_MPEG2_PAR_CONT_CLK: // STBs with parallel continues clock |
| outreg = (1 << 10) | (1 << 6); /* 0x0440 */ |
| break; |
| case OUTMODE_MPEG2_SERIAL: // STBs with serial input |
| outreg = (1 << 10) | (2 << 6) | (0 << 1); /* 0x0480 */ |
| break; |
| case OUTMODE_DIVERSITY: |
| if (state->cfg.hostbus_diversity) |
| outreg = (1 << 10) | (4 << 6); /* 0x0500 */ |
| else |
| outreg = (1 << 11); |
| break; |
| case OUTMODE_MPEG2_FIFO: // e.g. USB feeding |
| smo_mode |= (3 << 1); |
| fifo_threshold = 512; |
| outreg = (1 << 10) | (5 << 6); |
| break; |
| case OUTMODE_ANALOG_ADC: |
| outreg = (1 << 10) | (3 << 6); |
| break; |
| case OUTMODE_HIGH_Z: // disable |
| outreg = 0; |
| break; |
| default: |
| dprintk( "Unhandled output_mode passed to be set for demod %p",&state->demod); |
| break; |
| } |
| |
| if (state->cfg.output_mpeg2_in_188_bytes) |
| smo_mode |= (1 << 5) ; |
| |
| ret |= dib7000p_write_word(state, 235, smo_mode); |
| ret |= dib7000p_write_word(state, 236, fifo_threshold); /* synchronous fread */ |
| ret |= dib7000p_write_word(state, 1286, outreg); /* P_Div_active */ |
| |
| return ret; |
| } |
| |
| static int dib7000p_set_diversity_in(struct dvb_frontend *demod, int onoff) |
| { |
| struct dib7000p_state *state = demod->demodulator_priv; |
| |
| if (state->div_force_off) { |
| dprintk( "diversity combination deactivated - forced by COFDM parameters"); |
| onoff = 0; |
| dib7000p_write_word(state, 207, 0); |
| } else |
| dib7000p_write_word(state, 207, (state->div_sync_wait << 4) | (1 << 2) | (2 << 0)); |
| |
| state->div_state = (u8)onoff; |
| |
| if (onoff) { |
| dib7000p_write_word(state, 204, 6); |
| dib7000p_write_word(state, 205, 16); |
| /* P_dvsy_sync_mode = 0, P_dvsy_sync_enable=1, P_dvcb_comb_mode=2 */ |
| } else { |
| dib7000p_write_word(state, 204, 1); |
| dib7000p_write_word(state, 205, 0); |
| } |
| |
| return 0; |
| } |
| |
| static int dib7000p_set_power_mode(struct dib7000p_state *state, enum dib7000p_power_mode mode) |
| { |
| /* by default everything is powered off */ |
| u16 reg_774 = 0xffff, reg_775 = 0xffff, reg_776 = 0x0007, reg_899 = 0x0003, |
| reg_1280 = (0xfe00) | (dib7000p_read_word(state, 1280) & 0x01ff); |
| |
| /* now, depending on the requested mode, we power on */ |
| switch (mode) { |
| /* power up everything in the demod */ |
| case DIB7000P_POWER_ALL: |
| reg_774 = 0x0000; reg_775 = 0x0000; reg_776 = 0x0; reg_899 = 0x0; reg_1280 &= 0x01ff; |
| break; |
| |
| case DIB7000P_POWER_ANALOG_ADC: |
| /* dem, cfg, iqc, sad, agc */ |
| reg_774 &= ~((1 << 15) | (1 << 14) | (1 << 11) | (1 << 10) | (1 << 9)); |
| /* nud */ |
| reg_776 &= ~((1 << 0)); |
| /* Dout */ |
| reg_1280 &= ~((1 << 11)); |
| /* fall through wanted to enable the interfaces */ |
| |
| /* just leave power on the control-interfaces: GPIO and (I2C or SDIO) */ |
| case DIB7000P_POWER_INTERFACE_ONLY: /* TODO power up either SDIO or I2C */ |
| reg_1280 &= ~((1 << 14) | (1 << 13) | (1 << 12) | (1 << 10)); |
| break; |
| |
| /* TODO following stuff is just converted from the dib7000-driver - check when is used what */ |
| } |
| |
| dib7000p_write_word(state, 774, reg_774); |
| dib7000p_write_word(state, 775, reg_775); |
| dib7000p_write_word(state, 776, reg_776); |
| dib7000p_write_word(state, 899, reg_899); |
| dib7000p_write_word(state, 1280, reg_1280); |
| |
| return 0; |
| } |
| |
| static void dib7000p_set_adc_state(struct dib7000p_state *state, enum dibx000_adc_states no) |
| { |
| u16 reg_908 = dib7000p_read_word(state, 908), |
| reg_909 = dib7000p_read_word(state, 909); |
| |
| switch (no) { |
| case DIBX000_SLOW_ADC_ON: |
| reg_909 |= (1 << 1) | (1 << 0); |
| dib7000p_write_word(state, 909, reg_909); |
| reg_909 &= ~(1 << 1); |
| break; |
| |
| case DIBX000_SLOW_ADC_OFF: |
| reg_909 |= (1 << 1) | (1 << 0); |
| break; |
| |
| case DIBX000_ADC_ON: |
| reg_908 &= 0x0fff; |
| reg_909 &= 0x0003; |
| break; |
| |
| case DIBX000_ADC_OFF: // leave the VBG voltage on |
| reg_908 |= (1 << 14) | (1 << 13) | (1 << 12); |
| reg_909 |= (1 << 5) | (1 << 4) | (1 << 3) | (1 << 2); |
| break; |
| |
| case DIBX000_VBG_ENABLE: |
| reg_908 &= ~(1 << 15); |
| break; |
| |
| case DIBX000_VBG_DISABLE: |
| reg_908 |= (1 << 15); |
| break; |
| |
| default: |
| break; |
| } |
| |
| // dprintk( "908: %x, 909: %x\n", reg_908, reg_909); |
| |
| dib7000p_write_word(state, 908, reg_908); |
| dib7000p_write_word(state, 909, reg_909); |
| } |
| |
| static int dib7000p_set_bandwidth(struct dib7000p_state *state, u32 bw) |
| { |
| u32 timf; |
| |
| // store the current bandwidth for later use |
| state->current_bandwidth = bw; |
| |
| if (state->timf == 0) { |
| dprintk( "using default timf"); |
| timf = state->cfg.bw->timf; |
| } else { |
| dprintk( "using updated timf"); |
| timf = state->timf; |
| } |
| |
| timf = timf * (bw / 50) / 160; |
| |
| dib7000p_write_word(state, 23, (u16) ((timf >> 16) & 0xffff)); |
| dib7000p_write_word(state, 24, (u16) ((timf ) & 0xffff)); |
| |
| return 0; |
| } |
| |
| static int dib7000p_sad_calib(struct dib7000p_state *state) |
| { |
| /* internal */ |
| // dib7000p_write_word(state, 72, (3 << 14) | (1 << 12) | (524 << 0)); // sampling clock of the SAD is writting in set_bandwidth |
| dib7000p_write_word(state, 73, (0 << 1) | (0 << 0)); |
| dib7000p_write_word(state, 74, 776); // 0.625*3.3 / 4096 |
| |
| /* do the calibration */ |
| dib7000p_write_word(state, 73, (1 << 0)); |
| dib7000p_write_word(state, 73, (0 << 0)); |
| |
| msleep(1); |
| |
| return 0; |
| } |
| |
| int dib7000p_set_wbd_ref(struct dvb_frontend *demod, u16 value) |
| { |
| struct dib7000p_state *state = demod->demodulator_priv; |
| if (value > 4095) |
| value = 4095; |
| state->wbd_ref = value; |
| return dib7000p_write_word(state, 105, (dib7000p_read_word(state, 105) & 0xf000) | value); |
| } |
| |
| EXPORT_SYMBOL(dib7000p_set_wbd_ref); |
| static void dib7000p_reset_pll(struct dib7000p_state *state) |
| { |
| struct dibx000_bandwidth_config *bw = &state->cfg.bw[0]; |
| u16 clk_cfg0; |
| |
| /* force PLL bypass */ |
| clk_cfg0 = (1 << 15) | ((bw->pll_ratio & 0x3f) << 9) | |
| (bw->modulo << 7) | (bw->ADClkSrc << 6) | (bw->IO_CLK_en_core << 5) | |
| (bw->bypclk_div << 2) | (bw->enable_refdiv << 1) | (0 << 0); |
| |
| dib7000p_write_word(state, 900, clk_cfg0); |
| |
| /* P_pll_cfg */ |
| dib7000p_write_word(state, 903, (bw->pll_prediv << 5) | (((bw->pll_ratio >> 6) & 0x3) << 3) | (bw->pll_range << 1) | bw->pll_reset); |
| clk_cfg0 = (bw->pll_bypass << 15) | (clk_cfg0 & 0x7fff); |
| dib7000p_write_word(state, 900, clk_cfg0); |
| |
| dib7000p_write_word(state, 18, (u16) (((bw->internal*1000) >> 16) & 0xffff)); |
| dib7000p_write_word(state, 19, (u16) ( (bw->internal*1000 ) & 0xffff)); |
| dib7000p_write_word(state, 21, (u16) ( (bw->ifreq >> 16) & 0xffff)); |
| dib7000p_write_word(state, 22, (u16) ( (bw->ifreq ) & 0xffff)); |
| |
| dib7000p_write_word(state, 72, bw->sad_cfg); |
| } |
| |
| static int dib7000p_reset_gpio(struct dib7000p_state *st) |
| { |
| /* reset the GPIOs */ |
| dprintk( "gpio dir: %x: val: %x, pwm_pos: %x",st->gpio_dir, st->gpio_val,st->cfg.gpio_pwm_pos); |
| |
| dib7000p_write_word(st, 1029, st->gpio_dir); |
| dib7000p_write_word(st, 1030, st->gpio_val); |
| |
| /* TODO 1031 is P_gpio_od */ |
| |
| dib7000p_write_word(st, 1032, st->cfg.gpio_pwm_pos); |
| |
| dib7000p_write_word(st, 1037, st->cfg.pwm_freq_div); |
| return 0; |
| } |
| |
| static int dib7000p_cfg_gpio(struct dib7000p_state *st, u8 num, u8 dir, u8 val) |
| { |
| st->gpio_dir = dib7000p_read_word(st, 1029); |
| st->gpio_dir &= ~(1 << num); /* reset the direction bit */ |
| st->gpio_dir |= (dir & 0x1) << num; /* set the new direction */ |
| dib7000p_write_word(st, 1029, st->gpio_dir); |
| |
| st->gpio_val = dib7000p_read_word(st, 1030); |
| st->gpio_val &= ~(1 << num); /* reset the direction bit */ |
| st->gpio_val |= (val & 0x01) << num; /* set the new value */ |
| dib7000p_write_word(st, 1030, st->gpio_val); |
| |
| return 0; |
| } |
| |
| int dib7000p_set_gpio(struct dvb_frontend *demod, u8 num, u8 dir, u8 val) |
| { |
| struct dib7000p_state *state = demod->demodulator_priv; |
| return dib7000p_cfg_gpio(state, num, dir, val); |
| } |
| |
| EXPORT_SYMBOL(dib7000p_set_gpio); |
| static u16 dib7000p_defaults[] = |
| |
| { |
| // auto search configuration |
| 3, 2, |
| 0x0004, |
| 0x1000, |
| 0x0814, /* Equal Lock */ |
| |
| 12, 6, |
| 0x001b, |
| 0x7740, |
| 0x005b, |
| 0x8d80, |
| 0x01c9, |
| 0xc380, |
| 0x0000, |
| 0x0080, |
| 0x0000, |
| 0x0090, |
| 0x0001, |
| 0xd4c0, |
| |
| 1, 26, |
| 0x6680, // P_timf_alpha=6, P_corm_alpha=6, P_corm_thres=128 default: 6,4,26 |
| |
| /* set ADC level to -16 */ |
| 11, 79, |
| (1 << 13) - 825 - 117, |
| (1 << 13) - 837 - 117, |
| (1 << 13) - 811 - 117, |
| (1 << 13) - 766 - 117, |
| (1 << 13) - 737 - 117, |
| (1 << 13) - 693 - 117, |
| (1 << 13) - 648 - 117, |
| (1 << 13) - 619 - 117, |
| (1 << 13) - 575 - 117, |
| (1 << 13) - 531 - 117, |
| (1 << 13) - 501 - 117, |
| |
| 1, 142, |
| 0x0410, // P_palf_filter_on=1, P_palf_filter_freeze=0, P_palf_alpha_regul=16 |
| |
| /* disable power smoothing */ |
| 8, 145, |
| 0, |
| 0, |
| 0, |
| 0, |
| 0, |
| 0, |
| 0, |
| 0, |
| |
| 1, 154, |
| 1 << 13, // P_fft_freq_dir=1, P_fft_nb_to_cut=0 |
| |
| 1, 168, |
| 0x0ccd, // P_pha3_thres, default 0x3000 |
| |
| // 1, 169, |
| // 0x0010, // P_cti_use_cpe=0, P_cti_use_prog=0, P_cti_win_len=16, default: 0x0010 |
| |
| 1, 183, |
| 0x200f, // P_cspu_regul=512, P_cspu_win_cut=15, default: 0x2005 |
| |
| 5, 187, |
| 0x023d, // P_adp_regul_cnt=573, default: 410 |
| 0x00a4, // P_adp_noise_cnt= |
| 0x00a4, // P_adp_regul_ext |
| 0x7ff0, // P_adp_noise_ext |
| 0x3ccc, // P_adp_fil |
| |
| 1, 198, |
| 0x800, // P_equal_thres_wgn |
| |
| 1, 222, |
| 0x0010, // P_fec_ber_rs_len=2 |
| |
| 1, 235, |
| 0x0062, // P_smo_mode, P_smo_rs_discard, P_smo_fifo_flush, P_smo_pid_parse, P_smo_error_discard |
| |
| 2, 901, |
| 0x0006, // P_clk_cfg1 |
| (3 << 10) | (1 << 6), // P_divclksel=3 P_divbitsel=1 |
| |
| 1, 905, |
| 0x2c8e, // Tuner IO bank: max drive (14mA) + divout pads max drive |
| |
| 0, |
| }; |
| |
| static int dib7000p_demod_reset(struct dib7000p_state *state) |
| { |
| dib7000p_set_power_mode(state, DIB7000P_POWER_ALL); |
| |
| dib7000p_set_adc_state(state, DIBX000_VBG_ENABLE); |
| |
| /* restart all parts */ |
| dib7000p_write_word(state, 770, 0xffff); |
| dib7000p_write_word(state, 771, 0xffff); |
| dib7000p_write_word(state, 772, 0x001f); |
| dib7000p_write_word(state, 898, 0x0003); |
| /* except i2c, sdio, gpio - control interfaces */ |
| dib7000p_write_word(state, 1280, 0x01fc - ((1 << 7) | (1 << 6) | (1 << 5)) ); |
| |
| dib7000p_write_word(state, 770, 0); |
| dib7000p_write_word(state, 771, 0); |
| dib7000p_write_word(state, 772, 0); |
| dib7000p_write_word(state, 898, 0); |
| dib7000p_write_word(state, 1280, 0); |
| |
| /* default */ |
| dib7000p_reset_pll(state); |
| |
| if (dib7000p_reset_gpio(state) != 0) |
| dprintk( "GPIO reset was not successful."); |
| |
| if (dib7000p_set_output_mode(state, OUTMODE_HIGH_Z) != 0) |
| dprintk( "OUTPUT_MODE could not be reset."); |
| |
| /* unforce divstr regardless whether i2c enumeration was done or not */ |
| dib7000p_write_word(state, 1285, dib7000p_read_word(state, 1285) & ~(1 << 1) ); |
| |
| dib7000p_set_bandwidth(state, 8000); |
| |
| dib7000p_set_adc_state(state, DIBX000_SLOW_ADC_ON); |
| dib7000p_sad_calib(state); |
| dib7000p_set_adc_state(state, DIBX000_SLOW_ADC_OFF); |
| |
| // P_iqc_alpha_pha, P_iqc_alpha_amp_dcc_alpha, ... |
| if(state->cfg.tuner_is_baseband) |
| dib7000p_write_word(state, 36,0x0755); |
| else |
| dib7000p_write_word(state, 36,0x1f55); |
| |
| dib7000p_write_tab(state, dib7000p_defaults); |
| |
| dib7000p_set_power_mode(state, DIB7000P_POWER_INTERFACE_ONLY); |
| |
| |
| return 0; |
| } |
| |
| static void dib7000p_pll_clk_cfg(struct dib7000p_state *state) |
| { |
| u16 tmp = 0; |
| tmp = dib7000p_read_word(state, 903); |
| dib7000p_write_word(state, 903, (tmp | 0x1)); //pwr-up pll |
| tmp = dib7000p_read_word(state, 900); |
| dib7000p_write_word(state, 900, (tmp & 0x7fff) | (1 << 6)); //use High freq clock |
| } |
| |
| static void dib7000p_restart_agc(struct dib7000p_state *state) |
| { |
| // P_restart_iqc & P_restart_agc |
| dib7000p_write_word(state, 770, (1 << 11) | (1 << 9)); |
| dib7000p_write_word(state, 770, 0x0000); |
| } |
| |
| static int dib7000p_update_lna(struct dib7000p_state *state) |
| { |
| u16 dyn_gain; |
| |
| // when there is no LNA to program return immediatly |
| if (state->cfg.update_lna) { |
| // read dyn_gain here (because it is demod-dependent and not fe) |
| dyn_gain = dib7000p_read_word(state, 394); |
| if (state->cfg.update_lna(&state->demod,dyn_gain)) { // LNA has changed |
| dib7000p_restart_agc(state); |
| return 1; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int dib7000p_set_agc_config(struct dib7000p_state *state, u8 band) |
| { |
| struct dibx000_agc_config *agc = NULL; |
| int i; |
| if (state->current_band == band && state->current_agc != NULL) |
| return 0; |
| state->current_band = band; |
| |
| for (i = 0; i < state->cfg.agc_config_count; i++) |
| if (state->cfg.agc[i].band_caps & band) { |
| agc = &state->cfg.agc[i]; |
| break; |
| } |
| |
| if (agc == NULL) { |
| dprintk( "no valid AGC configuration found for band 0x%02x",band); |
| return -EINVAL; |
| } |
| |
| state->current_agc = agc; |
| |
| /* AGC */ |
| dib7000p_write_word(state, 75 , agc->setup ); |
| dib7000p_write_word(state, 76 , agc->inv_gain ); |
| dib7000p_write_word(state, 77 , agc->time_stabiliz ); |
| dib7000p_write_word(state, 100, (agc->alpha_level << 12) | agc->thlock); |
| |
| // Demod AGC loop configuration |
| dib7000p_write_word(state, 101, (agc->alpha_mant << 5) | agc->alpha_exp); |
| dib7000p_write_word(state, 102, (agc->beta_mant << 6) | agc->beta_exp); |
| |
| /* AGC continued */ |
| dprintk( "WBD: ref: %d, sel: %d, active: %d, alpha: %d", |
| state->wbd_ref != 0 ? state->wbd_ref : agc->wbd_ref, agc->wbd_sel, !agc->perform_agc_softsplit, agc->wbd_sel); |
| |
| if (state->wbd_ref != 0) |
| dib7000p_write_word(state, 105, (agc->wbd_inv << 12) | state->wbd_ref); |
| else |
| dib7000p_write_word(state, 105, (agc->wbd_inv << 12) | agc->wbd_ref); |
| |
| dib7000p_write_word(state, 106, (agc->wbd_sel << 13) | (agc->wbd_alpha << 9) | (agc->perform_agc_softsplit << 8)); |
| |
| dib7000p_write_word(state, 107, agc->agc1_max); |
| dib7000p_write_word(state, 108, agc->agc1_min); |
| dib7000p_write_word(state, 109, agc->agc2_max); |
| dib7000p_write_word(state, 110, agc->agc2_min); |
| dib7000p_write_word(state, 111, (agc->agc1_pt1 << 8) | agc->agc1_pt2); |
| dib7000p_write_word(state, 112, agc->agc1_pt3); |
| dib7000p_write_word(state, 113, (agc->agc1_slope1 << 8) | agc->agc1_slope2); |
| dib7000p_write_word(state, 114, (agc->agc2_pt1 << 8) | agc->agc2_pt2); |
| dib7000p_write_word(state, 115, (agc->agc2_slope1 << 8) | agc->agc2_slope2); |
| return 0; |
| } |
| |
| static int dib7000p_agc_startup(struct dvb_frontend *demod, struct dvb_frontend_parameters *ch) |
| { |
| struct dib7000p_state *state = demod->demodulator_priv; |
| int ret = -1; |
| u8 *agc_state = &state->agc_state; |
| u8 agc_split; |
| |
| switch (state->agc_state) { |
| case 0: |
| // set power-up level: interf+analog+AGC |
| dib7000p_set_power_mode(state, DIB7000P_POWER_ALL); |
| dib7000p_set_adc_state(state, DIBX000_ADC_ON); |
| dib7000p_pll_clk_cfg(state); |
| |
| if (dib7000p_set_agc_config(state, BAND_OF_FREQUENCY(ch->frequency/1000)) != 0) |
| return -1; |
| |
| ret = 7; |
| (*agc_state)++; |
| break; |
| |
| case 1: |
| // AGC initialization |
| if (state->cfg.agc_control) |
| state->cfg.agc_control(&state->demod, 1); |
| |
| dib7000p_write_word(state, 78, 32768); |
| if (!state->current_agc->perform_agc_softsplit) { |
| /* we are using the wbd - so slow AGC startup */ |
| /* force 0 split on WBD and restart AGC */ |
| dib7000p_write_word(state, 106, (state->current_agc->wbd_sel << 13) | (state->current_agc->wbd_alpha << 9) | (1 << 8)); |
| (*agc_state)++; |
| ret = 5; |
| } else { |
| /* default AGC startup */ |
| (*agc_state) = 4; |
| /* wait AGC rough lock time */ |
| ret = 7; |
| } |
| |
| dib7000p_restart_agc(state); |
| break; |
| |
| case 2: /* fast split search path after 5sec */ |
| dib7000p_write_word(state, 75, state->current_agc->setup | (1 << 4)); /* freeze AGC loop */ |
| dib7000p_write_word(state, 106, (state->current_agc->wbd_sel << 13) | (2 << 9) | (0 << 8)); /* fast split search 0.25kHz */ |
| (*agc_state)++; |
| ret = 14; |
| break; |
| |
| case 3: /* split search ended */ |
| agc_split = (u8)dib7000p_read_word(state, 396); /* store the split value for the next time */ |
| dib7000p_write_word(state, 78, dib7000p_read_word(state, 394)); /* set AGC gain start value */ |
| |
| dib7000p_write_word(state, 75, state->current_agc->setup); /* std AGC loop */ |
| dib7000p_write_word(state, 106, (state->current_agc->wbd_sel << 13) | (state->current_agc->wbd_alpha << 9) | agc_split); /* standard split search */ |
| |
| dib7000p_restart_agc(state); |
| |
| dprintk( "SPLIT %p: %hd", demod, agc_split); |
| |
| (*agc_state)++; |
| ret = 5; |
| break; |
| |
| case 4: /* LNA startup */ |
| // wait AGC accurate lock time |
| ret = 7; |
| |
| if (dib7000p_update_lna(state)) |
| // wait only AGC rough lock time |
| ret = 5; |
| else // nothing was done, go to the next state |
| (*agc_state)++; |
| break; |
| |
| case 5: |
| if (state->cfg.agc_control) |
| state->cfg.agc_control(&state->demod, 0); |
| (*agc_state)++; |
| break; |
| default: |
| break; |
| } |
| return ret; |
| } |
| |
| static void dib7000p_update_timf(struct dib7000p_state *state) |
| { |
| u32 timf = (dib7000p_read_word(state, 427) << 16) | dib7000p_read_word(state, 428); |
| state->timf = timf * 160 / (state->current_bandwidth / 50); |
| dib7000p_write_word(state, 23, (u16) (timf >> 16)); |
| dib7000p_write_word(state, 24, (u16) (timf & 0xffff)); |
| dprintk( "updated timf_frequency: %d (default: %d)",state->timf, state->cfg.bw->timf); |
| |
| } |
| |
| static void dib7000p_set_channel(struct dib7000p_state *state, struct dvb_frontend_parameters *ch, u8 seq) |
| { |
| u16 value, est[4]; |
| |
| dib7000p_set_bandwidth(state, BANDWIDTH_TO_KHZ(ch->u.ofdm.bandwidth)); |
| |
| /* nfft, guard, qam, alpha */ |
| value = 0; |
| switch (ch->u.ofdm.transmission_mode) { |
| case TRANSMISSION_MODE_2K: value |= (0 << 7); break; |
| case /* 4K MODE */ 255: value |= (2 << 7); break; |
| default: |
| case TRANSMISSION_MODE_8K: value |= (1 << 7); break; |
| } |
| switch (ch->u.ofdm.guard_interval) { |
| case GUARD_INTERVAL_1_32: value |= (0 << 5); break; |
| case GUARD_INTERVAL_1_16: value |= (1 << 5); break; |
| case GUARD_INTERVAL_1_4: value |= (3 << 5); break; |
| default: |
| case GUARD_INTERVAL_1_8: value |= (2 << 5); break; |
| } |
| switch (ch->u.ofdm.constellation) { |
| case QPSK: value |= (0 << 3); break; |
| case QAM_16: value |= (1 << 3); break; |
| default: |
| case QAM_64: value |= (2 << 3); break; |
| } |
| switch (HIERARCHY_1) { |
| case HIERARCHY_2: value |= 2; break; |
| case HIERARCHY_4: value |= 4; break; |
| default: |
| case HIERARCHY_1: value |= 1; break; |
| } |
| dib7000p_write_word(state, 0, value); |
| dib7000p_write_word(state, 5, (seq << 4) | 1); /* do not force tps, search list 0 */ |
| |
| /* P_dintl_native, P_dintlv_inv, P_hrch, P_code_rate, P_select_hp */ |
| value = 0; |
| if (1 != 0) |
| value |= (1 << 6); |
| if (ch->u.ofdm.hierarchy_information == 1) |
| value |= (1 << 4); |
| if (1 == 1) |
| value |= 1; |
| switch ((ch->u.ofdm.hierarchy_information == 0 || 1 == 1) ? ch->u.ofdm.code_rate_HP : ch->u.ofdm.code_rate_LP) { |
| case FEC_2_3: value |= (2 << 1); break; |
| case FEC_3_4: value |= (3 << 1); break; |
| case FEC_5_6: value |= (5 << 1); break; |
| case FEC_7_8: value |= (7 << 1); break; |
| default: |
| case FEC_1_2: value |= (1 << 1); break; |
| } |
| dib7000p_write_word(state, 208, value); |
| |
| /* offset loop parameters */ |
| dib7000p_write_word(state, 26, 0x6680); // timf(6xxx) |
| dib7000p_write_word(state, 32, 0x0003); // pha_off_max(xxx3) |
| dib7000p_write_word(state, 29, 0x1273); // isi |
| dib7000p_write_word(state, 33, 0x0005); // sfreq(xxx5) |
| |
| /* P_dvsy_sync_wait */ |
| switch (ch->u.ofdm.transmission_mode) { |
| case TRANSMISSION_MODE_8K: value = 256; break; |
| case /* 4K MODE */ 255: value = 128; break; |
| case TRANSMISSION_MODE_2K: |
| default: value = 64; break; |
| } |
| switch (ch->u.ofdm.guard_interval) { |
| case GUARD_INTERVAL_1_16: value *= 2; break; |
| case GUARD_INTERVAL_1_8: value *= 4; break; |
| case GUARD_INTERVAL_1_4: value *= 8; break; |
| default: |
| case GUARD_INTERVAL_1_32: value *= 1; break; |
| } |
| state->div_sync_wait = (value * 3) / 2 + 32; // add 50% SFN margin + compensate for one DVSY-fifo TODO |
| |
| /* deactive the possibility of diversity reception if extended interleaver */ |
| state->div_force_off = !1 && ch->u.ofdm.transmission_mode != TRANSMISSION_MODE_8K; |
| dib7000p_set_diversity_in(&state->demod, state->div_state); |
| |
| /* channel estimation fine configuration */ |
| switch (ch->u.ofdm.constellation) { |
| case QAM_64: |
| est[0] = 0x0148; /* P_adp_regul_cnt 0.04 */ |
| est[1] = 0xfff0; /* P_adp_noise_cnt -0.002 */ |
| est[2] = 0x00a4; /* P_adp_regul_ext 0.02 */ |
| est[3] = 0xfff8; /* P_adp_noise_ext -0.001 */ |
| break; |
| case QAM_16: |
| est[0] = 0x023d; /* P_adp_regul_cnt 0.07 */ |
| est[1] = 0xffdf; /* P_adp_noise_cnt -0.004 */ |
| est[2] = 0x00a4; /* P_adp_regul_ext 0.02 */ |
| est[3] = 0xfff0; /* P_adp_noise_ext -0.002 */ |
| break; |
| default: |
| est[0] = 0x099a; /* P_adp_regul_cnt 0.3 */ |
| est[1] = 0xffae; /* P_adp_noise_cnt -0.01 */ |
| est[2] = 0x0333; /* P_adp_regul_ext 0.1 */ |
| est[3] = 0xfff8; /* P_adp_noise_ext -0.002 */ |
| break; |
| } |
| for (value = 0; value < 4; value++) |
| dib7000p_write_word(state, 187 + value, est[value]); |
| } |
| |
| static int dib7000p_autosearch_start(struct dvb_frontend *demod, struct dvb_frontend_parameters *ch) |
| { |
| struct dib7000p_state *state = demod->demodulator_priv; |
| struct dvb_frontend_parameters schan; |
| u32 value, factor; |
| |
| schan = *ch; |
| schan.u.ofdm.constellation = QAM_64; |
| schan.u.ofdm.guard_interval = GUARD_INTERVAL_1_32; |
| schan.u.ofdm.transmission_mode = TRANSMISSION_MODE_8K; |
| schan.u.ofdm.code_rate_HP = FEC_2_3; |
| schan.u.ofdm.code_rate_LP = FEC_3_4; |
| schan.u.ofdm.hierarchy_information = 0; |
| |
| dib7000p_set_channel(state, &schan, 7); |
| |
| factor = BANDWIDTH_TO_KHZ(ch->u.ofdm.bandwidth); |
| if (factor >= 5000) |
| factor = 1; |
| else |
| factor = 6; |
| |
| // always use the setting for 8MHz here lock_time for 7,6 MHz are longer |
| value = 30 * state->cfg.bw->internal * factor; |
| dib7000p_write_word(state, 6, (u16) ((value >> 16) & 0xffff)); // lock0 wait time |
| dib7000p_write_word(state, 7, (u16) (value & 0xffff)); // lock0 wait time |
| value = 100 * state->cfg.bw->internal * factor; |
| dib7000p_write_word(state, 8, (u16) ((value >> 16) & 0xffff)); // lock1 wait time |
| dib7000p_write_word(state, 9, (u16) (value & 0xffff)); // lock1 wait time |
| value = 500 * state->cfg.bw->internal * factor; |
| dib7000p_write_word(state, 10, (u16) ((value >> 16) & 0xffff)); // lock2 wait time |
| dib7000p_write_word(state, 11, (u16) (value & 0xffff)); // lock2 wait time |
| |
| value = dib7000p_read_word(state, 0); |
| dib7000p_write_word(state, 0, (u16) ((1 << 9) | value)); |
| dib7000p_read_word(state, 1284); |
| dib7000p_write_word(state, 0, (u16) value); |
| |
| return 0; |
| } |
| |
| static int dib7000p_autosearch_is_irq(struct dvb_frontend *demod) |
| { |
| struct dib7000p_state *state = demod->demodulator_priv; |
| u16 irq_pending = dib7000p_read_word(state, 1284); |
| |
| if (irq_pending & 0x1) // failed |
| return 1; |
| |
| if (irq_pending & 0x2) // succeeded |
| return 2; |
| |
| return 0; // still pending |
| } |
| |
| static void dib7000p_spur_protect(struct dib7000p_state *state, u32 rf_khz, u32 bw) |
| { |
| static s16 notch[]={16143, 14402, 12238, 9713, 6902, 3888, 759, -2392}; |
| static u8 sine [] ={0, 2, 3, 5, 6, 8, 9, 11, 13, 14, 16, 17, 19, 20, 22, |
| 24, 25, 27, 28, 30, 31, 33, 34, 36, 38, 39, 41, 42, 44, 45, 47, 48, 50, 51, |
| 53, 55, 56, 58, 59, 61, 62, 64, 65, 67, 68, 70, 71, 73, 74, 76, 77, 79, 80, |
| 82, 83, 85, 86, 88, 89, 91, 92, 94, 95, 97, 98, 99, 101, 102, 104, 105, |
| 107, 108, 109, 111, 112, 114, 115, 117, 118, 119, 121, 122, 123, 125, 126, |
| 128, 129, 130, 132, 133, 134, 136, 137, 138, 140, 141, 142, 144, 145, 146, |
| 147, 149, 150, 151, 152, 154, 155, 156, 157, 159, 160, 161, 162, 164, 165, |
| 166, 167, 168, 170, 171, 172, 173, 174, 175, 177, 178, 179, 180, 181, 182, |
| 183, 184, 185, 186, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, |
| 199, 200, 201, 202, 203, 204, 205, 206, 207, 207, 208, 209, 210, 211, 212, |
| 213, 214, 215, 215, 216, 217, 218, 219, 220, 220, 221, 222, 223, 224, 224, |
| 225, 226, 227, 227, 228, 229, 229, 230, 231, 231, 232, 233, 233, 234, 235, |
| 235, 236, 237, 237, 238, 238, 239, 239, 240, 241, 241, 242, 242, 243, 243, |
| 244, 244, 245, 245, 245, 246, 246, 247, 247, 248, 248, 248, 249, 249, 249, |
| 250, 250, 250, 251, 251, 251, 252, 252, 252, 252, 253, 253, 253, 253, 254, |
| 254, 254, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, |
| 255, 255, 255, 255, 255, 255}; |
| |
| u32 xtal = state->cfg.bw->xtal_hz / 1000; |
| int f_rel = DIV_ROUND_CLOSEST(rf_khz, xtal) * xtal - rf_khz; |
| int k; |
| int coef_re[8],coef_im[8]; |
| int bw_khz = bw; |
| u32 pha; |
| |
| dprintk( "relative position of the Spur: %dk (RF: %dk, XTAL: %dk)", f_rel, rf_khz, xtal); |
| |
| |
| if (f_rel < -bw_khz/2 || f_rel > bw_khz/2) |
| return; |
| |
| bw_khz /= 100; |
| |
| dib7000p_write_word(state, 142 ,0x0610); |
| |
| for (k = 0; k < 8; k++) { |
| pha = ((f_rel * (k+1) * 112 * 80/bw_khz) /1000) & 0x3ff; |
| |
| if (pha==0) { |
| coef_re[k] = 256; |
| coef_im[k] = 0; |
| } else if(pha < 256) { |
| coef_re[k] = sine[256-(pha&0xff)]; |
| coef_im[k] = sine[pha&0xff]; |
| } else if (pha == 256) { |
| coef_re[k] = 0; |
| coef_im[k] = 256; |
| } else if (pha < 512) { |
| coef_re[k] = -sine[pha&0xff]; |
| coef_im[k] = sine[256 - (pha&0xff)]; |
| } else if (pha == 512) { |
| coef_re[k] = -256; |
| coef_im[k] = 0; |
| } else if (pha < 768) { |
| coef_re[k] = -sine[256-(pha&0xff)]; |
| coef_im[k] = -sine[pha&0xff]; |
| } else if (pha == 768) { |
| coef_re[k] = 0; |
| coef_im[k] = -256; |
| } else { |
| coef_re[k] = sine[pha&0xff]; |
| coef_im[k] = -sine[256 - (pha&0xff)]; |
| } |
| |
| coef_re[k] *= notch[k]; |
| coef_re[k] += (1<<14); |
| if (coef_re[k] >= (1<<24)) |
| coef_re[k] = (1<<24) - 1; |
| coef_re[k] /= (1<<15); |
| |
| coef_im[k] *= notch[k]; |
| coef_im[k] += (1<<14); |
| if (coef_im[k] >= (1<<24)) |
| coef_im[k] = (1<<24)-1; |
| coef_im[k] /= (1<<15); |
| |
| dprintk( "PALF COEF: %d re: %d im: %d", k, coef_re[k], coef_im[k]); |
| |
| dib7000p_write_word(state, 143, (0 << 14) | (k << 10) | (coef_re[k] & 0x3ff)); |
| dib7000p_write_word(state, 144, coef_im[k] & 0x3ff); |
| dib7000p_write_word(state, 143, (1 << 14) | (k << 10) | (coef_re[k] & 0x3ff)); |
| } |
| dib7000p_write_word(state,143 ,0); |
| } |
| |
| static int dib7000p_tune(struct dvb_frontend *demod, struct dvb_frontend_parameters *ch) |
| { |
| struct dib7000p_state *state = demod->demodulator_priv; |
| u16 tmp = 0; |
| |
| if (ch != NULL) |
| dib7000p_set_channel(state, ch, 0); |
| else |
| return -EINVAL; |
| |
| // restart demod |
| dib7000p_write_word(state, 770, 0x4000); |
| dib7000p_write_word(state, 770, 0x0000); |
| msleep(45); |
| |
| /* P_ctrl_inh_cor=0, P_ctrl_alpha_cor=4, P_ctrl_inh_isi=0, P_ctrl_alpha_isi=3, P_ctrl_inh_cor4=1, P_ctrl_alpha_cor4=3 */ |
| tmp = (0 << 14) | (4 << 10) | (0 << 9) | (3 << 5) | (1 << 4) | (0x3); |
| if (state->sfn_workaround_active) { |
| dprintk( "SFN workaround is active"); |
| tmp |= (1 << 9); |
| dib7000p_write_word(state, 166, 0x4000); // P_pha3_force_pha_shift |
| } else { |
| dib7000p_write_word(state, 166, 0x0000); // P_pha3_force_pha_shift |
| } |
| dib7000p_write_word(state, 29, tmp); |
| |
| // never achieved a lock with that bandwidth so far - wait for osc-freq to update |
| if (state->timf == 0) |
| msleep(200); |
| |
| /* offset loop parameters */ |
| |
| /* P_timf_alpha, P_corm_alpha=6, P_corm_thres=0x80 */ |
| tmp = (6 << 8) | 0x80; |
| switch (ch->u.ofdm.transmission_mode) { |
| case TRANSMISSION_MODE_2K: tmp |= (7 << 12); break; |
| case /* 4K MODE */ 255: tmp |= (8 << 12); break; |
| default: |
| case TRANSMISSION_MODE_8K: tmp |= (9 << 12); break; |
| } |
| dib7000p_write_word(state, 26, tmp); /* timf_a(6xxx) */ |
| |
| /* P_ctrl_freeze_pha_shift=0, P_ctrl_pha_off_max */ |
| tmp = (0 << 4); |
| switch (ch->u.ofdm.transmission_mode) { |
| case TRANSMISSION_MODE_2K: tmp |= 0x6; break; |
| case /* 4K MODE */ 255: tmp |= 0x7; break; |
| default: |
| case TRANSMISSION_MODE_8K: tmp |= 0x8; break; |
| } |
| dib7000p_write_word(state, 32, tmp); |
| |
| /* P_ctrl_sfreq_inh=0, P_ctrl_sfreq_step */ |
| tmp = (0 << 4); |
| switch (ch->u.ofdm.transmission_mode) { |
| case TRANSMISSION_MODE_2K: tmp |= 0x6; break; |
| case /* 4K MODE */ 255: tmp |= 0x7; break; |
| default: |
| case TRANSMISSION_MODE_8K: tmp |= 0x8; break; |
| } |
| dib7000p_write_word(state, 33, tmp); |
| |
| tmp = dib7000p_read_word(state,509); |
| if (!((tmp >> 6) & 0x1)) { |
| /* restart the fec */ |
| tmp = dib7000p_read_word(state,771); |
| dib7000p_write_word(state, 771, tmp | (1 << 1)); |
| dib7000p_write_word(state, 771, tmp); |
| msleep(10); |
| tmp = dib7000p_read_word(state,509); |
| } |
| |
| // we achieved a lock - it's time to update the osc freq |
| if ((tmp >> 6) & 0x1) |
| dib7000p_update_timf(state); |
| |
| if (state->cfg.spur_protect) |
| dib7000p_spur_protect(state, ch->frequency/1000, BANDWIDTH_TO_KHZ(ch->u.ofdm.bandwidth)); |
| |
| dib7000p_set_bandwidth(state, BANDWIDTH_TO_KHZ(ch->u.ofdm.bandwidth)); |
| return 0; |
| } |
| |
| static int dib7000p_wakeup(struct dvb_frontend *demod) |
| { |
| struct dib7000p_state *state = demod->demodulator_priv; |
| dib7000p_set_power_mode(state, DIB7000P_POWER_ALL); |
| dib7000p_set_adc_state(state, DIBX000_SLOW_ADC_ON); |
| return 0; |
| } |
| |
| static int dib7000p_sleep(struct dvb_frontend *demod) |
| { |
| struct dib7000p_state *state = demod->demodulator_priv; |
| return dib7000p_set_output_mode(state, OUTMODE_HIGH_Z) | dib7000p_set_power_mode(state, DIB7000P_POWER_INTERFACE_ONLY); |
| } |
| |
| static int dib7000p_identify(struct dib7000p_state *st) |
| { |
| u16 value; |
| dprintk( "checking demod on I2C address: %d (%x)", |
| st->i2c_addr, st->i2c_addr); |
| |
| if ((value = dib7000p_read_word(st, 768)) != 0x01b3) { |
| dprintk( "wrong Vendor ID (read=0x%x)",value); |
| return -EREMOTEIO; |
| } |
| |
| if ((value = dib7000p_read_word(st, 769)) != 0x4000) { |
| dprintk( "wrong Device ID (%x)",value); |
| return -EREMOTEIO; |
| } |
| |
| return 0; |
| } |
| |
| |
| static int dib7000p_get_frontend(struct dvb_frontend* fe, |
| struct dvb_frontend_parameters *fep) |
| { |
| struct dib7000p_state *state = fe->demodulator_priv; |
| u16 tps = dib7000p_read_word(state,463); |
| |
| fep->inversion = INVERSION_AUTO; |
| |
| fep->u.ofdm.bandwidth = BANDWIDTH_TO_INDEX(state->current_bandwidth); |
| |
| switch ((tps >> 8) & 0x3) { |
| case 0: fep->u.ofdm.transmission_mode = TRANSMISSION_MODE_2K; break; |
| case 1: fep->u.ofdm.transmission_mode = TRANSMISSION_MODE_8K; break; |
| /* case 2: fep->u.ofdm.transmission_mode = TRANSMISSION_MODE_4K; break; */ |
| } |
| |
| switch (tps & 0x3) { |
| case 0: fep->u.ofdm.guard_interval = GUARD_INTERVAL_1_32; break; |
| case 1: fep->u.ofdm.guard_interval = GUARD_INTERVAL_1_16; break; |
| case 2: fep->u.ofdm.guard_interval = GUARD_INTERVAL_1_8; break; |
| case 3: fep->u.ofdm.guard_interval = GUARD_INTERVAL_1_4; break; |
| } |
| |
| switch ((tps >> 14) & 0x3) { |
| case 0: fep->u.ofdm.constellation = QPSK; break; |
| case 1: fep->u.ofdm.constellation = QAM_16; break; |
| case 2: |
| default: fep->u.ofdm.constellation = QAM_64; break; |
| } |
| |
| /* as long as the frontend_param structure is fixed for hierarchical transmission I refuse to use it */ |
| /* (tps >> 13) & 0x1 == hrch is used, (tps >> 10) & 0x7 == alpha */ |
| |
| fep->u.ofdm.hierarchy_information = HIERARCHY_NONE; |
| switch ((tps >> 5) & 0x7) { |
| case 1: fep->u.ofdm.code_rate_HP = FEC_1_2; break; |
| case 2: fep->u.ofdm.code_rate_HP = FEC_2_3; break; |
| case 3: fep->u.ofdm.code_rate_HP = FEC_3_4; break; |
| case 5: fep->u.ofdm.code_rate_HP = FEC_5_6; break; |
| case 7: |
| default: fep->u.ofdm.code_rate_HP = FEC_7_8; break; |
| |
| } |
| |
| switch ((tps >> 2) & 0x7) { |
| case 1: fep->u.ofdm.code_rate_LP = FEC_1_2; break; |
| case 2: fep->u.ofdm.code_rate_LP = FEC_2_3; break; |
| case 3: fep->u.ofdm.code_rate_LP = FEC_3_4; break; |
| case 5: fep->u.ofdm.code_rate_LP = FEC_5_6; break; |
| case 7: |
| default: fep->u.ofdm.code_rate_LP = FEC_7_8; break; |
| } |
| |
| /* native interleaver: (dib7000p_read_word(state, 464) >> 5) & 0x1 */ |
| |
| return 0; |
| } |
| |
| static int dib7000p_set_frontend(struct dvb_frontend* fe, |
| struct dvb_frontend_parameters *fep) |
| { |
| struct dib7000p_state *state = fe->demodulator_priv; |
| int time, ret; |
| |
| dib7000p_set_output_mode(state, OUTMODE_HIGH_Z); |
| |
| /* maybe the parameter has been changed */ |
| state->sfn_workaround_active = buggy_sfn_workaround; |
| |
| if (fe->ops.tuner_ops.set_params) |
| fe->ops.tuner_ops.set_params(fe, fep); |
| |
| /* start up the AGC */ |
| state->agc_state = 0; |
| do { |
| time = dib7000p_agc_startup(fe, fep); |
| if (time != -1) |
| msleep(time); |
| } while (time != -1); |
| |
| if (fep->u.ofdm.transmission_mode == TRANSMISSION_MODE_AUTO || |
| fep->u.ofdm.guard_interval == GUARD_INTERVAL_AUTO || |
| fep->u.ofdm.constellation == QAM_AUTO || |
| fep->u.ofdm.code_rate_HP == FEC_AUTO) { |
| int i = 800, found; |
| |
| dib7000p_autosearch_start(fe, fep); |
| do { |
| msleep(1); |
| found = dib7000p_autosearch_is_irq(fe); |
| } while (found == 0 && i--); |
| |
| dprintk("autosearch returns: %d",found); |
| if (found == 0 || found == 1) |
| return 0; // no channel found |
| |
| dib7000p_get_frontend(fe, fep); |
| } |
| |
| ret = dib7000p_tune(fe, fep); |
| |
| /* make this a config parameter */ |
| dib7000p_set_output_mode(state, state->cfg.output_mode); |
| return ret; |
| } |
| |
| static int dib7000p_read_status(struct dvb_frontend *fe, fe_status_t *stat) |
| { |
| struct dib7000p_state *state = fe->demodulator_priv; |
| u16 lock = dib7000p_read_word(state, 509); |
| |
| *stat = 0; |
| |
| if (lock & 0x8000) |
| *stat |= FE_HAS_SIGNAL; |
| if (lock & 0x3000) |
| *stat |= FE_HAS_CARRIER; |
| if (lock & 0x0100) |
| *stat |= FE_HAS_VITERBI; |
| if (lock & 0x0010) |
| *stat |= FE_HAS_SYNC; |
| if ((lock & 0x0038) == 0x38) |
| *stat |= FE_HAS_LOCK; |
| |
| return 0; |
| } |
| |
| static int dib7000p_read_ber(struct dvb_frontend *fe, u32 *ber) |
| { |
| struct dib7000p_state *state = fe->demodulator_priv; |
| *ber = (dib7000p_read_word(state, 500) << 16) | dib7000p_read_word(state, 501); |
| return 0; |
| } |
| |
| static int dib7000p_read_unc_blocks(struct dvb_frontend *fe, u32 *unc) |
| { |
| struct dib7000p_state *state = fe->demodulator_priv; |
| *unc = dib7000p_read_word(state, 506); |
| return 0; |
| } |
| |
| static int dib7000p_read_signal_strength(struct dvb_frontend *fe, u16 *strength) |
| { |
| struct dib7000p_state *state = fe->demodulator_priv; |
| u16 val = dib7000p_read_word(state, 394); |
| *strength = 65535 - val; |
| return 0; |
| } |
| |
| static int dib7000p_read_snr(struct dvb_frontend* fe, u16 *snr) |
| { |
| struct dib7000p_state *state = fe->demodulator_priv; |
| u16 val; |
| s32 signal_mant, signal_exp, noise_mant, noise_exp; |
| u32 result = 0; |
| |
| val = dib7000p_read_word(state, 479); |
| noise_mant = (val >> 4) & 0xff; |
| noise_exp = ((val & 0xf) << 2); |
| val = dib7000p_read_word(state, 480); |
| noise_exp += ((val >> 14) & 0x3); |
| if ((noise_exp & 0x20) != 0) |
| noise_exp -= 0x40; |
| |
| signal_mant = (val >> 6) & 0xFF; |
| signal_exp = (val & 0x3F); |
| if ((signal_exp & 0x20) != 0) |
| signal_exp -= 0x40; |
| |
| if (signal_mant != 0) |
| result = intlog10(2) * 10 * signal_exp + 10 * |
| intlog10(signal_mant); |
| else |
| result = intlog10(2) * 10 * signal_exp - 100; |
| |
| if (noise_mant != 0) |
| result -= intlog10(2) * 10 * noise_exp + 10 * |
| intlog10(noise_mant); |
| else |
| result -= intlog10(2) * 10 * noise_exp - 100; |
| |
| *snr = result / ((1 << 24) / 10); |
| return 0; |
| } |
| |
| static int dib7000p_fe_get_tune_settings(struct dvb_frontend* fe, struct dvb_frontend_tune_settings *tune) |
| { |
| tune->min_delay_ms = 1000; |
| return 0; |
| } |
| |
| static void dib7000p_release(struct dvb_frontend *demod) |
| { |
| struct dib7000p_state *st = demod->demodulator_priv; |
| dibx000_exit_i2c_master(&st->i2c_master); |
| kfree(st); |
| } |
| |
| int dib7000pc_detection(struct i2c_adapter *i2c_adap) |
| { |
| u8 tx[2], rx[2]; |
| struct i2c_msg msg[2] = { |
| { .addr = 18 >> 1, .flags = 0, .buf = tx, .len = 2 }, |
| { .addr = 18 >> 1, .flags = I2C_M_RD, .buf = rx, .len = 2 }, |
| }; |
| |
| tx[0] = 0x03; |
| tx[1] = 0x00; |
| |
| if (i2c_transfer(i2c_adap, msg, 2) == 2) |
| if (rx[0] == 0x01 && rx[1] == 0xb3) { |
| dprintk("-D- DiB7000PC detected"); |
| return 1; |
| } |
| |
| msg[0].addr = msg[1].addr = 0x40; |
| |
| if (i2c_transfer(i2c_adap, msg, 2) == 2) |
| if (rx[0] == 0x01 && rx[1] == 0xb3) { |
| dprintk("-D- DiB7000PC detected"); |
| return 1; |
| } |
| |
| dprintk("-D- DiB7000PC not detected"); |
| return 0; |
| } |
| EXPORT_SYMBOL(dib7000pc_detection); |
| |
| struct i2c_adapter * dib7000p_get_i2c_master(struct dvb_frontend *demod, enum dibx000_i2c_interface intf, int gating) |
| { |
| struct dib7000p_state *st = demod->demodulator_priv; |
| return dibx000_get_i2c_adapter(&st->i2c_master, intf, gating); |
| } |
| EXPORT_SYMBOL(dib7000p_get_i2c_master); |
| |
| int dib7000p_pid_filter_ctrl(struct dvb_frontend *fe, u8 onoff) |
| { |
| struct dib7000p_state *state = fe->demodulator_priv; |
| u16 val = dib7000p_read_word(state, 235) & 0xffef; |
| val |= (onoff & 0x1) << 4; |
| dprintk("PID filter enabled %d", onoff); |
| return dib7000p_write_word(state, 235, val); |
| } |
| EXPORT_SYMBOL(dib7000p_pid_filter_ctrl); |
| |
| int dib7000p_pid_filter(struct dvb_frontend *fe, u8 id, u16 pid, u8 onoff) |
| { |
| struct dib7000p_state *state = fe->demodulator_priv; |
| dprintk("PID filter: index %x, PID %d, OnOff %d", id, pid, onoff); |
| return dib7000p_write_word(state, 241 + id, onoff ? (1 << 13) | pid : 0); |
| } |
| EXPORT_SYMBOL(dib7000p_pid_filter); |
| |
| int dib7000p_i2c_enumeration(struct i2c_adapter *i2c, int no_of_demods, u8 default_addr, struct dib7000p_config cfg[]) |
| { |
| struct dib7000p_state st = { .i2c_adap = i2c }; |
| int k = 0; |
| u8 new_addr = 0; |
| |
| for (k = no_of_demods-1; k >= 0; k--) { |
| st.cfg = cfg[k]; |
| |
| /* designated i2c address */ |
| new_addr = (0x40 + k) << 1; |
| st.i2c_addr = new_addr; |
| dib7000p_write_word(&st, 1287, 0x0003); /* sram lead in, rdy */ |
| if (dib7000p_identify(&st) != 0) { |
| st.i2c_addr = default_addr; |
| dib7000p_write_word(&st, 1287, 0x0003); /* sram lead in, rdy */ |
| if (dib7000p_identify(&st) != 0) { |
| dprintk("DiB7000P #%d: not identified\n", k); |
| return -EIO; |
| } |
| } |
| |
| /* start diversity to pull_down div_str - just for i2c-enumeration */ |
| dib7000p_set_output_mode(&st, OUTMODE_DIVERSITY); |
| |
| /* set new i2c address and force divstart */ |
| dib7000p_write_word(&st, 1285, (new_addr << 2) | 0x2); |
| |
| dprintk("IC %d initialized (to i2c_address 0x%x)", k, new_addr); |
| } |
| |
| for (k = 0; k < no_of_demods; k++) { |
| st.cfg = cfg[k]; |
| st.i2c_addr = (0x40 + k) << 1; |
| |
| // unforce divstr |
| dib7000p_write_word(&st, 1285, st.i2c_addr << 2); |
| |
| /* deactivate div - it was just for i2c-enumeration */ |
| dib7000p_set_output_mode(&st, OUTMODE_HIGH_Z); |
| } |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(dib7000p_i2c_enumeration); |
| |
| static struct dvb_frontend_ops dib7000p_ops; |
| struct dvb_frontend * dib7000p_attach(struct i2c_adapter *i2c_adap, u8 i2c_addr, struct dib7000p_config *cfg) |
| { |
| struct dvb_frontend *demod; |
| struct dib7000p_state *st; |
| st = kzalloc(sizeof(struct dib7000p_state), GFP_KERNEL); |
| if (st == NULL) |
| return NULL; |
| |
| memcpy(&st->cfg, cfg, sizeof(struct dib7000p_config)); |
| st->i2c_adap = i2c_adap; |
| st->i2c_addr = i2c_addr; |
| st->gpio_val = cfg->gpio_val; |
| st->gpio_dir = cfg->gpio_dir; |
| |
| /* Ensure the output mode remains at the previous default if it's |
| * not specifically set by the caller. |
| */ |
| if ((st->cfg.output_mode != OUTMODE_MPEG2_SERIAL) && |
| (st->cfg.output_mode != OUTMODE_MPEG2_PAR_GATED_CLK)) |
| st->cfg.output_mode = OUTMODE_MPEG2_FIFO; |
| |
| demod = &st->demod; |
| demod->demodulator_priv = st; |
| memcpy(&st->demod.ops, &dib7000p_ops, sizeof(struct dvb_frontend_ops)); |
| |
| dib7000p_write_word(st, 1287, 0x0003); /* sram lead in, rdy */ |
| |
| if (dib7000p_identify(st) != 0) |
| goto error; |
| |
| /* FIXME: make sure the dev.parent field is initialized, or else |
| request_firmware() will hit an OOPS (this should be moved somewhere |
| more common) */ |
| st->i2c_master.gated_tuner_i2c_adap.dev.parent = i2c_adap->dev.parent; |
| |
| dibx000_init_i2c_master(&st->i2c_master, DIB7000P, st->i2c_adap, st->i2c_addr); |
| |
| dib7000p_demod_reset(st); |
| |
| return demod; |
| |
| error: |
| kfree(st); |
| return NULL; |
| } |
| EXPORT_SYMBOL(dib7000p_attach); |
| |
| static struct dvb_frontend_ops dib7000p_ops = { |
| .info = { |
| .name = "DiBcom 7000PC", |
| .type = FE_OFDM, |
| .frequency_min = 44250000, |
| .frequency_max = 867250000, |
| .frequency_stepsize = 62500, |
| .caps = FE_CAN_INVERSION_AUTO | |
| FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 | |
| FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO | |
| FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO | |
| FE_CAN_TRANSMISSION_MODE_AUTO | |
| FE_CAN_GUARD_INTERVAL_AUTO | |
| FE_CAN_RECOVER | |
| FE_CAN_HIERARCHY_AUTO, |
| }, |
| |
| .release = dib7000p_release, |
| |
| .init = dib7000p_wakeup, |
| .sleep = dib7000p_sleep, |
| |
| .set_frontend = dib7000p_set_frontend, |
| .get_tune_settings = dib7000p_fe_get_tune_settings, |
| .get_frontend = dib7000p_get_frontend, |
| |
| .read_status = dib7000p_read_status, |
| .read_ber = dib7000p_read_ber, |
| .read_signal_strength = dib7000p_read_signal_strength, |
| .read_snr = dib7000p_read_snr, |
| .read_ucblocks = dib7000p_read_unc_blocks, |
| }; |
| |
| MODULE_AUTHOR("Patrick Boettcher <pboettcher@dibcom.fr>"); |
| MODULE_DESCRIPTION("Driver for the DiBcom 7000PC COFDM demodulator"); |
| MODULE_LICENSE("GPL"); |