| /* |
| * PowerPC version |
| * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) |
| * |
| * Derived from "arch/m68k/kernel/ptrace.c" |
| * Copyright (C) 1994 by Hamish Macdonald |
| * Taken from linux/kernel/ptrace.c and modified for M680x0. |
| * linux/kernel/ptrace.c is by Ross Biro 1/23/92, edited by Linus Torvalds |
| * |
| * Modified by Cort Dougan (cort@hq.fsmlabs.com) |
| * and Paul Mackerras (paulus@samba.org). |
| * |
| * This file is subject to the terms and conditions of the GNU General |
| * Public License. See the file README.legal in the main directory of |
| * this archive for more details. |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/sched.h> |
| #include <linux/mm.h> |
| #include <linux/smp.h> |
| #include <linux/errno.h> |
| #include <linux/ptrace.h> |
| #include <linux/regset.h> |
| #include <linux/tracehook.h> |
| #include <linux/elf.h> |
| #include <linux/user.h> |
| #include <linux/security.h> |
| #include <linux/signal.h> |
| #include <linux/seccomp.h> |
| #include <linux/audit.h> |
| #include <trace/syscall.h> |
| #include <linux/hw_breakpoint.h> |
| #include <linux/perf_event.h> |
| #include <linux/context_tracking.h> |
| |
| #include <asm/uaccess.h> |
| #include <asm/page.h> |
| #include <asm/pgtable.h> |
| #include <asm/switch_to.h> |
| |
| #define CREATE_TRACE_POINTS |
| #include <trace/events/syscalls.h> |
| |
| /* |
| * The parameter save area on the stack is used to store arguments being passed |
| * to callee function and is located at fixed offset from stack pointer. |
| */ |
| #ifdef CONFIG_PPC32 |
| #define PARAMETER_SAVE_AREA_OFFSET 24 /* bytes */ |
| #else /* CONFIG_PPC32 */ |
| #define PARAMETER_SAVE_AREA_OFFSET 48 /* bytes */ |
| #endif |
| |
| struct pt_regs_offset { |
| const char *name; |
| int offset; |
| }; |
| |
| #define STR(s) #s /* convert to string */ |
| #define REG_OFFSET_NAME(r) {.name = #r, .offset = offsetof(struct pt_regs, r)} |
| #define GPR_OFFSET_NAME(num) \ |
| {.name = STR(r##num), .offset = offsetof(struct pt_regs, gpr[num])}, \ |
| {.name = STR(gpr##num), .offset = offsetof(struct pt_regs, gpr[num])} |
| #define REG_OFFSET_END {.name = NULL, .offset = 0} |
| |
| #define TVSO(f) (offsetof(struct thread_vr_state, f)) |
| #define TFSO(f) (offsetof(struct thread_fp_state, f)) |
| #define TSO(f) (offsetof(struct thread_struct, f)) |
| |
| static const struct pt_regs_offset regoffset_table[] = { |
| GPR_OFFSET_NAME(0), |
| GPR_OFFSET_NAME(1), |
| GPR_OFFSET_NAME(2), |
| GPR_OFFSET_NAME(3), |
| GPR_OFFSET_NAME(4), |
| GPR_OFFSET_NAME(5), |
| GPR_OFFSET_NAME(6), |
| GPR_OFFSET_NAME(7), |
| GPR_OFFSET_NAME(8), |
| GPR_OFFSET_NAME(9), |
| GPR_OFFSET_NAME(10), |
| GPR_OFFSET_NAME(11), |
| GPR_OFFSET_NAME(12), |
| GPR_OFFSET_NAME(13), |
| GPR_OFFSET_NAME(14), |
| GPR_OFFSET_NAME(15), |
| GPR_OFFSET_NAME(16), |
| GPR_OFFSET_NAME(17), |
| GPR_OFFSET_NAME(18), |
| GPR_OFFSET_NAME(19), |
| GPR_OFFSET_NAME(20), |
| GPR_OFFSET_NAME(21), |
| GPR_OFFSET_NAME(22), |
| GPR_OFFSET_NAME(23), |
| GPR_OFFSET_NAME(24), |
| GPR_OFFSET_NAME(25), |
| GPR_OFFSET_NAME(26), |
| GPR_OFFSET_NAME(27), |
| GPR_OFFSET_NAME(28), |
| GPR_OFFSET_NAME(29), |
| GPR_OFFSET_NAME(30), |
| GPR_OFFSET_NAME(31), |
| REG_OFFSET_NAME(nip), |
| REG_OFFSET_NAME(msr), |
| REG_OFFSET_NAME(ctr), |
| REG_OFFSET_NAME(link), |
| REG_OFFSET_NAME(xer), |
| REG_OFFSET_NAME(ccr), |
| #ifdef CONFIG_PPC64 |
| REG_OFFSET_NAME(softe), |
| #else |
| REG_OFFSET_NAME(mq), |
| #endif |
| REG_OFFSET_NAME(trap), |
| REG_OFFSET_NAME(dar), |
| REG_OFFSET_NAME(dsisr), |
| REG_OFFSET_END, |
| }; |
| |
| /** |
| * regs_query_register_offset() - query register offset from its name |
| * @name: the name of a register |
| * |
| * regs_query_register_offset() returns the offset of a register in struct |
| * pt_regs from its name. If the name is invalid, this returns -EINVAL; |
| */ |
| int regs_query_register_offset(const char *name) |
| { |
| const struct pt_regs_offset *roff; |
| for (roff = regoffset_table; roff->name != NULL; roff++) |
| if (!strcmp(roff->name, name)) |
| return roff->offset; |
| return -EINVAL; |
| } |
| |
| /** |
| * regs_query_register_name() - query register name from its offset |
| * @offset: the offset of a register in struct pt_regs. |
| * |
| * regs_query_register_name() returns the name of a register from its |
| * offset in struct pt_regs. If the @offset is invalid, this returns NULL; |
| */ |
| const char *regs_query_register_name(unsigned int offset) |
| { |
| const struct pt_regs_offset *roff; |
| for (roff = regoffset_table; roff->name != NULL; roff++) |
| if (roff->offset == offset) |
| return roff->name; |
| return NULL; |
| } |
| |
| /* |
| * does not yet catch signals sent when the child dies. |
| * in exit.c or in signal.c. |
| */ |
| |
| /* |
| * Set of msr bits that gdb can change on behalf of a process. |
| */ |
| #ifdef CONFIG_PPC_ADV_DEBUG_REGS |
| #define MSR_DEBUGCHANGE 0 |
| #else |
| #define MSR_DEBUGCHANGE (MSR_SE | MSR_BE) |
| #endif |
| |
| /* |
| * Max register writeable via put_reg |
| */ |
| #ifdef CONFIG_PPC32 |
| #define PT_MAX_PUT_REG PT_MQ |
| #else |
| #define PT_MAX_PUT_REG PT_CCR |
| #endif |
| |
| static unsigned long get_user_msr(struct task_struct *task) |
| { |
| return task->thread.regs->msr | task->thread.fpexc_mode; |
| } |
| |
| static int set_user_msr(struct task_struct *task, unsigned long msr) |
| { |
| task->thread.regs->msr &= ~MSR_DEBUGCHANGE; |
| task->thread.regs->msr |= msr & MSR_DEBUGCHANGE; |
| return 0; |
| } |
| |
| #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| static unsigned long get_user_ckpt_msr(struct task_struct *task) |
| { |
| return task->thread.ckpt_regs.msr | task->thread.fpexc_mode; |
| } |
| |
| static int set_user_ckpt_msr(struct task_struct *task, unsigned long msr) |
| { |
| task->thread.ckpt_regs.msr &= ~MSR_DEBUGCHANGE; |
| task->thread.ckpt_regs.msr |= msr & MSR_DEBUGCHANGE; |
| return 0; |
| } |
| |
| static int set_user_ckpt_trap(struct task_struct *task, unsigned long trap) |
| { |
| task->thread.ckpt_regs.trap = trap & 0xfff0; |
| return 0; |
| } |
| #endif |
| |
| #ifdef CONFIG_PPC64 |
| static int get_user_dscr(struct task_struct *task, unsigned long *data) |
| { |
| *data = task->thread.dscr; |
| return 0; |
| } |
| |
| static int set_user_dscr(struct task_struct *task, unsigned long dscr) |
| { |
| task->thread.dscr = dscr; |
| task->thread.dscr_inherit = 1; |
| return 0; |
| } |
| #else |
| static int get_user_dscr(struct task_struct *task, unsigned long *data) |
| { |
| return -EIO; |
| } |
| |
| static int set_user_dscr(struct task_struct *task, unsigned long dscr) |
| { |
| return -EIO; |
| } |
| #endif |
| |
| /* |
| * We prevent mucking around with the reserved area of trap |
| * which are used internally by the kernel. |
| */ |
| static int set_user_trap(struct task_struct *task, unsigned long trap) |
| { |
| task->thread.regs->trap = trap & 0xfff0; |
| return 0; |
| } |
| |
| /* |
| * Get contents of register REGNO in task TASK. |
| */ |
| int ptrace_get_reg(struct task_struct *task, int regno, unsigned long *data) |
| { |
| if ((task->thread.regs == NULL) || !data) |
| return -EIO; |
| |
| if (regno == PT_MSR) { |
| *data = get_user_msr(task); |
| return 0; |
| } |
| |
| if (regno == PT_DSCR) |
| return get_user_dscr(task, data); |
| |
| if (regno < (sizeof(struct pt_regs) / sizeof(unsigned long))) { |
| *data = ((unsigned long *)task->thread.regs)[regno]; |
| return 0; |
| } |
| |
| return -EIO; |
| } |
| |
| /* |
| * Write contents of register REGNO in task TASK. |
| */ |
| int ptrace_put_reg(struct task_struct *task, int regno, unsigned long data) |
| { |
| if (task->thread.regs == NULL) |
| return -EIO; |
| |
| if (regno == PT_MSR) |
| return set_user_msr(task, data); |
| if (regno == PT_TRAP) |
| return set_user_trap(task, data); |
| if (regno == PT_DSCR) |
| return set_user_dscr(task, data); |
| |
| if (regno <= PT_MAX_PUT_REG) { |
| ((unsigned long *)task->thread.regs)[regno] = data; |
| return 0; |
| } |
| return -EIO; |
| } |
| |
| static int gpr_get(struct task_struct *target, const struct user_regset *regset, |
| unsigned int pos, unsigned int count, |
| void *kbuf, void __user *ubuf) |
| { |
| int i, ret; |
| |
| if (target->thread.regs == NULL) |
| return -EIO; |
| |
| if (!FULL_REGS(target->thread.regs)) { |
| /* We have a partial register set. Fill 14-31 with bogus values */ |
| for (i = 14; i < 32; i++) |
| target->thread.regs->gpr[i] = NV_REG_POISON; |
| } |
| |
| ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, |
| target->thread.regs, |
| 0, offsetof(struct pt_regs, msr)); |
| if (!ret) { |
| unsigned long msr = get_user_msr(target); |
| ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &msr, |
| offsetof(struct pt_regs, msr), |
| offsetof(struct pt_regs, msr) + |
| sizeof(msr)); |
| } |
| |
| BUILD_BUG_ON(offsetof(struct pt_regs, orig_gpr3) != |
| offsetof(struct pt_regs, msr) + sizeof(long)); |
| |
| if (!ret) |
| ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, |
| &target->thread.regs->orig_gpr3, |
| offsetof(struct pt_regs, orig_gpr3), |
| sizeof(struct pt_regs)); |
| if (!ret) |
| ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf, |
| sizeof(struct pt_regs), -1); |
| |
| return ret; |
| } |
| |
| static int gpr_set(struct task_struct *target, const struct user_regset *regset, |
| unsigned int pos, unsigned int count, |
| const void *kbuf, const void __user *ubuf) |
| { |
| unsigned long reg; |
| int ret; |
| |
| if (target->thread.regs == NULL) |
| return -EIO; |
| |
| CHECK_FULL_REGS(target->thread.regs); |
| |
| ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, |
| target->thread.regs, |
| 0, PT_MSR * sizeof(reg)); |
| |
| if (!ret && count > 0) { |
| ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, ®, |
| PT_MSR * sizeof(reg), |
| (PT_MSR + 1) * sizeof(reg)); |
| if (!ret) |
| ret = set_user_msr(target, reg); |
| } |
| |
| BUILD_BUG_ON(offsetof(struct pt_regs, orig_gpr3) != |
| offsetof(struct pt_regs, msr) + sizeof(long)); |
| |
| if (!ret) |
| ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, |
| &target->thread.regs->orig_gpr3, |
| PT_ORIG_R3 * sizeof(reg), |
| (PT_MAX_PUT_REG + 1) * sizeof(reg)); |
| |
| if (PT_MAX_PUT_REG + 1 < PT_TRAP && !ret) |
| ret = user_regset_copyin_ignore( |
| &pos, &count, &kbuf, &ubuf, |
| (PT_MAX_PUT_REG + 1) * sizeof(reg), |
| PT_TRAP * sizeof(reg)); |
| |
| if (!ret && count > 0) { |
| ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, ®, |
| PT_TRAP * sizeof(reg), |
| (PT_TRAP + 1) * sizeof(reg)); |
| if (!ret) |
| ret = set_user_trap(target, reg); |
| } |
| |
| if (!ret) |
| ret = user_regset_copyin_ignore( |
| &pos, &count, &kbuf, &ubuf, |
| (PT_TRAP + 1) * sizeof(reg), -1); |
| |
| return ret; |
| } |
| |
| /* |
| * When the transaction is active, 'transact_fp' holds the current running |
| * value of all FPR registers and 'fp_state' holds the last checkpointed |
| * value of all FPR registers for the current transaction. When transaction |
| * is not active 'fp_state' holds the current running state of all the FPR |
| * registers. So this function which returns the current running values of |
| * all the FPR registers, needs to know whether any transaction is active |
| * or not. |
| * |
| * Userspace interface buffer layout: |
| * |
| * struct data { |
| * u64 fpr[32]; |
| * u64 fpscr; |
| * }; |
| * |
| * There are two config options CONFIG_VSX and CONFIG_PPC_TRANSACTIONAL_MEM |
| * which determines the final code in this function. All the combinations of |
| * these two config options are possible except the one below as transactional |
| * memory config pulls in CONFIG_VSX automatically. |
| * |
| * !defined(CONFIG_VSX) && defined(CONFIG_PPC_TRANSACTIONAL_MEM) |
| */ |
| static int fpr_get(struct task_struct *target, const struct user_regset *regset, |
| unsigned int pos, unsigned int count, |
| void *kbuf, void __user *ubuf) |
| { |
| #ifdef CONFIG_VSX |
| u64 buf[33]; |
| int i; |
| #endif |
| flush_fp_to_thread(target); |
| |
| #if defined(CONFIG_VSX) && defined(CONFIG_PPC_TRANSACTIONAL_MEM) |
| /* copy to local buffer then write that out */ |
| if (MSR_TM_ACTIVE(target->thread.regs->msr)) { |
| flush_altivec_to_thread(target); |
| flush_tmregs_to_thread(target); |
| for (i = 0; i < 32 ; i++) |
| buf[i] = target->thread.TS_TRANS_FPR(i); |
| buf[32] = target->thread.transact_fp.fpscr; |
| } else { |
| for (i = 0; i < 32 ; i++) |
| buf[i] = target->thread.TS_FPR(i); |
| buf[32] = target->thread.fp_state.fpscr; |
| } |
| return user_regset_copyout(&pos, &count, &kbuf, &ubuf, buf, 0, -1); |
| #endif |
| |
| #if defined(CONFIG_VSX) && !defined(CONFIG_PPC_TRANSACTIONAL_MEM) |
| /* copy to local buffer then write that out */ |
| for (i = 0; i < 32 ; i++) |
| buf[i] = target->thread.TS_FPR(i); |
| buf[32] = target->thread.fp_state.fpscr; |
| return user_regset_copyout(&pos, &count, &kbuf, &ubuf, buf, 0, -1); |
| #endif |
| |
| #if !defined(CONFIG_VSX) && !defined(CONFIG_PPC_TRANSACTIONAL_MEM) |
| BUILD_BUG_ON(offsetof(struct thread_fp_state, fpscr) != |
| offsetof(struct thread_fp_state, fpr[32])); |
| |
| return user_regset_copyout(&pos, &count, &kbuf, &ubuf, |
| &target->thread.fp_state, 0, -1); |
| #endif |
| } |
| |
| /* |
| * When the transaction is active, 'transact_fp' holds the current running |
| * value of all FPR registers and 'fp_state' holds the last checkpointed |
| * value of all FPR registers for the current transaction. When transaction |
| * is not active 'fp_state' holds the current running state of all the FPR |
| * registers. So this function which setss the current running values of |
| * all the FPR registers, needs to know whether any transaction is active |
| * or not. |
| * |
| * Userspace interface buffer layout: |
| * |
| * struct data { |
| * u64 fpr[32]; |
| * u64 fpscr; |
| * }; |
| * |
| * There are two config options CONFIG_VSX and CONFIG_PPC_TRANSACTIONAL_MEM |
| * which determines the final code in this function. All the combinations of |
| * these two config options are possible except the one below as transactional |
| * memory config pulls in CONFIG_VSX automatically. |
| * |
| * !defined(CONFIG_VSX) && defined(CONFIG_PPC_TRANSACTIONAL_MEM) |
| */ |
| static int fpr_set(struct task_struct *target, const struct user_regset *regset, |
| unsigned int pos, unsigned int count, |
| const void *kbuf, const void __user *ubuf) |
| { |
| #ifdef CONFIG_VSX |
| u64 buf[33]; |
| int i; |
| #endif |
| flush_fp_to_thread(target); |
| |
| #if defined(CONFIG_VSX) && defined(CONFIG_PPC_TRANSACTIONAL_MEM) |
| /* copy to local buffer then write that out */ |
| i = user_regset_copyin(&pos, &count, &kbuf, &ubuf, buf, 0, -1); |
| if (i) |
| return i; |
| |
| if (MSR_TM_ACTIVE(target->thread.regs->msr)) { |
| flush_altivec_to_thread(target); |
| flush_tmregs_to_thread(target); |
| for (i = 0; i < 32 ; i++) |
| target->thread.TS_TRANS_FPR(i) = buf[i]; |
| target->thread.transact_fp.fpscr = buf[32]; |
| } else { |
| for (i = 0; i < 32 ; i++) |
| target->thread.TS_FPR(i) = buf[i]; |
| target->thread.fp_state.fpscr = buf[32]; |
| } |
| return 0; |
| #endif |
| |
| #if defined(CONFIG_VSX) && !defined(CONFIG_PPC_TRANSACTIONAL_MEM) |
| /* copy to local buffer then write that out */ |
| i = user_regset_copyin(&pos, &count, &kbuf, &ubuf, buf, 0, -1); |
| if (i) |
| return i; |
| for (i = 0; i < 32 ; i++) |
| target->thread.TS_FPR(i) = buf[i]; |
| target->thread.fp_state.fpscr = buf[32]; |
| return 0; |
| #endif |
| |
| #if !defined(CONFIG_VSX) && !defined(CONFIG_PPC_TRANSACTIONAL_MEM) |
| BUILD_BUG_ON(offsetof(struct thread_fp_state, fpscr) != |
| offsetof(struct thread_fp_state, fpr[32])); |
| |
| return user_regset_copyin(&pos, &count, &kbuf, &ubuf, |
| &target->thread.fp_state, 0, -1); |
| #endif |
| } |
| |
| #ifdef CONFIG_ALTIVEC |
| /* |
| * Get/set all the altivec registers vr0..vr31, vscr, vrsave, in one go. |
| * The transfer totals 34 quadword. Quadwords 0-31 contain the |
| * corresponding vector registers. Quadword 32 contains the vscr as the |
| * last word (offset 12) within that quadword. Quadword 33 contains the |
| * vrsave as the first word (offset 0) within the quadword. |
| * |
| * This definition of the VMX state is compatible with the current PPC32 |
| * ptrace interface. This allows signal handling and ptrace to use the |
| * same structures. This also simplifies the implementation of a bi-arch |
| * (combined (32- and 64-bit) gdb. |
| */ |
| |
| static int vr_active(struct task_struct *target, |
| const struct user_regset *regset) |
| { |
| flush_altivec_to_thread(target); |
| return target->thread.used_vr ? regset->n : 0; |
| } |
| |
| /* |
| * When the transaction is active, 'transact_vr' holds the current running |
| * value of all the VMX registers and 'vr_state' holds the last checkpointed |
| * value of all the VMX registers for the current transaction to fall back |
| * on in case it aborts. When transaction is not active 'vr_state' holds |
| * the current running state of all the VMX registers. So this function which |
| * gets the current running values of all the VMX registers, needs to know |
| * whether any transaction is active or not. |
| * |
| * Userspace interface buffer layout: |
| * |
| * struct data { |
| * vector128 vr[32]; |
| * vector128 vscr; |
| * vector128 vrsave; |
| * }; |
| */ |
| static int vr_get(struct task_struct *target, const struct user_regset *regset, |
| unsigned int pos, unsigned int count, |
| void *kbuf, void __user *ubuf) |
| { |
| struct thread_vr_state *addr; |
| int ret; |
| |
| flush_altivec_to_thread(target); |
| |
| BUILD_BUG_ON(offsetof(struct thread_vr_state, vscr) != |
| offsetof(struct thread_vr_state, vr[32])); |
| |
| #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| if (MSR_TM_ACTIVE(target->thread.regs->msr)) { |
| flush_fp_to_thread(target); |
| flush_tmregs_to_thread(target); |
| addr = &target->thread.transact_vr; |
| } else { |
| addr = &target->thread.vr_state; |
| } |
| #else |
| addr = &target->thread.vr_state; |
| #endif |
| ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, |
| addr, 0, |
| 33 * sizeof(vector128)); |
| if (!ret) { |
| /* |
| * Copy out only the low-order word of vrsave. |
| */ |
| union { |
| elf_vrreg_t reg; |
| u32 word; |
| } vrsave; |
| memset(&vrsave, 0, sizeof(vrsave)); |
| |
| #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| if (MSR_TM_ACTIVE(target->thread.regs->msr)) |
| vrsave.word = target->thread.transact_vrsave; |
| else |
| vrsave.word = target->thread.vrsave; |
| #else |
| vrsave.word = target->thread.vrsave; |
| #endif |
| |
| ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &vrsave, |
| 33 * sizeof(vector128), -1); |
| } |
| |
| return ret; |
| } |
| |
| /* |
| * When the transaction is active, 'transact_vr' holds the current running |
| * value of all the VMX registers and 'vr_state' holds the last checkpointed |
| * value of all the VMX registers for the current transaction to fall back |
| * on in case it aborts. When transaction is not active 'vr_state' holds |
| * the current running state of all the VMX registers. So this function which |
| * sets the current running values of all the VMX registers, needs to know |
| * whether any transaction is active or not. |
| * |
| * Userspace interface buffer layout: |
| * |
| * struct data { |
| * vector128 vr[32]; |
| * vector128 vscr; |
| * vector128 vrsave; |
| * }; |
| */ |
| static int vr_set(struct task_struct *target, const struct user_regset *regset, |
| unsigned int pos, unsigned int count, |
| const void *kbuf, const void __user *ubuf) |
| { |
| struct thread_vr_state *addr; |
| int ret; |
| |
| flush_altivec_to_thread(target); |
| |
| BUILD_BUG_ON(offsetof(struct thread_vr_state, vscr) != |
| offsetof(struct thread_vr_state, vr[32])); |
| |
| #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| if (MSR_TM_ACTIVE(target->thread.regs->msr)) { |
| flush_fp_to_thread(target); |
| flush_tmregs_to_thread(target); |
| addr = &target->thread.transact_vr; |
| } else { |
| addr = &target->thread.vr_state; |
| } |
| #else |
| addr = &target->thread.vr_state; |
| #endif |
| ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, |
| addr, 0, |
| 33 * sizeof(vector128)); |
| if (!ret && count > 0) { |
| /* |
| * We use only the first word of vrsave. |
| */ |
| union { |
| elf_vrreg_t reg; |
| u32 word; |
| } vrsave; |
| memset(&vrsave, 0, sizeof(vrsave)); |
| |
| #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| if (MSR_TM_ACTIVE(target->thread.regs->msr)) |
| vrsave.word = target->thread.transact_vrsave; |
| else |
| vrsave.word = target->thread.vrsave; |
| #else |
| vrsave.word = target->thread.vrsave; |
| #endif |
| ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &vrsave, |
| 33 * sizeof(vector128), -1); |
| if (!ret) { |
| |
| #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| if (MSR_TM_ACTIVE(target->thread.regs->msr)) |
| target->thread.transact_vrsave = vrsave.word; |
| else |
| target->thread.vrsave = vrsave.word; |
| #else |
| target->thread.vrsave = vrsave.word; |
| #endif |
| } |
| } |
| |
| return ret; |
| } |
| #endif /* CONFIG_ALTIVEC */ |
| |
| #ifdef CONFIG_VSX |
| /* |
| * Currently to set and and get all the vsx state, you need to call |
| * the fp and VMX calls as well. This only get/sets the lower 32 |
| * 128bit VSX registers. |
| */ |
| |
| static int vsr_active(struct task_struct *target, |
| const struct user_regset *regset) |
| { |
| flush_vsx_to_thread(target); |
| return target->thread.used_vsr ? regset->n : 0; |
| } |
| |
| /* |
| * When the transaction is active, 'transact_fp' holds the current running |
| * value of all FPR registers and 'fp_state' holds the last checkpointed |
| * value of all FPR registers for the current transaction. When transaction |
| * is not active 'fp_state' holds the current running state of all the FPR |
| * registers. So this function which returns the current running values of |
| * all the FPR registers, needs to know whether any transaction is active |
| * or not. |
| * |
| * Userspace interface buffer layout: |
| * |
| * struct data { |
| * u64 vsx[32]; |
| * }; |
| */ |
| static int vsr_get(struct task_struct *target, const struct user_regset *regset, |
| unsigned int pos, unsigned int count, |
| void *kbuf, void __user *ubuf) |
| { |
| u64 buf[32]; |
| int ret, i; |
| |
| #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| flush_fp_to_thread(target); |
| flush_altivec_to_thread(target); |
| flush_tmregs_to_thread(target); |
| #endif |
| flush_vsx_to_thread(target); |
| |
| #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| if (MSR_TM_ACTIVE(target->thread.regs->msr)) { |
| for (i = 0; i < 32 ; i++) |
| buf[i] = target->thread. |
| transact_fp.fpr[i][TS_VSRLOWOFFSET]; |
| } else { |
| for (i = 0; i < 32 ; i++) |
| buf[i] = target->thread. |
| fp_state.fpr[i][TS_VSRLOWOFFSET]; |
| } |
| #else |
| for (i = 0; i < 32 ; i++) |
| buf[i] = target->thread.fp_state.fpr[i][TS_VSRLOWOFFSET]; |
| #endif |
| ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, |
| buf, 0, 32 * sizeof(double)); |
| |
| return ret; |
| } |
| |
| /* |
| * When the transaction is active, 'transact_fp' holds the current running |
| * value of all FPR registers and 'fp_state' holds the last checkpointed |
| * value of all FPR registers for the current transaction. When transaction |
| * is not active 'fp_state' holds the current running state of all the FPR |
| * registers. So this function which sets the current running values of all |
| * the FPR registers, needs to know whether any transaction is active or not. |
| * |
| * Userspace interface buffer layout: |
| * |
| * struct data { |
| * u64 vsx[32]; |
| * }; |
| */ |
| static int vsr_set(struct task_struct *target, const struct user_regset *regset, |
| unsigned int pos, unsigned int count, |
| const void *kbuf, const void __user *ubuf) |
| { |
| u64 buf[32]; |
| int ret,i; |
| |
| #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| flush_fp_to_thread(target); |
| flush_altivec_to_thread(target); |
| flush_tmregs_to_thread(target); |
| #endif |
| flush_vsx_to_thread(target); |
| |
| ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, |
| buf, 0, 32 * sizeof(double)); |
| |
| #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| if (MSR_TM_ACTIVE(target->thread.regs->msr)) { |
| for (i = 0; i < 32 ; i++) |
| target->thread.transact_fp. |
| fpr[i][TS_VSRLOWOFFSET] = buf[i]; |
| } else { |
| for (i = 0; i < 32 ; i++) |
| target->thread.fp_state. |
| fpr[i][TS_VSRLOWOFFSET] = buf[i]; |
| } |
| #else |
| for (i = 0; i < 32 ; i++) |
| target->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i]; |
| #endif |
| |
| |
| return ret; |
| } |
| #endif /* CONFIG_VSX */ |
| |
| #ifdef CONFIG_SPE |
| |
| /* |
| * For get_evrregs/set_evrregs functions 'data' has the following layout: |
| * |
| * struct { |
| * u32 evr[32]; |
| * u64 acc; |
| * u32 spefscr; |
| * } |
| */ |
| |
| static int evr_active(struct task_struct *target, |
| const struct user_regset *regset) |
| { |
| flush_spe_to_thread(target); |
| return target->thread.used_spe ? regset->n : 0; |
| } |
| |
| static int evr_get(struct task_struct *target, const struct user_regset *regset, |
| unsigned int pos, unsigned int count, |
| void *kbuf, void __user *ubuf) |
| { |
| int ret; |
| |
| flush_spe_to_thread(target); |
| |
| ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, |
| &target->thread.evr, |
| 0, sizeof(target->thread.evr)); |
| |
| BUILD_BUG_ON(offsetof(struct thread_struct, acc) + sizeof(u64) != |
| offsetof(struct thread_struct, spefscr)); |
| |
| if (!ret) |
| ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, |
| &target->thread.acc, |
| sizeof(target->thread.evr), -1); |
| |
| return ret; |
| } |
| |
| static int evr_set(struct task_struct *target, const struct user_regset *regset, |
| unsigned int pos, unsigned int count, |
| const void *kbuf, const void __user *ubuf) |
| { |
| int ret; |
| |
| flush_spe_to_thread(target); |
| |
| ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, |
| &target->thread.evr, |
| 0, sizeof(target->thread.evr)); |
| |
| BUILD_BUG_ON(offsetof(struct thread_struct, acc) + sizeof(u64) != |
| offsetof(struct thread_struct, spefscr)); |
| |
| if (!ret) |
| ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, |
| &target->thread.acc, |
| sizeof(target->thread.evr), -1); |
| |
| return ret; |
| } |
| #endif /* CONFIG_SPE */ |
| |
| #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| /** |
| * tm_cgpr_active - get active number of registers in CGPR |
| * @target: The target task. |
| * @regset: The user regset structure. |
| * |
| * This function checks for the active number of available |
| * regisers in transaction checkpointed GPR category. |
| */ |
| static int tm_cgpr_active(struct task_struct *target, |
| const struct user_regset *regset) |
| { |
| if (!cpu_has_feature(CPU_FTR_TM)) |
| return -ENODEV; |
| |
| if (!MSR_TM_ACTIVE(target->thread.regs->msr)) |
| return 0; |
| |
| return regset->n; |
| } |
| |
| /** |
| * tm_cgpr_get - get CGPR registers |
| * @target: The target task. |
| * @regset: The user regset structure. |
| * @pos: The buffer position. |
| * @count: Number of bytes to copy. |
| * @kbuf: Kernel buffer to copy from. |
| * @ubuf: User buffer to copy into. |
| * |
| * This function gets transaction checkpointed GPR registers. |
| * |
| * When the transaction is active, 'ckpt_regs' holds all the checkpointed |
| * GPR register values for the current transaction to fall back on if it |
| * aborts in between. This function gets those checkpointed GPR registers. |
| * The userspace interface buffer layout is as follows. |
| * |
| * struct data { |
| * struct pt_regs ckpt_regs; |
| * }; |
| */ |
| static int tm_cgpr_get(struct task_struct *target, |
| const struct user_regset *regset, |
| unsigned int pos, unsigned int count, |
| void *kbuf, void __user *ubuf) |
| { |
| int ret; |
| |
| if (!cpu_has_feature(CPU_FTR_TM)) |
| return -ENODEV; |
| |
| if (!MSR_TM_ACTIVE(target->thread.regs->msr)) |
| return -ENODATA; |
| |
| flush_fp_to_thread(target); |
| flush_altivec_to_thread(target); |
| flush_tmregs_to_thread(target); |
| |
| ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, |
| &target->thread.ckpt_regs, |
| 0, offsetof(struct pt_regs, msr)); |
| if (!ret) { |
| unsigned long msr = get_user_ckpt_msr(target); |
| |
| ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &msr, |
| offsetof(struct pt_regs, msr), |
| offsetof(struct pt_regs, msr) + |
| sizeof(msr)); |
| } |
| |
| BUILD_BUG_ON(offsetof(struct pt_regs, orig_gpr3) != |
| offsetof(struct pt_regs, msr) + sizeof(long)); |
| |
| if (!ret) |
| ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, |
| &target->thread.ckpt_regs.orig_gpr3, |
| offsetof(struct pt_regs, orig_gpr3), |
| sizeof(struct pt_regs)); |
| if (!ret) |
| ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf, |
| sizeof(struct pt_regs), -1); |
| |
| return ret; |
| } |
| |
| /* |
| * tm_cgpr_set - set the CGPR registers |
| * @target: The target task. |
| * @regset: The user regset structure. |
| * @pos: The buffer position. |
| * @count: Number of bytes to copy. |
| * @kbuf: Kernel buffer to copy into. |
| * @ubuf: User buffer to copy from. |
| * |
| * This function sets in transaction checkpointed GPR registers. |
| * |
| * When the transaction is active, 'ckpt_regs' holds the checkpointed |
| * GPR register values for the current transaction to fall back on if it |
| * aborts in between. This function sets those checkpointed GPR registers. |
| * The userspace interface buffer layout is as follows. |
| * |
| * struct data { |
| * struct pt_regs ckpt_regs; |
| * }; |
| */ |
| static int tm_cgpr_set(struct task_struct *target, |
| const struct user_regset *regset, |
| unsigned int pos, unsigned int count, |
| const void *kbuf, const void __user *ubuf) |
| { |
| unsigned long reg; |
| int ret; |
| |
| if (!cpu_has_feature(CPU_FTR_TM)) |
| return -ENODEV; |
| |
| if (!MSR_TM_ACTIVE(target->thread.regs->msr)) |
| return -ENODATA; |
| |
| flush_fp_to_thread(target); |
| flush_altivec_to_thread(target); |
| flush_tmregs_to_thread(target); |
| |
| ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, |
| &target->thread.ckpt_regs, |
| 0, PT_MSR * sizeof(reg)); |
| |
| if (!ret && count > 0) { |
| ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, ®, |
| PT_MSR * sizeof(reg), |
| (PT_MSR + 1) * sizeof(reg)); |
| if (!ret) |
| ret = set_user_ckpt_msr(target, reg); |
| } |
| |
| BUILD_BUG_ON(offsetof(struct pt_regs, orig_gpr3) != |
| offsetof(struct pt_regs, msr) + sizeof(long)); |
| |
| if (!ret) |
| ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, |
| &target->thread.ckpt_regs.orig_gpr3, |
| PT_ORIG_R3 * sizeof(reg), |
| (PT_MAX_PUT_REG + 1) * sizeof(reg)); |
| |
| if (PT_MAX_PUT_REG + 1 < PT_TRAP && !ret) |
| ret = user_regset_copyin_ignore( |
| &pos, &count, &kbuf, &ubuf, |
| (PT_MAX_PUT_REG + 1) * sizeof(reg), |
| PT_TRAP * sizeof(reg)); |
| |
| if (!ret && count > 0) { |
| ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, ®, |
| PT_TRAP * sizeof(reg), |
| (PT_TRAP + 1) * sizeof(reg)); |
| if (!ret) |
| ret = set_user_ckpt_trap(target, reg); |
| } |
| |
| if (!ret) |
| ret = user_regset_copyin_ignore( |
| &pos, &count, &kbuf, &ubuf, |
| (PT_TRAP + 1) * sizeof(reg), -1); |
| |
| return ret; |
| } |
| |
| /** |
| * tm_cfpr_active - get active number of registers in CFPR |
| * @target: The target task. |
| * @regset: The user regset structure. |
| * |
| * This function checks for the active number of available |
| * regisers in transaction checkpointed FPR category. |
| */ |
| static int tm_cfpr_active(struct task_struct *target, |
| const struct user_regset *regset) |
| { |
| if (!cpu_has_feature(CPU_FTR_TM)) |
| return -ENODEV; |
| |
| if (!MSR_TM_ACTIVE(target->thread.regs->msr)) |
| return 0; |
| |
| return regset->n; |
| } |
| |
| /** |
| * tm_cfpr_get - get CFPR registers |
| * @target: The target task. |
| * @regset: The user regset structure. |
| * @pos: The buffer position. |
| * @count: Number of bytes to copy. |
| * @kbuf: Kernel buffer to copy from. |
| * @ubuf: User buffer to copy into. |
| * |
| * This function gets in transaction checkpointed FPR registers. |
| * |
| * When the transaction is active 'fp_state' holds the checkpointed |
| * values for the current transaction to fall back on if it aborts |
| * in between. This function gets those checkpointed FPR registers. |
| * The userspace interface buffer layout is as follows. |
| * |
| * struct data { |
| * u64 fpr[32]; |
| * u64 fpscr; |
| *}; |
| */ |
| static int tm_cfpr_get(struct task_struct *target, |
| const struct user_regset *regset, |
| unsigned int pos, unsigned int count, |
| void *kbuf, void __user *ubuf) |
| { |
| u64 buf[33]; |
| int i; |
| |
| if (!cpu_has_feature(CPU_FTR_TM)) |
| return -ENODEV; |
| |
| if (!MSR_TM_ACTIVE(target->thread.regs->msr)) |
| return -ENODATA; |
| |
| flush_fp_to_thread(target); |
| flush_altivec_to_thread(target); |
| flush_tmregs_to_thread(target); |
| |
| /* copy to local buffer then write that out */ |
| for (i = 0; i < 32 ; i++) |
| buf[i] = target->thread.TS_FPR(i); |
| buf[32] = target->thread.fp_state.fpscr; |
| return user_regset_copyout(&pos, &count, &kbuf, &ubuf, buf, 0, -1); |
| } |
| |
| /** |
| * tm_cfpr_set - set CFPR registers |
| * @target: The target task. |
| * @regset: The user regset structure. |
| * @pos: The buffer position. |
| * @count: Number of bytes to copy. |
| * @kbuf: Kernel buffer to copy into. |
| * @ubuf: User buffer to copy from. |
| * |
| * This function sets in transaction checkpointed FPR registers. |
| * |
| * When the transaction is active 'fp_state' holds the checkpointed |
| * FPR register values for the current transaction to fall back on |
| * if it aborts in between. This function sets these checkpointed |
| * FPR registers. The userspace interface buffer layout is as follows. |
| * |
| * struct data { |
| * u64 fpr[32]; |
| * u64 fpscr; |
| *}; |
| */ |
| static int tm_cfpr_set(struct task_struct *target, |
| const struct user_regset *regset, |
| unsigned int pos, unsigned int count, |
| const void *kbuf, const void __user *ubuf) |
| { |
| u64 buf[33]; |
| int i; |
| |
| if (!cpu_has_feature(CPU_FTR_TM)) |
| return -ENODEV; |
| |
| if (!MSR_TM_ACTIVE(target->thread.regs->msr)) |
| return -ENODATA; |
| |
| flush_fp_to_thread(target); |
| flush_altivec_to_thread(target); |
| flush_tmregs_to_thread(target); |
| |
| /* copy to local buffer then write that out */ |
| i = user_regset_copyin(&pos, &count, &kbuf, &ubuf, buf, 0, -1); |
| if (i) |
| return i; |
| for (i = 0; i < 32 ; i++) |
| target->thread.TS_FPR(i) = buf[i]; |
| target->thread.fp_state.fpscr = buf[32]; |
| return 0; |
| } |
| |
| /** |
| * tm_cvmx_active - get active number of registers in CVMX |
| * @target: The target task. |
| * @regset: The user regset structure. |
| * |
| * This function checks for the active number of available |
| * regisers in checkpointed VMX category. |
| */ |
| static int tm_cvmx_active(struct task_struct *target, |
| const struct user_regset *regset) |
| { |
| if (!cpu_has_feature(CPU_FTR_TM)) |
| return -ENODEV; |
| |
| if (!MSR_TM_ACTIVE(target->thread.regs->msr)) |
| return 0; |
| |
| return regset->n; |
| } |
| |
| /** |
| * tm_cvmx_get - get CMVX registers |
| * @target: The target task. |
| * @regset: The user regset structure. |
| * @pos: The buffer position. |
| * @count: Number of bytes to copy. |
| * @kbuf: Kernel buffer to copy from. |
| * @ubuf: User buffer to copy into. |
| * |
| * This function gets in transaction checkpointed VMX registers. |
| * |
| * When the transaction is active 'vr_state' and 'vr_save' hold |
| * the checkpointed values for the current transaction to fall |
| * back on if it aborts in between. The userspace interface buffer |
| * layout is as follows. |
| * |
| * struct data { |
| * vector128 vr[32]; |
| * vector128 vscr; |
| * vector128 vrsave; |
| *}; |
| */ |
| static int tm_cvmx_get(struct task_struct *target, |
| const struct user_regset *regset, |
| unsigned int pos, unsigned int count, |
| void *kbuf, void __user *ubuf) |
| { |
| int ret; |
| |
| BUILD_BUG_ON(TVSO(vscr) != TVSO(vr[32])); |
| |
| if (!cpu_has_feature(CPU_FTR_TM)) |
| return -ENODEV; |
| |
| if (!MSR_TM_ACTIVE(target->thread.regs->msr)) |
| return -ENODATA; |
| |
| /* Flush the state */ |
| flush_fp_to_thread(target); |
| flush_altivec_to_thread(target); |
| flush_tmregs_to_thread(target); |
| |
| ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, |
| &target->thread.vr_state, 0, |
| 33 * sizeof(vector128)); |
| if (!ret) { |
| /* |
| * Copy out only the low-order word of vrsave. |
| */ |
| union { |
| elf_vrreg_t reg; |
| u32 word; |
| } vrsave; |
| memset(&vrsave, 0, sizeof(vrsave)); |
| vrsave.word = target->thread.vrsave; |
| ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &vrsave, |
| 33 * sizeof(vector128), -1); |
| } |
| |
| return ret; |
| } |
| |
| /** |
| * tm_cvmx_set - set CMVX registers |
| * @target: The target task. |
| * @regset: The user regset structure. |
| * @pos: The buffer position. |
| * @count: Number of bytes to copy. |
| * @kbuf: Kernel buffer to copy into. |
| * @ubuf: User buffer to copy from. |
| * |
| * This function sets in transaction checkpointed VMX registers. |
| * |
| * When the transaction is active 'vr_state' and 'vr_save' hold |
| * the checkpointed values for the current transaction to fall |
| * back on if it aborts in between. The userspace interface buffer |
| * layout is as follows. |
| * |
| * struct data { |
| * vector128 vr[32]; |
| * vector128 vscr; |
| * vector128 vrsave; |
| *}; |
| */ |
| static int tm_cvmx_set(struct task_struct *target, |
| const struct user_regset *regset, |
| unsigned int pos, unsigned int count, |
| const void *kbuf, const void __user *ubuf) |
| { |
| int ret; |
| |
| BUILD_BUG_ON(TVSO(vscr) != TVSO(vr[32])); |
| |
| if (!cpu_has_feature(CPU_FTR_TM)) |
| return -ENODEV; |
| |
| if (!MSR_TM_ACTIVE(target->thread.regs->msr)) |
| return -ENODATA; |
| |
| flush_fp_to_thread(target); |
| flush_altivec_to_thread(target); |
| flush_tmregs_to_thread(target); |
| |
| ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, |
| &target->thread.vr_state, 0, |
| 33 * sizeof(vector128)); |
| if (!ret && count > 0) { |
| /* |
| * We use only the low-order word of vrsave. |
| */ |
| union { |
| elf_vrreg_t reg; |
| u32 word; |
| } vrsave; |
| memset(&vrsave, 0, sizeof(vrsave)); |
| vrsave.word = target->thread.vrsave; |
| ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &vrsave, |
| 33 * sizeof(vector128), -1); |
| if (!ret) |
| target->thread.vrsave = vrsave.word; |
| } |
| |
| return ret; |
| } |
| |
| /** |
| * tm_cvsx_active - get active number of registers in CVSX |
| * @target: The target task. |
| * @regset: The user regset structure. |
| * |
| * This function checks for the active number of available |
| * regisers in transaction checkpointed VSX category. |
| */ |
| static int tm_cvsx_active(struct task_struct *target, |
| const struct user_regset *regset) |
| { |
| if (!cpu_has_feature(CPU_FTR_TM)) |
| return -ENODEV; |
| |
| if (!MSR_TM_ACTIVE(target->thread.regs->msr)) |
| return 0; |
| |
| flush_vsx_to_thread(target); |
| return target->thread.used_vsr ? regset->n : 0; |
| } |
| |
| /** |
| * tm_cvsx_get - get CVSX registers |
| * @target: The target task. |
| * @regset: The user regset structure. |
| * @pos: The buffer position. |
| * @count: Number of bytes to copy. |
| * @kbuf: Kernel buffer to copy from. |
| * @ubuf: User buffer to copy into. |
| * |
| * This function gets in transaction checkpointed VSX registers. |
| * |
| * When the transaction is active 'fp_state' holds the checkpointed |
| * values for the current transaction to fall back on if it aborts |
| * in between. This function gets those checkpointed VSX registers. |
| * The userspace interface buffer layout is as follows. |
| * |
| * struct data { |
| * u64 vsx[32]; |
| *}; |
| */ |
| static int tm_cvsx_get(struct task_struct *target, |
| const struct user_regset *regset, |
| unsigned int pos, unsigned int count, |
| void *kbuf, void __user *ubuf) |
| { |
| u64 buf[32]; |
| int ret, i; |
| |
| if (!cpu_has_feature(CPU_FTR_TM)) |
| return -ENODEV; |
| |
| if (!MSR_TM_ACTIVE(target->thread.regs->msr)) |
| return -ENODATA; |
| |
| /* Flush the state */ |
| flush_fp_to_thread(target); |
| flush_altivec_to_thread(target); |
| flush_tmregs_to_thread(target); |
| flush_vsx_to_thread(target); |
| |
| for (i = 0; i < 32 ; i++) |
| buf[i] = target->thread.fp_state.fpr[i][TS_VSRLOWOFFSET]; |
| ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, |
| buf, 0, 32 * sizeof(double)); |
| |
| return ret; |
| } |
| |
| /** |
| * tm_cvsx_set - set CFPR registers |
| * @target: The target task. |
| * @regset: The user regset structure. |
| * @pos: The buffer position. |
| * @count: Number of bytes to copy. |
| * @kbuf: Kernel buffer to copy into. |
| * @ubuf: User buffer to copy from. |
| * |
| * This function sets in transaction checkpointed VSX registers. |
| * |
| * When the transaction is active 'fp_state' holds the checkpointed |
| * VSX register values for the current transaction to fall back on |
| * if it aborts in between. This function sets these checkpointed |
| * FPR registers. The userspace interface buffer layout is as follows. |
| * |
| * struct data { |
| * u64 vsx[32]; |
| *}; |
| */ |
| static int tm_cvsx_set(struct task_struct *target, |
| const struct user_regset *regset, |
| unsigned int pos, unsigned int count, |
| const void *kbuf, const void __user *ubuf) |
| { |
| u64 buf[32]; |
| int ret, i; |
| |
| if (!cpu_has_feature(CPU_FTR_TM)) |
| return -ENODEV; |
| |
| if (!MSR_TM_ACTIVE(target->thread.regs->msr)) |
| return -ENODATA; |
| |
| /* Flush the state */ |
| flush_fp_to_thread(target); |
| flush_altivec_to_thread(target); |
| flush_tmregs_to_thread(target); |
| flush_vsx_to_thread(target); |
| |
| ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, |
| buf, 0, 32 * sizeof(double)); |
| for (i = 0; i < 32 ; i++) |
| target->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i]; |
| |
| return ret; |
| } |
| |
| /** |
| * tm_spr_active - get active number of registers in TM SPR |
| * @target: The target task. |
| * @regset: The user regset structure. |
| * |
| * This function checks the active number of available |
| * regisers in the transactional memory SPR category. |
| */ |
| static int tm_spr_active(struct task_struct *target, |
| const struct user_regset *regset) |
| { |
| if (!cpu_has_feature(CPU_FTR_TM)) |
| return -ENODEV; |
| |
| return regset->n; |
| } |
| |
| /** |
| * tm_spr_get - get the TM related SPR registers |
| * @target: The target task. |
| * @regset: The user regset structure. |
| * @pos: The buffer position. |
| * @count: Number of bytes to copy. |
| * @kbuf: Kernel buffer to copy from. |
| * @ubuf: User buffer to copy into. |
| * |
| * This function gets transactional memory related SPR registers. |
| * The userspace interface buffer layout is as follows. |
| * |
| * struct { |
| * u64 tm_tfhar; |
| * u64 tm_texasr; |
| * u64 tm_tfiar; |
| * }; |
| */ |
| static int tm_spr_get(struct task_struct *target, |
| const struct user_regset *regset, |
| unsigned int pos, unsigned int count, |
| void *kbuf, void __user *ubuf) |
| { |
| int ret; |
| |
| /* Build tests */ |
| BUILD_BUG_ON(TSO(tm_tfhar) + sizeof(u64) != TSO(tm_texasr)); |
| BUILD_BUG_ON(TSO(tm_texasr) + sizeof(u64) != TSO(tm_tfiar)); |
| BUILD_BUG_ON(TSO(tm_tfiar) + sizeof(u64) != TSO(ckpt_regs)); |
| |
| if (!cpu_has_feature(CPU_FTR_TM)) |
| return -ENODEV; |
| |
| /* Flush the states */ |
| flush_fp_to_thread(target); |
| flush_altivec_to_thread(target); |
| flush_tmregs_to_thread(target); |
| |
| /* TFHAR register */ |
| ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, |
| &target->thread.tm_tfhar, 0, sizeof(u64)); |
| |
| /* TEXASR register */ |
| if (!ret) |
| ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, |
| &target->thread.tm_texasr, sizeof(u64), |
| 2 * sizeof(u64)); |
| |
| /* TFIAR register */ |
| if (!ret) |
| ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, |
| &target->thread.tm_tfiar, |
| 2 * sizeof(u64), 3 * sizeof(u64)); |
| return ret; |
| } |
| |
| /** |
| * tm_spr_set - set the TM related SPR registers |
| * @target: The target task. |
| * @regset: The user regset structure. |
| * @pos: The buffer position. |
| * @count: Number of bytes to copy. |
| * @kbuf: Kernel buffer to copy into. |
| * @ubuf: User buffer to copy from. |
| * |
| * This function sets transactional memory related SPR registers. |
| * The userspace interface buffer layout is as follows. |
| * |
| * struct { |
| * u64 tm_tfhar; |
| * u64 tm_texasr; |
| * u64 tm_tfiar; |
| * }; |
| */ |
| static int tm_spr_set(struct task_struct *target, |
| const struct user_regset *regset, |
| unsigned int pos, unsigned int count, |
| const void *kbuf, const void __user *ubuf) |
| { |
| int ret; |
| |
| /* Build tests */ |
| BUILD_BUG_ON(TSO(tm_tfhar) + sizeof(u64) != TSO(tm_texasr)); |
| BUILD_BUG_ON(TSO(tm_texasr) + sizeof(u64) != TSO(tm_tfiar)); |
| BUILD_BUG_ON(TSO(tm_tfiar) + sizeof(u64) != TSO(ckpt_regs)); |
| |
| if (!cpu_has_feature(CPU_FTR_TM)) |
| return -ENODEV; |
| |
| /* Flush the states */ |
| flush_fp_to_thread(target); |
| flush_altivec_to_thread(target); |
| flush_tmregs_to_thread(target); |
| |
| /* TFHAR register */ |
| ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, |
| &target->thread.tm_tfhar, 0, sizeof(u64)); |
| |
| /* TEXASR register */ |
| if (!ret) |
| ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, |
| &target->thread.tm_texasr, sizeof(u64), |
| 2 * sizeof(u64)); |
| |
| /* TFIAR register */ |
| if (!ret) |
| ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, |
| &target->thread.tm_tfiar, |
| 2 * sizeof(u64), 3 * sizeof(u64)); |
| return ret; |
| } |
| |
| static int tm_tar_active(struct task_struct *target, |
| const struct user_regset *regset) |
| { |
| if (!cpu_has_feature(CPU_FTR_TM)) |
| return -ENODEV; |
| |
| if (MSR_TM_ACTIVE(target->thread.regs->msr)) |
| return regset->n; |
| |
| return 0; |
| } |
| |
| static int tm_tar_get(struct task_struct *target, |
| const struct user_regset *regset, |
| unsigned int pos, unsigned int count, |
| void *kbuf, void __user *ubuf) |
| { |
| int ret; |
| |
| if (!cpu_has_feature(CPU_FTR_TM)) |
| return -ENODEV; |
| |
| if (!MSR_TM_ACTIVE(target->thread.regs->msr)) |
| return -ENODATA; |
| |
| ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, |
| &target->thread.tm_tar, 0, sizeof(u64)); |
| return ret; |
| } |
| |
| static int tm_tar_set(struct task_struct *target, |
| const struct user_regset *regset, |
| unsigned int pos, unsigned int count, |
| const void *kbuf, const void __user *ubuf) |
| { |
| int ret; |
| |
| if (!cpu_has_feature(CPU_FTR_TM)) |
| return -ENODEV; |
| |
| if (!MSR_TM_ACTIVE(target->thread.regs->msr)) |
| return -ENODATA; |
| |
| ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, |
| &target->thread.tm_tar, 0, sizeof(u64)); |
| return ret; |
| } |
| |
| static int tm_ppr_active(struct task_struct *target, |
| const struct user_regset *regset) |
| { |
| if (!cpu_has_feature(CPU_FTR_TM)) |
| return -ENODEV; |
| |
| if (MSR_TM_ACTIVE(target->thread.regs->msr)) |
| return regset->n; |
| |
| return 0; |
| } |
| |
| |
| static int tm_ppr_get(struct task_struct *target, |
| const struct user_regset *regset, |
| unsigned int pos, unsigned int count, |
| void *kbuf, void __user *ubuf) |
| { |
| int ret; |
| |
| if (!cpu_has_feature(CPU_FTR_TM)) |
| return -ENODEV; |
| |
| if (!MSR_TM_ACTIVE(target->thread.regs->msr)) |
| return -ENODATA; |
| |
| ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, |
| &target->thread.tm_ppr, 0, sizeof(u64)); |
| return ret; |
| } |
| |
| static int tm_ppr_set(struct task_struct *target, |
| const struct user_regset *regset, |
| unsigned int pos, unsigned int count, |
| const void *kbuf, const void __user *ubuf) |
| { |
| int ret; |
| |
| if (!cpu_has_feature(CPU_FTR_TM)) |
| return -ENODEV; |
| |
| if (!MSR_TM_ACTIVE(target->thread.regs->msr)) |
| return -ENODATA; |
| |
| ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, |
| &target->thread.tm_ppr, 0, sizeof(u64)); |
| return ret; |
| } |
| |
| static int tm_dscr_active(struct task_struct *target, |
| const struct user_regset *regset) |
| { |
| if (!cpu_has_feature(CPU_FTR_TM)) |
| return -ENODEV; |
| |
| if (MSR_TM_ACTIVE(target->thread.regs->msr)) |
| return regset->n; |
| |
| return 0; |
| } |
| |
| static int tm_dscr_get(struct task_struct *target, |
| const struct user_regset *regset, |
| unsigned int pos, unsigned int count, |
| void *kbuf, void __user *ubuf) |
| { |
| int ret; |
| |
| if (!cpu_has_feature(CPU_FTR_TM)) |
| return -ENODEV; |
| |
| if (!MSR_TM_ACTIVE(target->thread.regs->msr)) |
| return -ENODATA; |
| |
| ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, |
| &target->thread.tm_dscr, 0, sizeof(u64)); |
| return ret; |
| } |
| |
| static int tm_dscr_set(struct task_struct *target, |
| const struct user_regset *regset, |
| unsigned int pos, unsigned int count, |
| const void *kbuf, const void __user *ubuf) |
| { |
| int ret; |
| |
| if (!cpu_has_feature(CPU_FTR_TM)) |
| return -ENODEV; |
| |
| if (!MSR_TM_ACTIVE(target->thread.regs->msr)) |
| return -ENODATA; |
| |
| ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, |
| &target->thread.tm_dscr, 0, sizeof(u64)); |
| return ret; |
| } |
| #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ |
| |
| #ifdef CONFIG_PPC64 |
| static int ppr_get(struct task_struct *target, |
| const struct user_regset *regset, |
| unsigned int pos, unsigned int count, |
| void *kbuf, void __user *ubuf) |
| { |
| int ret; |
| |
| ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, |
| &target->thread.ppr, 0, sizeof(u64)); |
| return ret; |
| } |
| |
| static int ppr_set(struct task_struct *target, |
| const struct user_regset *regset, |
| unsigned int pos, unsigned int count, |
| const void *kbuf, const void __user *ubuf) |
| { |
| int ret; |
| |
| ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, |
| &target->thread.ppr, 0, sizeof(u64)); |
| return ret; |
| } |
| |
| static int dscr_get(struct task_struct *target, |
| const struct user_regset *regset, |
| unsigned int pos, unsigned int count, |
| void *kbuf, void __user *ubuf) |
| { |
| int ret; |
| |
| ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, |
| &target->thread.dscr, 0, sizeof(u64)); |
| return ret; |
| } |
| static int dscr_set(struct task_struct *target, |
| const struct user_regset *regset, |
| unsigned int pos, unsigned int count, |
| const void *kbuf, const void __user *ubuf) |
| { |
| int ret; |
| |
| ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, |
| &target->thread.dscr, 0, sizeof(u64)); |
| return ret; |
| } |
| #endif |
| #ifdef CONFIG_PPC_BOOK3S_64 |
| static int tar_get(struct task_struct *target, |
| const struct user_regset *regset, |
| unsigned int pos, unsigned int count, |
| void *kbuf, void __user *ubuf) |
| { |
| int ret; |
| |
| ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, |
| &target->thread.tar, 0, sizeof(u64)); |
| return ret; |
| } |
| static int tar_set(struct task_struct *target, |
| const struct user_regset *regset, |
| unsigned int pos, unsigned int count, |
| const void *kbuf, const void __user *ubuf) |
| { |
| int ret; |
| |
| ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, |
| &target->thread.tar, 0, sizeof(u64)); |
| return ret; |
| } |
| |
| static int ebb_active(struct task_struct *target, |
| const struct user_regset *regset) |
| { |
| if (!cpu_has_feature(CPU_FTR_ARCH_207S)) |
| return -ENODEV; |
| |
| if (target->thread.used_ebb) |
| return regset->n; |
| |
| return 0; |
| } |
| |
| static int ebb_get(struct task_struct *target, |
| const struct user_regset *regset, |
| unsigned int pos, unsigned int count, |
| void *kbuf, void __user *ubuf) |
| { |
| /* Build tests */ |
| BUILD_BUG_ON(TSO(ebbrr) + sizeof(unsigned long) != TSO(ebbhr)); |
| BUILD_BUG_ON(TSO(ebbhr) + sizeof(unsigned long) != TSO(bescr)); |
| |
| if (!cpu_has_feature(CPU_FTR_ARCH_207S)) |
| return -ENODEV; |
| |
| if (!target->thread.used_ebb) |
| return -ENODATA; |
| |
| return user_regset_copyout(&pos, &count, &kbuf, &ubuf, |
| &target->thread.ebbrr, 0, 3 * sizeof(unsigned long)); |
| } |
| |
| static int ebb_set(struct task_struct *target, |
| const struct user_regset *regset, |
| unsigned int pos, unsigned int count, |
| const void *kbuf, const void __user *ubuf) |
| { |
| int ret = 0; |
| |
| /* Build tests */ |
| BUILD_BUG_ON(TSO(ebbrr) + sizeof(unsigned long) != TSO(ebbhr)); |
| BUILD_BUG_ON(TSO(ebbhr) + sizeof(unsigned long) != TSO(bescr)); |
| |
| if (!cpu_has_feature(CPU_FTR_ARCH_207S)) |
| return -ENODEV; |
| |
| if (target->thread.used_ebb) |
| return -ENODATA; |
| |
| ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, |
| &target->thread.ebbrr, 0, sizeof(unsigned long)); |
| |
| if (!ret) |
| ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, |
| &target->thread.ebbhr, sizeof(unsigned long), |
| 2 * sizeof(unsigned long)); |
| |
| if (!ret) |
| ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, |
| &target->thread.bescr, |
| 2 * sizeof(unsigned long), 3 * sizeof(unsigned long)); |
| |
| return ret; |
| } |
| static int pmu_active(struct task_struct *target, |
| const struct user_regset *regset) |
| { |
| if (!cpu_has_feature(CPU_FTR_ARCH_207S)) |
| return -ENODEV; |
| |
| return regset->n; |
| } |
| |
| static int pmu_get(struct task_struct *target, |
| const struct user_regset *regset, |
| unsigned int pos, unsigned int count, |
| void *kbuf, void __user *ubuf) |
| { |
| /* Build tests */ |
| BUILD_BUG_ON(TSO(siar) + sizeof(unsigned long) != TSO(sdar)); |
| BUILD_BUG_ON(TSO(sdar) + sizeof(unsigned long) != TSO(sier)); |
| BUILD_BUG_ON(TSO(sier) + sizeof(unsigned long) != TSO(mmcr2)); |
| BUILD_BUG_ON(TSO(mmcr2) + sizeof(unsigned long) != TSO(mmcr0)); |
| |
| if (!cpu_has_feature(CPU_FTR_ARCH_207S)) |
| return -ENODEV; |
| |
| return user_regset_copyout(&pos, &count, &kbuf, &ubuf, |
| &target->thread.siar, 0, |
| 5 * sizeof(unsigned long)); |
| } |
| |
| static int pmu_set(struct task_struct *target, |
| const struct user_regset *regset, |
| unsigned int pos, unsigned int count, |
| const void *kbuf, const void __user *ubuf) |
| { |
| int ret = 0; |
| |
| /* Build tests */ |
| BUILD_BUG_ON(TSO(siar) + sizeof(unsigned long) != TSO(sdar)); |
| BUILD_BUG_ON(TSO(sdar) + sizeof(unsigned long) != TSO(sier)); |
| BUILD_BUG_ON(TSO(sier) + sizeof(unsigned long) != TSO(mmcr2)); |
| BUILD_BUG_ON(TSO(mmcr2) + sizeof(unsigned long) != TSO(mmcr0)); |
| |
| if (!cpu_has_feature(CPU_FTR_ARCH_207S)) |
| return -ENODEV; |
| |
| ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, |
| &target->thread.siar, 0, |
| sizeof(unsigned long)); |
| |
| if (!ret) |
| ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, |
| &target->thread.sdar, sizeof(unsigned long), |
| 2 * sizeof(unsigned long)); |
| |
| if (!ret) |
| ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, |
| &target->thread.sier, 2 * sizeof(unsigned long), |
| 3 * sizeof(unsigned long)); |
| |
| if (!ret) |
| ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, |
| &target->thread.mmcr2, 3 * sizeof(unsigned long), |
| 4 * sizeof(unsigned long)); |
| |
| if (!ret) |
| ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, |
| &target->thread.mmcr0, 4 * sizeof(unsigned long), |
| 5 * sizeof(unsigned long)); |
| return ret; |
| } |
| #endif |
| /* |
| * These are our native regset flavors. |
| */ |
| enum powerpc_regset { |
| REGSET_GPR, |
| REGSET_FPR, |
| #ifdef CONFIG_ALTIVEC |
| REGSET_VMX, |
| #endif |
| #ifdef CONFIG_VSX |
| REGSET_VSX, |
| #endif |
| #ifdef CONFIG_SPE |
| REGSET_SPE, |
| #endif |
| #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| REGSET_TM_CGPR, /* TM checkpointed GPR registers */ |
| REGSET_TM_CFPR, /* TM checkpointed FPR registers */ |
| REGSET_TM_CVMX, /* TM checkpointed VMX registers */ |
| REGSET_TM_CVSX, /* TM checkpointed VSX registers */ |
| REGSET_TM_SPR, /* TM specific SPR registers */ |
| REGSET_TM_CTAR, /* TM checkpointed TAR register */ |
| REGSET_TM_CPPR, /* TM checkpointed PPR register */ |
| REGSET_TM_CDSCR, /* TM checkpointed DSCR register */ |
| #endif |
| #ifdef CONFIG_PPC64 |
| REGSET_PPR, /* PPR register */ |
| REGSET_DSCR, /* DSCR register */ |
| #endif |
| #ifdef CONFIG_PPC_BOOK3S_64 |
| REGSET_TAR, /* TAR register */ |
| REGSET_EBB, /* EBB registers */ |
| REGSET_PMR, /* Performance Monitor Registers */ |
| #endif |
| }; |
| |
| static const struct user_regset native_regsets[] = { |
| [REGSET_GPR] = { |
| .core_note_type = NT_PRSTATUS, .n = ELF_NGREG, |
| .size = sizeof(long), .align = sizeof(long), |
| .get = gpr_get, .set = gpr_set |
| }, |
| [REGSET_FPR] = { |
| .core_note_type = NT_PRFPREG, .n = ELF_NFPREG, |
| .size = sizeof(double), .align = sizeof(double), |
| .get = fpr_get, .set = fpr_set |
| }, |
| #ifdef CONFIG_ALTIVEC |
| [REGSET_VMX] = { |
| .core_note_type = NT_PPC_VMX, .n = 34, |
| .size = sizeof(vector128), .align = sizeof(vector128), |
| .active = vr_active, .get = vr_get, .set = vr_set |
| }, |
| #endif |
| #ifdef CONFIG_VSX |
| [REGSET_VSX] = { |
| .core_note_type = NT_PPC_VSX, .n = 32, |
| .size = sizeof(double), .align = sizeof(double), |
| .active = vsr_active, .get = vsr_get, .set = vsr_set |
| }, |
| #endif |
| #ifdef CONFIG_SPE |
| [REGSET_SPE] = { |
| .core_note_type = NT_PPC_SPE, .n = 35, |
| .size = sizeof(u32), .align = sizeof(u32), |
| .active = evr_active, .get = evr_get, .set = evr_set |
| }, |
| #endif |
| #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| [REGSET_TM_CGPR] = { |
| .core_note_type = NT_PPC_TM_CGPR, .n = ELF_NGREG, |
| .size = sizeof(long), .align = sizeof(long), |
| .active = tm_cgpr_active, .get = tm_cgpr_get, .set = tm_cgpr_set |
| }, |
| [REGSET_TM_CFPR] = { |
| .core_note_type = NT_PPC_TM_CFPR, .n = ELF_NFPREG, |
| .size = sizeof(double), .align = sizeof(double), |
| .active = tm_cfpr_active, .get = tm_cfpr_get, .set = tm_cfpr_set |
| }, |
| [REGSET_TM_CVMX] = { |
| .core_note_type = NT_PPC_TM_CVMX, .n = ELF_NVMX, |
| .size = sizeof(vector128), .align = sizeof(vector128), |
| .active = tm_cvmx_active, .get = tm_cvmx_get, .set = tm_cvmx_set |
| }, |
| [REGSET_TM_CVSX] = { |
| .core_note_type = NT_PPC_TM_CVSX, .n = ELF_NVSX, |
| .size = sizeof(double), .align = sizeof(double), |
| .active = tm_cvsx_active, .get = tm_cvsx_get, .set = tm_cvsx_set |
| }, |
| [REGSET_TM_SPR] = { |
| .core_note_type = NT_PPC_TM_SPR, .n = ELF_NTMSPRREG, |
| .size = sizeof(u64), .align = sizeof(u64), |
| .active = tm_spr_active, .get = tm_spr_get, .set = tm_spr_set |
| }, |
| [REGSET_TM_CTAR] = { |
| .core_note_type = NT_PPC_TM_CTAR, .n = 1, |
| .size = sizeof(u64), .align = sizeof(u64), |
| .active = tm_tar_active, .get = tm_tar_get, .set = tm_tar_set |
| }, |
| [REGSET_TM_CPPR] = { |
| .core_note_type = NT_PPC_TM_CPPR, .n = 1, |
| .size = sizeof(u64), .align = sizeof(u64), |
| .active = tm_ppr_active, .get = tm_ppr_get, .set = tm_ppr_set |
| }, |
| [REGSET_TM_CDSCR] = { |
| .core_note_type = NT_PPC_TM_CDSCR, .n = 1, |
| .size = sizeof(u64), .align = sizeof(u64), |
| .active = tm_dscr_active, .get = tm_dscr_get, .set = tm_dscr_set |
| }, |
| #endif |
| #ifdef CONFIG_PPC64 |
| [REGSET_PPR] = { |
| .core_note_type = NT_PPC_PPR, .n = 1, |
| .size = sizeof(u64), .align = sizeof(u64), |
| .get = ppr_get, .set = ppr_set |
| }, |
| [REGSET_DSCR] = { |
| .core_note_type = NT_PPC_DSCR, .n = 1, |
| .size = sizeof(u64), .align = sizeof(u64), |
| .get = dscr_get, .set = dscr_set |
| }, |
| #endif |
| #ifdef CONFIG_PPC_BOOK3S_64 |
| [REGSET_TAR] = { |
| .core_note_type = NT_PPC_TAR, .n = 1, |
| .size = sizeof(u64), .align = sizeof(u64), |
| .get = tar_get, .set = tar_set |
| }, |
| [REGSET_EBB] = { |
| .core_note_type = NT_PPC_EBB, .n = ELF_NEBB, |
| .size = sizeof(u64), .align = sizeof(u64), |
| .active = ebb_active, .get = ebb_get, .set = ebb_set |
| }, |
| [REGSET_PMR] = { |
| .core_note_type = NT_PPC_PMU, .n = ELF_NPMU, |
| .size = sizeof(u64), .align = sizeof(u64), |
| .active = pmu_active, .get = pmu_get, .set = pmu_set |
| }, |
| #endif |
| }; |
| |
| static const struct user_regset_view user_ppc_native_view = { |
| .name = UTS_MACHINE, .e_machine = ELF_ARCH, .ei_osabi = ELF_OSABI, |
| .regsets = native_regsets, .n = ARRAY_SIZE(native_regsets) |
| }; |
| |
| #ifdef CONFIG_PPC64 |
| #include <linux/compat.h> |
| |
| static int gpr32_get_common(struct task_struct *target, |
| const struct user_regset *regset, |
| unsigned int pos, unsigned int count, |
| void *kbuf, void __user *ubuf, bool tm_active) |
| { |
| const unsigned long *regs = &target->thread.regs->gpr[0]; |
| const unsigned long *ckpt_regs; |
| compat_ulong_t *k = kbuf; |
| compat_ulong_t __user *u = ubuf; |
| compat_ulong_t reg; |
| int i; |
| |
| #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| ckpt_regs = &target->thread.ckpt_regs.gpr[0]; |
| #endif |
| if (tm_active) { |
| regs = ckpt_regs; |
| } else { |
| if (target->thread.regs == NULL) |
| return -EIO; |
| |
| if (!FULL_REGS(target->thread.regs)) { |
| /* |
| * We have a partial register set. |
| * Fill 14-31 with bogus values. |
| */ |
| for (i = 14; i < 32; i++) |
| target->thread.regs->gpr[i] = NV_REG_POISON; |
| } |
| } |
| |
| pos /= sizeof(reg); |
| count /= sizeof(reg); |
| |
| if (kbuf) |
| for (; count > 0 && pos < PT_MSR; --count) |
| *k++ = regs[pos++]; |
| else |
| for (; count > 0 && pos < PT_MSR; --count) |
| if (__put_user((compat_ulong_t) regs[pos++], u++)) |
| return -EFAULT; |
| |
| if (count > 0 && pos == PT_MSR) { |
| reg = get_user_msr(target); |
| if (kbuf) |
| *k++ = reg; |
| else if (__put_user(reg, u++)) |
| return -EFAULT; |
| ++pos; |
| --count; |
| } |
| |
| if (kbuf) |
| for (; count > 0 && pos < PT_REGS_COUNT; --count) |
| *k++ = regs[pos++]; |
| else |
| for (; count > 0 && pos < PT_REGS_COUNT; --count) |
| if (__put_user((compat_ulong_t) regs[pos++], u++)) |
| return -EFAULT; |
| |
| kbuf = k; |
| ubuf = u; |
| pos *= sizeof(reg); |
| count *= sizeof(reg); |
| return user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf, |
| PT_REGS_COUNT * sizeof(reg), -1); |
| } |
| |
| static int gpr32_set_common(struct task_struct *target, |
| const struct user_regset *regset, |
| unsigned int pos, unsigned int count, |
| const void *kbuf, const void __user *ubuf, bool tm_active) |
| { |
| unsigned long *regs = &target->thread.regs->gpr[0]; |
| unsigned long *ckpt_regs; |
| const compat_ulong_t *k = kbuf; |
| const compat_ulong_t __user *u = ubuf; |
| compat_ulong_t reg; |
| |
| #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| ckpt_regs = &target->thread.ckpt_regs.gpr[0]; |
| #endif |
| |
| if (tm_active) { |
| regs = ckpt_regs; |
| } else { |
| regs = &target->thread.regs->gpr[0]; |
| |
| if (target->thread.regs == NULL) |
| return -EIO; |
| |
| CHECK_FULL_REGS(target->thread.regs); |
| } |
| |
| pos /= sizeof(reg); |
| count /= sizeof(reg); |
| |
| if (kbuf) |
| for (; count > 0 && pos < PT_MSR; --count) |
| regs[pos++] = *k++; |
| else |
| for (; count > 0 && pos < PT_MSR; --count) { |
| if (__get_user(reg, u++)) |
| return -EFAULT; |
| regs[pos++] = reg; |
| } |
| |
| |
| if (count > 0 && pos == PT_MSR) { |
| if (kbuf) |
| reg = *k++; |
| else if (__get_user(reg, u++)) |
| return -EFAULT; |
| set_user_msr(target, reg); |
| ++pos; |
| --count; |
| } |
| |
| if (kbuf) { |
| for (; count > 0 && pos <= PT_MAX_PUT_REG; --count) |
| regs[pos++] = *k++; |
| for (; count > 0 && pos < PT_TRAP; --count, ++pos) |
| ++k; |
| } else { |
| for (; count > 0 && pos <= PT_MAX_PUT_REG; --count) { |
| if (__get_user(reg, u++)) |
| return -EFAULT; |
| regs[pos++] = reg; |
| } |
| for (; count > 0 && pos < PT_TRAP; --count, ++pos) |
| if (__get_user(reg, u++)) |
| return -EFAULT; |
| } |
| |
| if (count > 0 && pos == PT_TRAP) { |
| if (kbuf) |
| reg = *k++; |
| else if (__get_user(reg, u++)) |
| return -EFAULT; |
| set_user_trap(target, reg); |
| ++pos; |
| --count; |
| } |
| |
| kbuf = k; |
| ubuf = u; |
| pos *= sizeof(reg); |
| count *= sizeof(reg); |
| return user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf, |
| (PT_TRAP + 1) * sizeof(reg), -1); |
| } |
| |
| #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| static int tm_cgpr32_get(struct task_struct *target, |
| const struct user_regset *regset, |
| unsigned int pos, unsigned int count, |
| void *kbuf, void __user *ubuf) |
| { |
| return gpr32_get_common(target, regset, pos, count, kbuf, ubuf, 1); |
| } |
| |
| static int tm_cgpr32_set(struct task_struct *target, |
| const struct user_regset *regset, |
| unsigned int pos, unsigned int count, |
| const void *kbuf, const void __user *ubuf) |
| { |
| return gpr32_set_common(target, regset, pos, count, kbuf, ubuf, 1); |
| } |
| #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ |
| |
| static int gpr32_get(struct task_struct *target, |
| const struct user_regset *regset, |
| unsigned int pos, unsigned int count, |
| void *kbuf, void __user *ubuf) |
| { |
| return gpr32_get_common(target, regset, pos, count, kbuf, ubuf, 0); |
| } |
| |
| static int gpr32_set(struct task_struct *target, |
| const struct user_regset *regset, |
| unsigned int pos, unsigned int count, |
| const void *kbuf, const void __user *ubuf) |
| { |
| return gpr32_set_common(target, regset, pos, count, kbuf, ubuf, 0); |
| } |
| |
| /* |
| * These are the regset flavors matching the CONFIG_PPC32 native set. |
| */ |
| static const struct user_regset compat_regsets[] = { |
| [REGSET_GPR] = { |
| .core_note_type = NT_PRSTATUS, .n = ELF_NGREG, |
| .size = sizeof(compat_long_t), .align = sizeof(compat_long_t), |
| .get = gpr32_get, .set = gpr32_set |
| }, |
| [REGSET_FPR] = { |
| .core_note_type = NT_PRFPREG, .n = ELF_NFPREG, |
| .size = sizeof(double), .align = sizeof(double), |
| .get = fpr_get, .set = fpr_set |
| }, |
| #ifdef CONFIG_ALTIVEC |
| [REGSET_VMX] = { |
| .core_note_type = NT_PPC_VMX, .n = 34, |
| .size = sizeof(vector128), .align = sizeof(vector128), |
| .active = vr_active, .get = vr_get, .set = vr_set |
| }, |
| #endif |
| #ifdef CONFIG_SPE |
| [REGSET_SPE] = { |
| .core_note_type = NT_PPC_SPE, .n = 35, |
| .size = sizeof(u32), .align = sizeof(u32), |
| .active = evr_active, .get = evr_get, .set = evr_set |
| }, |
| #endif |
| #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| [REGSET_TM_CGPR] = { |
| .core_note_type = NT_PPC_TM_CGPR, .n = ELF_NGREG, |
| .size = sizeof(long), .align = sizeof(long), |
| .active = tm_cgpr_active, |
| .get = tm_cgpr32_get, .set = tm_cgpr32_set |
| }, |
| [REGSET_TM_CFPR] = { |
| .core_note_type = NT_PPC_TM_CFPR, .n = ELF_NFPREG, |
| .size = sizeof(double), .align = sizeof(double), |
| .active = tm_cfpr_active, .get = tm_cfpr_get, .set = tm_cfpr_set |
| }, |
| [REGSET_TM_CVMX] = { |
| .core_note_type = NT_PPC_TM_CVMX, .n = ELF_NVMX, |
| .size = sizeof(vector128), .align = sizeof(vector128), |
| .active = tm_cvmx_active, .get = tm_cvmx_get, .set = tm_cvmx_set |
| }, |
| [REGSET_TM_CVSX] = { |
| .core_note_type = NT_PPC_TM_CVSX, .n = ELF_NVSX, |
| .size = sizeof(double), .align = sizeof(double), |
| .active = tm_cvsx_active, .get = tm_cvsx_get, .set = tm_cvsx_set |
| }, |
| [REGSET_TM_SPR] = { |
| .core_note_type = NT_PPC_TM_SPR, .n = ELF_NTMSPRREG, |
| .size = sizeof(u64), .align = sizeof(u64), |
| .active = tm_spr_active, .get = tm_spr_get, .set = tm_spr_set |
| }, |
| [REGSET_TM_CTAR] = { |
| .core_note_type = NT_PPC_TM_CTAR, .n = 1, |
| .size = sizeof(u64), .align = sizeof(u64), |
| .active = tm_tar_active, .get = tm_tar_get, .set = tm_tar_set |
| }, |
| [REGSET_TM_CPPR] = { |
| .core_note_type = NT_PPC_TM_CPPR, .n = 1, |
| .size = sizeof(u64), .align = sizeof(u64), |
| .active = tm_ppr_active, .get = tm_ppr_get, .set = tm_ppr_set |
| }, |
| [REGSET_TM_CDSCR] = { |
| .core_note_type = NT_PPC_TM_CDSCR, .n = 1, |
| .size = sizeof(u64), .align = sizeof(u64), |
| .active = tm_dscr_active, .get = tm_dscr_get, .set = tm_dscr_set |
| }, |
| #endif |
| #ifdef CONFIG_PPC64 |
| [REGSET_PPR] = { |
| .core_note_type = NT_PPC_PPR, .n = 1, |
| .size = sizeof(u64), .align = sizeof(u64), |
| .get = ppr_get, .set = ppr_set |
| }, |
| [REGSET_DSCR] = { |
| .core_note_type = NT_PPC_DSCR, .n = 1, |
| .size = sizeof(u64), .align = sizeof(u64), |
| .get = dscr_get, .set = dscr_set |
| }, |
| #endif |
| #ifdef CONFIG_PPC_BOOK3S_64 |
| [REGSET_TAR] = { |
| .core_note_type = NT_PPC_TAR, .n = 1, |
| .size = sizeof(u64), .align = sizeof(u64), |
| .get = tar_get, .set = tar_set |
| }, |
| [REGSET_EBB] = { |
| .core_note_type = NT_PPC_EBB, .n = ELF_NEBB, |
| .size = sizeof(u64), .align = sizeof(u64), |
| .active = ebb_active, .get = ebb_get, .set = ebb_set |
| }, |
| #endif |
| }; |
| |
| static const struct user_regset_view user_ppc_compat_view = { |
| .name = "ppc", .e_machine = EM_PPC, .ei_osabi = ELF_OSABI, |
| .regsets = compat_regsets, .n = ARRAY_SIZE(compat_regsets) |
| }; |
| #endif /* CONFIG_PPC64 */ |
| |
| const struct user_regset_view *task_user_regset_view(struct task_struct *task) |
| { |
| #ifdef CONFIG_PPC64 |
| if (test_tsk_thread_flag(task, TIF_32BIT)) |
| return &user_ppc_compat_view; |
| #endif |
| return &user_ppc_native_view; |
| } |
| |
| |
| void user_enable_single_step(struct task_struct *task) |
| { |
| struct pt_regs *regs = task->thread.regs; |
| |
| if (regs != NULL) { |
| #ifdef CONFIG_PPC_ADV_DEBUG_REGS |
| task->thread.debug.dbcr0 &= ~DBCR0_BT; |
| task->thread.debug.dbcr0 |= DBCR0_IDM | DBCR0_IC; |
| regs->msr |= MSR_DE; |
| #else |
| regs->msr &= ~MSR_BE; |
| regs->msr |= MSR_SE; |
| #endif |
| } |
| set_tsk_thread_flag(task, TIF_SINGLESTEP); |
| } |
| |
| void user_enable_block_step(struct task_struct *task) |
| { |
| struct pt_regs *regs = task->thread.regs; |
| |
| if (regs != NULL) { |
| #ifdef CONFIG_PPC_ADV_DEBUG_REGS |
| task->thread.debug.dbcr0 &= ~DBCR0_IC; |
| task->thread.debug.dbcr0 = DBCR0_IDM | DBCR0_BT; |
| regs->msr |= MSR_DE; |
| #else |
| regs->msr &= ~MSR_SE; |
| regs->msr |= MSR_BE; |
| #endif |
| } |
| set_tsk_thread_flag(task, TIF_SINGLESTEP); |
| } |
| |
| void user_disable_single_step(struct task_struct *task) |
| { |
| struct pt_regs *regs = task->thread.regs; |
| |
| if (regs != NULL) { |
| #ifdef CONFIG_PPC_ADV_DEBUG_REGS |
| /* |
| * The logic to disable single stepping should be as |
| * simple as turning off the Instruction Complete flag. |
| * And, after doing so, if all debug flags are off, turn |
| * off DBCR0(IDM) and MSR(DE) .... Torez |
| */ |
| task->thread.debug.dbcr0 &= ~(DBCR0_IC|DBCR0_BT); |
| /* |
| * Test to see if any of the DBCR_ACTIVE_EVENTS bits are set. |
| */ |
| if (!DBCR_ACTIVE_EVENTS(task->thread.debug.dbcr0, |
| task->thread.debug.dbcr1)) { |
| /* |
| * All debug events were off..... |
| */ |
| task->thread.debug.dbcr0 &= ~DBCR0_IDM; |
| regs->msr &= ~MSR_DE; |
| } |
| #else |
| regs->msr &= ~(MSR_SE | MSR_BE); |
| #endif |
| } |
| clear_tsk_thread_flag(task, TIF_SINGLESTEP); |
| } |
| |
| #ifdef CONFIG_HAVE_HW_BREAKPOINT |
| void ptrace_triggered(struct perf_event *bp, |
| struct perf_sample_data *data, struct pt_regs *regs) |
| { |
| struct perf_event_attr attr; |
| |
| /* |
| * Disable the breakpoint request here since ptrace has defined a |
| * one-shot behaviour for breakpoint exceptions in PPC64. |
| * The SIGTRAP signal is generated automatically for us in do_dabr(). |
| * We don't have to do anything about that here |
| */ |
| attr = bp->attr; |
| attr.disabled = true; |
| modify_user_hw_breakpoint(bp, &attr); |
| } |
| #endif /* CONFIG_HAVE_HW_BREAKPOINT */ |
| |
| static int ptrace_set_debugreg(struct task_struct *task, unsigned long addr, |
| unsigned long data) |
| { |
| #ifdef CONFIG_HAVE_HW_BREAKPOINT |
| int ret; |
| struct thread_struct *thread = &(task->thread); |
| struct perf_event *bp; |
| struct perf_event_attr attr; |
| #endif /* CONFIG_HAVE_HW_BREAKPOINT */ |
| #ifndef CONFIG_PPC_ADV_DEBUG_REGS |
| struct arch_hw_breakpoint hw_brk; |
| #endif |
| |
| /* For ppc64 we support one DABR and no IABR's at the moment (ppc64). |
| * For embedded processors we support one DAC and no IAC's at the |
| * moment. |
| */ |
| if (addr > 0) |
| return -EINVAL; |
| |
| /* The bottom 3 bits in dabr are flags */ |
| if ((data & ~0x7UL) >= TASK_SIZE) |
| return -EIO; |
| |
| #ifndef CONFIG_PPC_ADV_DEBUG_REGS |
| /* For processors using DABR (i.e. 970), the bottom 3 bits are flags. |
| * It was assumed, on previous implementations, that 3 bits were |
| * passed together with the data address, fitting the design of the |
| * DABR register, as follows: |
| * |
| * bit 0: Read flag |
| * bit 1: Write flag |
| * bit 2: Breakpoint translation |
| * |
| * Thus, we use them here as so. |
| */ |
| |
| /* Ensure breakpoint translation bit is set */ |
| if (data && !(data & HW_BRK_TYPE_TRANSLATE)) |
| return -EIO; |
| hw_brk.address = data & (~HW_BRK_TYPE_DABR); |
| hw_brk.type = (data & HW_BRK_TYPE_DABR) | HW_BRK_TYPE_PRIV_ALL; |
| hw_brk.len = 8; |
| #ifdef CONFIG_HAVE_HW_BREAKPOINT |
| bp = thread->ptrace_bps[0]; |
| if ((!data) || !(hw_brk.type & HW_BRK_TYPE_RDWR)) { |
| if (bp) { |
| unregister_hw_breakpoint(bp); |
| thread->ptrace_bps[0] = NULL; |
| } |
| return 0; |
| } |
| if (bp) { |
| attr = bp->attr; |
| attr.bp_addr = hw_brk.address; |
| arch_bp_generic_fields(hw_brk.type, &attr.bp_type); |
| |
| /* Enable breakpoint */ |
| attr.disabled = false; |
| |
| ret = modify_user_hw_breakpoint(bp, &attr); |
| if (ret) { |
| return ret; |
| } |
| thread->ptrace_bps[0] = bp; |
| thread->hw_brk = hw_brk; |
| return 0; |
| } |
| |
| /* Create a new breakpoint request if one doesn't exist already */ |
| hw_breakpoint_init(&attr); |
| attr.bp_addr = hw_brk.address; |
| arch_bp_generic_fields(hw_brk.type, |
| &attr.bp_type); |
| |
| thread->ptrace_bps[0] = bp = register_user_hw_breakpoint(&attr, |
| ptrace_triggered, NULL, task); |
| if (IS_ERR(bp)) { |
| thread->ptrace_bps[0] = NULL; |
| return PTR_ERR(bp); |
| } |
| |
| #endif /* CONFIG_HAVE_HW_BREAKPOINT */ |
| task->thread.hw_brk = hw_brk; |
| #else /* CONFIG_PPC_ADV_DEBUG_REGS */ |
| /* As described above, it was assumed 3 bits were passed with the data |
| * address, but we will assume only the mode bits will be passed |
| * as to not cause alignment restrictions for DAC-based processors. |
| */ |
| |
| /* DAC's hold the whole address without any mode flags */ |
| task->thread.debug.dac1 = data & ~0x3UL; |
| |
| if (task->thread.debug.dac1 == 0) { |
| dbcr_dac(task) &= ~(DBCR_DAC1R | DBCR_DAC1W); |
| if (!DBCR_ACTIVE_EVENTS(task->thread.debug.dbcr0, |
| task->thread.debug.dbcr1)) { |
| task->thread.regs->msr &= ~MSR_DE; |
| task->thread.debug.dbcr0 &= ~DBCR0_IDM; |
| } |
| return 0; |
| } |
| |
| /* Read or Write bits must be set */ |
| |
| if (!(data & 0x3UL)) |
| return -EINVAL; |
| |
| /* Set the Internal Debugging flag (IDM bit 1) for the DBCR0 |
| register */ |
| task->thread.debug.dbcr0 |= DBCR0_IDM; |
| |
| /* Check for write and read flags and set DBCR0 |
| accordingly */ |
| dbcr_dac(task) &= ~(DBCR_DAC1R|DBCR_DAC1W); |
| if (data & 0x1UL) |
| dbcr_dac(task) |= DBCR_DAC1R; |
| if (data & 0x2UL) |
| dbcr_dac(task) |= DBCR_DAC1W; |
| task->thread.regs->msr |= MSR_DE; |
| #endif /* CONFIG_PPC_ADV_DEBUG_REGS */ |
| return 0; |
| } |
| |
| /* |
| * Called by kernel/ptrace.c when detaching.. |
| * |
| * Make sure single step bits etc are not set. |
| */ |
| void ptrace_disable(struct task_struct *child) |
| { |
| /* make sure the single step bit is not set. */ |
| user_disable_single_step(child); |
| } |
| |
| #ifdef CONFIG_PPC_ADV_DEBUG_REGS |
| static long set_instruction_bp(struct task_struct *child, |
| struct ppc_hw_breakpoint *bp_info) |
| { |
| int slot; |
| int slot1_in_use = ((child->thread.debug.dbcr0 & DBCR0_IAC1) != 0); |
| int slot2_in_use = ((child->thread.debug.dbcr0 & DBCR0_IAC2) != 0); |
| int slot3_in_use = ((child->thread.debug.dbcr0 & DBCR0_IAC3) != 0); |
| int slot4_in_use = ((child->thread.debug.dbcr0 & DBCR0_IAC4) != 0); |
| |
| if (dbcr_iac_range(child) & DBCR_IAC12MODE) |
| slot2_in_use = 1; |
| if (dbcr_iac_range(child) & DBCR_IAC34MODE) |
| slot4_in_use = 1; |
| |
| if (bp_info->addr >= TASK_SIZE) |
| return -EIO; |
| |
| if (bp_info->addr_mode != PPC_BREAKPOINT_MODE_EXACT) { |
| |
| /* Make sure range is valid. */ |
| if (bp_info->addr2 >= TASK_SIZE) |
| return -EIO; |
| |
| /* We need a pair of IAC regsisters */ |
| if ((!slot1_in_use) && (!slot2_in_use)) { |
| slot = 1; |
| child->thread.debug.iac1 = bp_info->addr; |
| child->thread.debug.iac2 = bp_info->addr2; |
| child->thread.debug.dbcr0 |= DBCR0_IAC1; |
| if (bp_info->addr_mode == |
| PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE) |
| dbcr_iac_range(child) |= DBCR_IAC12X; |
| else |
| dbcr_iac_range(child) |= DBCR_IAC12I; |
| #if CONFIG_PPC_ADV_DEBUG_IACS > 2 |
| } else if ((!slot3_in_use) && (!slot4_in_use)) { |
| slot = 3; |
| child->thread.debug.iac3 = bp_info->addr; |
| child->thread.debug.iac4 = bp_info->addr2; |
| child->thread.debug.dbcr0 |= DBCR0_IAC3; |
| if (bp_info->addr_mode == |
| PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE) |
| dbcr_iac_range(child) |= DBCR_IAC34X; |
| else |
| dbcr_iac_range(child) |= DBCR_IAC34I; |
| #endif |
| } else |
| return -ENOSPC; |
| } else { |
| /* We only need one. If possible leave a pair free in |
| * case a range is needed later |
| */ |
| if (!slot1_in_use) { |
| /* |
| * Don't use iac1 if iac1-iac2 are free and either |
| * iac3 or iac4 (but not both) are free |
| */ |
| if (slot2_in_use || (slot3_in_use == slot4_in_use)) { |
| slot = 1; |
| child->thread.debug.iac1 = bp_info->addr; |
| child->thread.debug.dbcr0 |= DBCR0_IAC1; |
| goto out; |
| } |
| } |
| if (!slot2_in_use) { |
| slot = 2; |
| child->thread.debug.iac2 = bp_info->addr; |
| child->thread.debug.dbcr0 |= DBCR0_IAC2; |
| #if CONFIG_PPC_ADV_DEBUG_IACS > 2 |
| } else if (!slot3_in_use) { |
| slot = 3; |
| child->thread.debug.iac3 = bp_info->addr; |
| child->thread.debug.dbcr0 |= DBCR0_IAC3; |
| } else if (!slot4_in_use) { |
| slot = 4; |
| child->thread.debug.iac4 = bp_info->addr; |
| child->thread.debug.dbcr0 |= DBCR0_IAC4; |
| #endif |
| } else |
| return -ENOSPC; |
| } |
| out: |
| child->thread.debug.dbcr0 |= DBCR0_IDM; |
| child->thread.regs->msr |= MSR_DE; |
| |
| return slot; |
| } |
| |
| static int del_instruction_bp(struct task_struct *child, int slot) |
| { |
| switch (slot) { |
| case 1: |
| if ((child->thread.debug.dbcr0 & DBCR0_IAC1) == 0) |
| return -ENOENT; |
| |
| if (dbcr_iac_range(child) & DBCR_IAC12MODE) { |
| /* address range - clear slots 1 & 2 */ |
| child->thread.debug.iac2 = 0; |
| dbcr_iac_range(child) &= ~DBCR_IAC12MODE; |
| } |
| child->thread.debug.iac1 = 0; |
| child->thread.debug.dbcr0 &= ~DBCR0_IAC1; |
| break; |
| case 2: |
| if ((child->thread.debug.dbcr0 & DBCR0_IAC2) == 0) |
| return -ENOENT; |
| |
| if (dbcr_iac_range(child) & DBCR_IAC12MODE) |
| /* used in a range */ |
| return -EINVAL; |
| child->thread.debug.iac2 = 0; |
| child->thread.debug.dbcr0 &= ~DBCR0_IAC2; |
| break; |
| #if CONFIG_PPC_ADV_DEBUG_IACS > 2 |
| case 3: |
| if ((child->thread.debug.dbcr0 & DBCR0_IAC3) == 0) |
| return -ENOENT; |
| |
| if (dbcr_iac_range(child) & DBCR_IAC34MODE) { |
| /* address range - clear slots 3 & 4 */ |
| child->thread.debug.iac4 = 0; |
| dbcr_iac_range(child) &= ~DBCR_IAC34MODE; |
| } |
| child->thread.debug.iac3 = 0; |
| child->thread.debug.dbcr0 &= ~DBCR0_IAC3; |
| break; |
| case 4: |
| if ((child->thread.debug.dbcr0 & DBCR0_IAC4) == 0) |
| return -ENOENT; |
| |
| if (dbcr_iac_range(child) & DBCR_IAC34MODE) |
| /* Used in a range */ |
| return -EINVAL; |
| child->thread.debug.iac4 = 0; |
| child->thread.debug.dbcr0 &= ~DBCR0_IAC4; |
| break; |
| #endif |
| default: |
| return -EINVAL; |
| } |
| return 0; |
| } |
| |
| static int set_dac(struct task_struct *child, struct ppc_hw_breakpoint *bp_info) |
| { |
| int byte_enable = |
| (bp_info->condition_mode >> PPC_BREAKPOINT_CONDITION_BE_SHIFT) |
| & 0xf; |
| int condition_mode = |
| bp_info->condition_mode & PPC_BREAKPOINT_CONDITION_MODE; |
| int slot; |
| |
| if (byte_enable && (condition_mode == 0)) |
| return -EINVAL; |
| |
| if (bp_info->addr >= TASK_SIZE) |
| return -EIO; |
| |
| if ((dbcr_dac(child) & (DBCR_DAC1R | DBCR_DAC1W)) == 0) { |
| slot = 1; |
| if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ) |
| dbcr_dac(child) |= DBCR_DAC1R; |
| if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE) |
| dbcr_dac(child) |= DBCR_DAC1W; |
| child->thread.debug.dac1 = (unsigned long)bp_info->addr; |
| #if CONFIG_PPC_ADV_DEBUG_DVCS > 0 |
| if (byte_enable) { |
| child->thread.debug.dvc1 = |
| (unsigned long)bp_info->condition_value; |
| child->thread.debug.dbcr2 |= |
| ((byte_enable << DBCR2_DVC1BE_SHIFT) | |
| (condition_mode << DBCR2_DVC1M_SHIFT)); |
| } |
| #endif |
| #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE |
| } else if (child->thread.debug.dbcr2 & DBCR2_DAC12MODE) { |
| /* Both dac1 and dac2 are part of a range */ |
| return -ENOSPC; |
| #endif |
| } else if ((dbcr_dac(child) & (DBCR_DAC2R | DBCR_DAC2W)) == 0) { |
| slot = 2; |
| if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ) |
| dbcr_dac(child) |= DBCR_DAC2R; |
| if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE) |
| dbcr_dac(child) |= DBCR_DAC2W; |
| child->thread.debug.dac2 = (unsigned long)bp_info->addr; |
| #if CONFIG_PPC_ADV_DEBUG_DVCS > 0 |
| if (byte_enable) { |
| child->thread.debug.dvc2 = |
| (unsigned long)bp_info->condition_value; |
| child->thread.debug.dbcr2 |= |
| ((byte_enable << DBCR2_DVC2BE_SHIFT) | |
| (condition_mode << DBCR2_DVC2M_SHIFT)); |
| } |
| #endif |
| } else |
| return -ENOSPC; |
| child->thread.debug.dbcr0 |= DBCR0_IDM; |
| child->thread.regs->msr |= MSR_DE; |
| |
| return slot + 4; |
| } |
| |
| static int del_dac(struct task_struct *child, int slot) |
| { |
| if (slot == 1) { |
| if ((dbcr_dac(child) & (DBCR_DAC1R | DBCR_DAC1W)) == 0) |
| return -ENOENT; |
| |
| child->thread.debug.dac1 = 0; |
| dbcr_dac(child) &= ~(DBCR_DAC1R | DBCR_DAC1W); |
| #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE |
| if (child->thread.debug.dbcr2 & DBCR2_DAC12MODE) { |
| child->thread.debug.dac2 = 0; |
| child->thread.debug.dbcr2 &= ~DBCR2_DAC12MODE; |
| } |
| child->thread.debug.dbcr2 &= ~(DBCR2_DVC1M | DBCR2_DVC1BE); |
| #endif |
| #if CONFIG_PPC_ADV_DEBUG_DVCS > 0 |
| child->thread.debug.dvc1 = 0; |
| #endif |
| } else if (slot == 2) { |
| if ((dbcr_dac(child) & (DBCR_DAC2R | DBCR_DAC2W)) == 0) |
| return -ENOENT; |
| |
| #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE |
| if (child->thread.debug.dbcr2 & DBCR2_DAC12MODE) |
| /* Part of a range */ |
| return -EINVAL; |
| child->thread.debug.dbcr2 &= ~(DBCR2_DVC2M | DBCR2_DVC2BE); |
| #endif |
| #if CONFIG_PPC_ADV_DEBUG_DVCS > 0 |
| child->thread.debug.dvc2 = 0; |
| #endif |
| child->thread.debug.dac2 = 0; |
| dbcr_dac(child) &= ~(DBCR_DAC2R | DBCR_DAC2W); |
| } else |
| return -EINVAL; |
| |
| return 0; |
| } |
| #endif /* CONFIG_PPC_ADV_DEBUG_REGS */ |
| |
| #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE |
| static int set_dac_range(struct task_struct *child, |
| struct ppc_hw_breakpoint *bp_info) |
| { |
| int mode = bp_info->addr_mode & PPC_BREAKPOINT_MODE_MASK; |
| |
| /* We don't allow range watchpoints to be used with DVC */ |
| if (bp_info->condition_mode) |
| return -EINVAL; |
| |
| /* |
| * Best effort to verify the address range. The user/supervisor bits |
| * prevent trapping in kernel space, but let's fail on an obvious bad |
| * range. The simple test on the mask is not fool-proof, and any |
| * exclusive range will spill over into kernel space. |
| */ |
| if (bp_info->addr >= TASK_SIZE) |
| return -EIO; |
| if (mode == PPC_BREAKPOINT_MODE_MASK) { |
| /* |
| * dac2 is a bitmask. Don't allow a mask that makes a |
| * kernel space address from a valid dac1 value |
| */ |
| if (~((unsigned long)bp_info->addr2) >= TASK_SIZE) |
| return -EIO; |
| } else { |
| /* |
| * For range breakpoints, addr2 must also be a valid address |
| */ |
| if (bp_info->addr2 >= TASK_SIZE) |
| return -EIO; |
| } |
| |
| if (child->thread.debug.dbcr0 & |
| (DBCR0_DAC1R | DBCR0_DAC1W | DBCR0_DAC2R | DBCR0_DAC2W)) |
| return -ENOSPC; |
| |
| if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ) |
| child->thread.debug.dbcr0 |= (DBCR0_DAC1R | DBCR0_IDM); |
| if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE) |
| child->thread.debug.dbcr0 |= (DBCR0_DAC1W | DBCR0_IDM); |
| child->thread.debug.dac1 = bp_info->addr; |
| child->thread.debug.dac2 = bp_info->addr2; |
| if (mode == PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE) |
| child->thread.debug.dbcr2 |= DBCR2_DAC12M; |
| else if (mode == PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE) |
| child->thread.debug.dbcr2 |= DBCR2_DAC12MX; |
| else /* PPC_BREAKPOINT_MODE_MASK */ |
| child->thread.debug.dbcr2 |= DBCR2_DAC12MM; |
| child->thread.regs->msr |= MSR_DE; |
| |
| return 5; |
| } |
| #endif /* CONFIG_PPC_ADV_DEBUG_DAC_RANGE */ |
| |
| static long ppc_set_hwdebug(struct task_struct *child, |
| struct ppc_hw_breakpoint *bp_info) |
| { |
| #ifdef CONFIG_HAVE_HW_BREAKPOINT |
| int len = 0; |
| struct thread_struct *thread = &(child->thread); |
| struct perf_event *bp; |
| struct perf_event_attr attr; |
| #endif /* CONFIG_HAVE_HW_BREAKPOINT */ |
| #ifndef CONFIG_PPC_ADV_DEBUG_REGS |
| struct arch_hw_breakpoint brk; |
| #endif |
| |
| if (bp_info->version != 1) |
| return -ENOTSUPP; |
| #ifdef CONFIG_PPC_ADV_DEBUG_REGS |
| /* |
| * Check for invalid flags and combinations |
| */ |
| if ((bp_info->trigger_type == 0) || |
| (bp_info->trigger_type & ~(PPC_BREAKPOINT_TRIGGER_EXECUTE | |
| PPC_BREAKPOINT_TRIGGER_RW)) || |
| (bp_info->addr_mode & ~PPC_BREAKPOINT_MODE_MASK) || |
| (bp_info->condition_mode & |
| ~(PPC_BREAKPOINT_CONDITION_MODE | |
| PPC_BREAKPOINT_CONDITION_BE_ALL))) |
| return -EINVAL; |
| #if CONFIG_PPC_ADV_DEBUG_DVCS == 0 |
| if (bp_info->condition_mode != PPC_BREAKPOINT_CONDITION_NONE) |
| return -EINVAL; |
| #endif |
| |
| if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_EXECUTE) { |
| if ((bp_info->trigger_type != PPC_BREAKPOINT_TRIGGER_EXECUTE) || |
| (bp_info->condition_mode != PPC_BREAKPOINT_CONDITION_NONE)) |
| return -EINVAL; |
| return set_instruction_bp(child, bp_info); |
| } |
| if (bp_info->addr_mode == PPC_BREAKPOINT_MODE_EXACT) |
| return set_dac(child, bp_info); |
| |
| #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE |
| return set_dac_range(child, bp_info); |
| #else |
| return -EINVAL; |
| #endif |
| #else /* !CONFIG_PPC_ADV_DEBUG_DVCS */ |
| /* |
| * We only support one data breakpoint |
| */ |
| if ((bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_RW) == 0 || |
| (bp_info->trigger_type & ~PPC_BREAKPOINT_TRIGGER_RW) != 0 || |
| bp_info->condition_mode != PPC_BREAKPOINT_CONDITION_NONE) |
| return -EINVAL; |
| |
| if ((unsigned long)bp_info->addr >= TASK_SIZE) |
| return -EIO; |
| |
| brk.address = bp_info->addr & ~7UL; |
| brk.type = HW_BRK_TYPE_TRANSLATE; |
| brk.len = 8; |
| if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ) |
| brk.type |= HW_BRK_TYPE_READ; |
| if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE) |
| brk.type |= HW_BRK_TYPE_WRITE; |
| #ifdef CONFIG_HAVE_HW_BREAKPOINT |
| /* |
| * Check if the request is for 'range' breakpoints. We can |
| * support it if range < 8 bytes. |
| */ |
| if (bp_info->addr_mode == PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE) |
| len = bp_info->addr2 - bp_info->addr; |
| else if (bp_info->addr_mode == PPC_BREAKPOINT_MODE_EXACT) |
| len = 1; |
| else |
| return -EINVAL; |
| bp = thread->ptrace_bps[0]; |
| if (bp) |
| return -ENOSPC; |
| |
| /* Create a new breakpoint request if one doesn't exist already */ |
| hw_breakpoint_init(&attr); |
| attr.bp_addr = (unsigned long)bp_info->addr & ~HW_BREAKPOINT_ALIGN; |
| attr.bp_len = len; |
| arch_bp_generic_fields(brk.type, &attr.bp_type); |
| |
| thread->ptrace_bps[0] = bp = register_user_hw_breakpoint(&attr, |
| ptrace_triggered, NULL, child); |
| if (IS_ERR(bp)) { |
| thread->ptrace_bps[0] = NULL; |
| return PTR_ERR(bp); |
| } |
| |
| return 1; |
| #endif /* CONFIG_HAVE_HW_BREAKPOINT */ |
| |
| if (bp_info->addr_mode != PPC_BREAKPOINT_MODE_EXACT) |
| return -EINVAL; |
| |
| if (child->thread.hw_brk.address) |
| return -ENOSPC; |
| |
| child->thread.hw_brk = brk; |
| |
| return 1; |
| #endif /* !CONFIG_PPC_ADV_DEBUG_DVCS */ |
| } |
| |
| static long ppc_del_hwdebug(struct task_struct *child, long data) |
| { |
| #ifdef CONFIG_HAVE_HW_BREAKPOINT |
| int ret = 0; |
| struct thread_struct *thread = &(child->thread); |
| struct perf_event *bp; |
| #endif /* CONFIG_HAVE_HW_BREAKPOINT */ |
| #ifdef CONFIG_PPC_ADV_DEBUG_REGS |
| int rc; |
| |
| if (data <= 4) |
| rc = del_instruction_bp(child, (int)data); |
| else |
| rc = del_dac(child, (int)data - 4); |
| |
| if (!rc) { |
| if (!DBCR_ACTIVE_EVENTS(child->thread.debug.dbcr0, |
| child->thread.debug.dbcr1)) { |
| child->thread.debug.dbcr0 &= ~DBCR0_IDM; |
| child->thread.regs->msr &= ~MSR_DE; |
| } |
| } |
| return rc; |
| #else |
| if (data != 1) |
| return -EINVAL; |
| |
| #ifdef CONFIG_HAVE_HW_BREAKPOINT |
| bp = thread->ptrace_bps[0]; |
| if (bp) { |
| unregister_hw_breakpoint(bp); |
| thread->ptrace_bps[0] = NULL; |
| } else |
| ret = -ENOENT; |
| return ret; |
| #else /* CONFIG_HAVE_HW_BREAKPOINT */ |
| if (child->thread.hw_brk.address == 0) |
| return -ENOENT; |
| |
| child->thread.hw_brk.address = 0; |
| child->thread.hw_brk.type = 0; |
| #endif /* CONFIG_HAVE_HW_BREAKPOINT */ |
| |
| return 0; |
| #endif |
| } |
| |
| long arch_ptrace(struct task_struct *child, long request, |
| unsigned long addr, unsigned long data) |
| { |
| int ret = -EPERM; |
| void __user *datavp = (void __user *) data; |
| unsigned long __user *datalp = datavp; |
| |
| switch (request) { |
| /* read the word at location addr in the USER area. */ |
| case PTRACE_PEEKUSR: { |
| unsigned long index, tmp; |
| |
| ret = -EIO; |
| /* convert to index and check */ |
| #ifdef CONFIG_PPC32 |
| index = addr >> 2; |
| if ((addr & 3) || (index > PT_FPSCR) |
| || (child->thread.regs == NULL)) |
| #else |
| index = addr >> 3; |
| if ((addr & 7) || (index > PT_FPSCR)) |
| #endif |
| break; |
| |
| CHECK_FULL_REGS(child->thread.regs); |
| if (index < PT_FPR0) { |
| ret = ptrace_get_reg(child, (int) index, &tmp); |
| if (ret) |
| break; |
| } else { |
| unsigned int fpidx = index - PT_FPR0; |
| |
| flush_fp_to_thread(child); |
| if (fpidx < (PT_FPSCR - PT_FPR0)) |
| memcpy(&tmp, &child->thread.TS_FPR(fpidx), |
| sizeof(long)); |
| else |
| tmp = child->thread.fp_state.fpscr; |
| } |
| ret = put_user(tmp, datalp); |
| break; |
| } |
| |
| /* write the word at location addr in the USER area */ |
| case PTRACE_POKEUSR: { |
| unsigned long index; |
| |
| ret = -EIO; |
| /* convert to index and check */ |
| #ifdef CONFIG_PPC32 |
| index = addr >> 2; |
| if ((addr & 3) || (index > PT_FPSCR) |
| || (child->thread.regs == NULL)) |
| #else |
| index = addr >> 3; |
| if ((addr & 7) || (index > PT_FPSCR)) |
| #endif |
| break; |
| |
| CHECK_FULL_REGS(child->thread.regs); |
| if (index < PT_FPR0) { |
| ret = ptrace_put_reg(child, index, data); |
| } else { |
| unsigned int fpidx = index - PT_FPR0; |
| |
| flush_fp_to_thread(child); |
| if (fpidx < (PT_FPSCR - PT_FPR0)) |
| memcpy(&child->thread.TS_FPR(fpidx), &data, |
| sizeof(long)); |
| else |
| child->thread.fp_state.fpscr = data; |
| ret = 0; |
| } |
| break; |
| } |
| |
| case PPC_PTRACE_GETHWDBGINFO: { |
| struct ppc_debug_info dbginfo; |
| |
| dbginfo.version = 1; |
| #ifdef CONFIG_PPC_ADV_DEBUG_REGS |
| dbginfo.num_instruction_bps = CONFIG_PPC_ADV_DEBUG_IACS; |
| dbginfo.num_data_bps = CONFIG_PPC_ADV_DEBUG_DACS; |
| dbginfo.num_condition_regs = CONFIG_PPC_ADV_DEBUG_DVCS; |
| dbginfo.data_bp_alignment = 4; |
| dbginfo.sizeof_condition = 4; |
| dbginfo.features = PPC_DEBUG_FEATURE_INSN_BP_RANGE | |
| PPC_DEBUG_FEATURE_INSN_BP_MASK; |
| #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE |
| dbginfo.features |= |
| PPC_DEBUG_FEATURE_DATA_BP_RANGE | |
| PPC_DEBUG_FEATURE_DATA_BP_MASK; |
| #endif |
| #else /* !CONFIG_PPC_ADV_DEBUG_REGS */ |
| dbginfo.num_instruction_bps = 0; |
| dbginfo.num_data_bps = 1; |
| dbginfo.num_condition_regs = 0; |
| #ifdef CONFIG_PPC64 |
| dbginfo.data_bp_alignment = 8; |
| #else |
| dbginfo.data_bp_alignment = 4; |
| #endif |
| dbginfo.sizeof_condition = 0; |
| #ifdef CONFIG_HAVE_HW_BREAKPOINT |
| dbginfo.features = PPC_DEBUG_FEATURE_DATA_BP_RANGE; |
| if (cpu_has_feature(CPU_FTR_DAWR)) |
| dbginfo.features |= PPC_DEBUG_FEATURE_DATA_BP_DAWR; |
| #else |
| dbginfo.features = 0; |
| #endif /* CONFIG_HAVE_HW_BREAKPOINT */ |
| #endif /* CONFIG_PPC_ADV_DEBUG_REGS */ |
| |
| if (!access_ok(VERIFY_WRITE, datavp, |
| sizeof(struct ppc_debug_info))) |
| return -EFAULT; |
| ret = __copy_to_user(datavp, &dbginfo, |
| sizeof(struct ppc_debug_info)) ? |
| -EFAULT : 0; |
| break; |
| } |
| |
| case PPC_PTRACE_SETHWDEBUG: { |
| struct ppc_hw_breakpoint bp_info; |
| |
| if (!access_ok(VERIFY_READ, datavp, |
| sizeof(struct ppc_hw_breakpoint))) |
| return -EFAULT; |
| ret = __copy_from_user(&bp_info, datavp, |
| sizeof(struct ppc_hw_breakpoint)) ? |
| -EFAULT : 0; |
| if (!ret) |
| ret = ppc_set_hwdebug(child, &bp_info); |
| break; |
| } |
| |
| case PPC_PTRACE_DELHWDEBUG: { |
| ret = ppc_del_hwdebug(child, data); |
| break; |
| } |
| |
| case PTRACE_GET_DEBUGREG: { |
| #ifndef CONFIG_PPC_ADV_DEBUG_REGS |
| unsigned long dabr_fake; |
| #endif |
| ret = -EINVAL; |
| /* We only support one DABR and no IABRS at the moment */ |
| if (addr > 0) |
| break; |
| #ifdef CONFIG_PPC_ADV_DEBUG_REGS |
| ret = put_user(child->thread.debug.dac1, datalp); |
| #else |
| dabr_fake = ((child->thread.hw_brk.address & (~HW_BRK_TYPE_DABR)) | |
| (child->thread.hw_brk.type & HW_BRK_TYPE_DABR)); |
| ret = put_user(dabr_fake, datalp); |
| #endif |
| break; |
| } |
| |
| case PTRACE_SET_DEBUGREG: |
| ret = ptrace_set_debugreg(child, addr, data); |
| break; |
| |
| #ifdef CONFIG_PPC64 |
| case PTRACE_GETREGS64: |
| #endif |
| case PTRACE_GETREGS: /* Get all pt_regs from the child. */ |
| return copy_regset_to_user(child, &user_ppc_native_view, |
| REGSET_GPR, |
| 0, sizeof(struct pt_regs), |
| datavp); |
| |
| #ifdef CONFIG_PPC64 |
| case PTRACE_SETREGS64: |
| #endif |
| case PTRACE_SETREGS: /* Set all gp regs in the child. */ |
| return copy_regset_from_user(child, &user_ppc_native_view, |
| REGSET_GPR, |
| 0, sizeof(struct pt_regs), |
| datavp); |
| |
| case PTRACE_GETFPREGS: /* Get the child FPU state (FPR0...31 + FPSCR) */ |
| return copy_regset_to_user(child, &user_ppc_native_view, |
| REGSET_FPR, |
| 0, sizeof(elf_fpregset_t), |
| datavp); |
| |
| case PTRACE_SETFPREGS: /* Set the child FPU state (FPR0...31 + FPSCR) */ |
| return copy_regset_from_user(child, &user_ppc_native_view, |
| REGSET_FPR, |
| 0, sizeof(elf_fpregset_t), |
| datavp); |
| |
| #ifdef CONFIG_ALTIVEC |
| case PTRACE_GETVRREGS: |
| return copy_regset_to_user(child, &user_ppc_native_view, |
| REGSET_VMX, |
| 0, (33 * sizeof(vector128) + |
| sizeof(u32)), |
| datavp); |
| |
| case PTRACE_SETVRREGS: |
| return copy_regset_from_user(child, &user_ppc_native_view, |
| REGSET_VMX, |
| 0, (33 * sizeof(vector128) + |
| sizeof(u32)), |
| datavp); |
| #endif |
| #ifdef CONFIG_VSX |
| case PTRACE_GETVSRREGS: |
| return copy_regset_to_user(child, &user_ppc_native_view, |
| REGSET_VSX, |
| 0, 32 * sizeof(double), |
| datavp); |
| |
| case PTRACE_SETVSRREGS: |
| return copy_regset_from_user(child, &user_ppc_native_view, |
| REGSET_VSX, |
| 0, 32 * sizeof(double), |
| datavp); |
| #endif |
| #ifdef CONFIG_SPE |
| case PTRACE_GETEVRREGS: |
| /* Get the child spe register state. */ |
| return copy_regset_to_user(child, &user_ppc_native_view, |
| REGSET_SPE, 0, 35 * sizeof(u32), |
| datavp); |
| |
| case PTRACE_SETEVRREGS: |
| /* Set the child spe register state. */ |
| return copy_regset_from_user(child, &user_ppc_native_view, |
| REGSET_SPE, 0, 35 * sizeof(u32), |
| datavp); |
| #endif |
| |
| default: |
| ret = ptrace_request(child, request, addr, data); |
| break; |
| } |
| return ret; |
| } |
| |
| #ifdef CONFIG_SECCOMP |
| static int do_seccomp(struct pt_regs *regs) |
| { |
| if (!test_thread_flag(TIF_SECCOMP)) |
| return 0; |
| |
| /* |
| * The ABI we present to seccomp tracers is that r3 contains |
| * the syscall return value and orig_gpr3 contains the first |
| * syscall parameter. This is different to the ptrace ABI where |
| * both r3 and orig_gpr3 contain the first syscall parameter. |
| */ |
| regs->gpr[3] = -ENOSYS; |
| |
| /* |
| * We use the __ version here because we have already checked |
| * TIF_SECCOMP. If this fails, there is nothing left to do, we |
| * have already loaded -ENOSYS into r3, or seccomp has put |
| * something else in r3 (via SECCOMP_RET_ERRNO/TRACE). |
| */ |
| if (__secure_computing(NULL)) |
| return -1; |
| |
| /* |
| * The syscall was allowed by seccomp, restore the register |
| * state to what audit expects. |
| * Note that we use orig_gpr3, which means a seccomp tracer can |
| * modify the first syscall parameter (in orig_gpr3) and also |
| * allow the syscall to proceed. |
| */ |
| regs->gpr[3] = regs->orig_gpr3; |
| |
| return 0; |
| } |
| #else |
| static inline int do_seccomp(struct pt_regs *regs) { return 0; } |
| #endif /* CONFIG_SECCOMP */ |
| |
| /** |
| * do_syscall_trace_enter() - Do syscall tracing on kernel entry. |
| * @regs: the pt_regs of the task to trace (current) |
| * |
| * Performs various types of tracing on syscall entry. This includes seccomp, |
| * ptrace, syscall tracepoints and audit. |
| * |
| * The pt_regs are potentially visible to userspace via ptrace, so their |
| * contents is ABI. |
| * |
| * One or more of the tracers may modify the contents of pt_regs, in particular |
| * to modify arguments or even the syscall number itself. |
| * |
| * It's also possible that a tracer can choose to reject the system call. In |
| * that case this function will return an illegal syscall number, and will put |
| * an appropriate return value in regs->r3. |
| * |
| * Return: the (possibly changed) syscall number. |
| */ |
| long do_syscall_trace_enter(struct pt_regs *regs) |
| { |
| user_exit(); |
| |
| /* |
| * The tracer may decide to abort the syscall, if so tracehook |
| * will return !0. Note that the tracer may also just change |
| * regs->gpr[0] to an invalid syscall number, that is handled |
| * below on the exit path. |
| */ |
| if (test_thread_flag(TIF_SYSCALL_TRACE) && |
| tracehook_report_syscall_entry(regs)) |
| goto skip; |
| |
| /* Run seccomp after ptrace; allow it to set gpr[3]. */ |
| if (do_seccomp(regs)) |
| return -1; |
| |
| /* Avoid trace and audit when syscall is invalid. */ |
| if (regs->gpr[0] >= NR_syscalls) |
| goto skip; |
| |
| if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT))) |
| trace_sys_enter(regs, regs->gpr[0]); |
| |
| #ifdef CONFIG_PPC64 |
| if (!is_32bit_task()) |
| audit_syscall_entry(regs->gpr[0], regs->gpr[3], regs->gpr[4], |
| regs->gpr[5], regs->gpr[6]); |
| else |
| #endif |
| audit_syscall_entry(regs->gpr[0], |
| regs->gpr[3] & 0xffffffff, |
| regs->gpr[4] & 0xffffffff, |
| regs->gpr[5] & 0xffffffff, |
| regs->gpr[6] & 0xffffffff); |
| |
| /* Return the possibly modified but valid syscall number */ |
| return regs->gpr[0]; |
| |
| skip: |
| /* |
| * If we are aborting explicitly, or if the syscall number is |
| * now invalid, set the return value to -ENOSYS. |
| */ |
| regs->gpr[3] = -ENOSYS; |
| return -1; |
| } |
| |
| void do_syscall_trace_leave(struct pt_regs *regs) |
| { |
| int step; |
| |
| audit_syscall_exit(regs); |
| |
| if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT))) |
| trace_sys_exit(regs, regs->result); |
| |
| step = test_thread_flag(TIF_SINGLESTEP); |
| if (step || test_thread_flag(TIF_SYSCALL_TRACE)) |
| tracehook_report_syscall_exit(regs, step); |
| |
| user_enter(); |
| } |