| /**************************************************************************** |
| * Driver for Solarflare network controllers and boards |
| * Copyright 2005-2006 Fen Systems Ltd. |
| * Copyright 2006-2013 Solarflare Communications Inc. |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License version 2 as published |
| * by the Free Software Foundation, incorporated herein by reference. |
| */ |
| |
| #include <linux/bitops.h> |
| #include <linux/delay.h> |
| #include <linux/pci.h> |
| #include <linux/module.h> |
| #include <linux/seq_file.h> |
| #include <linux/i2c.h> |
| #include <linux/mii.h> |
| #include <linux/slab.h> |
| #include "net_driver.h" |
| #include "bitfield.h" |
| #include "efx.h" |
| #include "nic.h" |
| #include "farch_regs.h" |
| #include "io.h" |
| #include "phy.h" |
| #include "workarounds.h" |
| #include "selftest.h" |
| #include "mdio_10g.h" |
| |
| /* Hardware control for SFC4000 (aka Falcon). */ |
| |
| /************************************************************************** |
| * |
| * NIC stats |
| * |
| ************************************************************************** |
| */ |
| |
| #define FALCON_MAC_STATS_SIZE 0x100 |
| |
| #define XgRxOctets_offset 0x0 |
| #define XgRxOctets_WIDTH 48 |
| #define XgRxOctetsOK_offset 0x8 |
| #define XgRxOctetsOK_WIDTH 48 |
| #define XgRxPkts_offset 0x10 |
| #define XgRxPkts_WIDTH 32 |
| #define XgRxPktsOK_offset 0x14 |
| #define XgRxPktsOK_WIDTH 32 |
| #define XgRxBroadcastPkts_offset 0x18 |
| #define XgRxBroadcastPkts_WIDTH 32 |
| #define XgRxMulticastPkts_offset 0x1C |
| #define XgRxMulticastPkts_WIDTH 32 |
| #define XgRxUnicastPkts_offset 0x20 |
| #define XgRxUnicastPkts_WIDTH 32 |
| #define XgRxUndersizePkts_offset 0x24 |
| #define XgRxUndersizePkts_WIDTH 32 |
| #define XgRxOversizePkts_offset 0x28 |
| #define XgRxOversizePkts_WIDTH 32 |
| #define XgRxJabberPkts_offset 0x2C |
| #define XgRxJabberPkts_WIDTH 32 |
| #define XgRxUndersizeFCSerrorPkts_offset 0x30 |
| #define XgRxUndersizeFCSerrorPkts_WIDTH 32 |
| #define XgRxDropEvents_offset 0x34 |
| #define XgRxDropEvents_WIDTH 32 |
| #define XgRxFCSerrorPkts_offset 0x38 |
| #define XgRxFCSerrorPkts_WIDTH 32 |
| #define XgRxAlignError_offset 0x3C |
| #define XgRxAlignError_WIDTH 32 |
| #define XgRxSymbolError_offset 0x40 |
| #define XgRxSymbolError_WIDTH 32 |
| #define XgRxInternalMACError_offset 0x44 |
| #define XgRxInternalMACError_WIDTH 32 |
| #define XgRxControlPkts_offset 0x48 |
| #define XgRxControlPkts_WIDTH 32 |
| #define XgRxPausePkts_offset 0x4C |
| #define XgRxPausePkts_WIDTH 32 |
| #define XgRxPkts64Octets_offset 0x50 |
| #define XgRxPkts64Octets_WIDTH 32 |
| #define XgRxPkts65to127Octets_offset 0x54 |
| #define XgRxPkts65to127Octets_WIDTH 32 |
| #define XgRxPkts128to255Octets_offset 0x58 |
| #define XgRxPkts128to255Octets_WIDTH 32 |
| #define XgRxPkts256to511Octets_offset 0x5C |
| #define XgRxPkts256to511Octets_WIDTH 32 |
| #define XgRxPkts512to1023Octets_offset 0x60 |
| #define XgRxPkts512to1023Octets_WIDTH 32 |
| #define XgRxPkts1024to15xxOctets_offset 0x64 |
| #define XgRxPkts1024to15xxOctets_WIDTH 32 |
| #define XgRxPkts15xxtoMaxOctets_offset 0x68 |
| #define XgRxPkts15xxtoMaxOctets_WIDTH 32 |
| #define XgRxLengthError_offset 0x6C |
| #define XgRxLengthError_WIDTH 32 |
| #define XgTxPkts_offset 0x80 |
| #define XgTxPkts_WIDTH 32 |
| #define XgTxOctets_offset 0x88 |
| #define XgTxOctets_WIDTH 48 |
| #define XgTxMulticastPkts_offset 0x90 |
| #define XgTxMulticastPkts_WIDTH 32 |
| #define XgTxBroadcastPkts_offset 0x94 |
| #define XgTxBroadcastPkts_WIDTH 32 |
| #define XgTxUnicastPkts_offset 0x98 |
| #define XgTxUnicastPkts_WIDTH 32 |
| #define XgTxControlPkts_offset 0x9C |
| #define XgTxControlPkts_WIDTH 32 |
| #define XgTxPausePkts_offset 0xA0 |
| #define XgTxPausePkts_WIDTH 32 |
| #define XgTxPkts64Octets_offset 0xA4 |
| #define XgTxPkts64Octets_WIDTH 32 |
| #define XgTxPkts65to127Octets_offset 0xA8 |
| #define XgTxPkts65to127Octets_WIDTH 32 |
| #define XgTxPkts128to255Octets_offset 0xAC |
| #define XgTxPkts128to255Octets_WIDTH 32 |
| #define XgTxPkts256to511Octets_offset 0xB0 |
| #define XgTxPkts256to511Octets_WIDTH 32 |
| #define XgTxPkts512to1023Octets_offset 0xB4 |
| #define XgTxPkts512to1023Octets_WIDTH 32 |
| #define XgTxPkts1024to15xxOctets_offset 0xB8 |
| #define XgTxPkts1024to15xxOctets_WIDTH 32 |
| #define XgTxPkts1519toMaxOctets_offset 0xBC |
| #define XgTxPkts1519toMaxOctets_WIDTH 32 |
| #define XgTxUndersizePkts_offset 0xC0 |
| #define XgTxUndersizePkts_WIDTH 32 |
| #define XgTxOversizePkts_offset 0xC4 |
| #define XgTxOversizePkts_WIDTH 32 |
| #define XgTxNonTcpUdpPkt_offset 0xC8 |
| #define XgTxNonTcpUdpPkt_WIDTH 16 |
| #define XgTxMacSrcErrPkt_offset 0xCC |
| #define XgTxMacSrcErrPkt_WIDTH 16 |
| #define XgTxIpSrcErrPkt_offset 0xD0 |
| #define XgTxIpSrcErrPkt_WIDTH 16 |
| #define XgDmaDone_offset 0xD4 |
| #define XgDmaDone_WIDTH 32 |
| |
| #define FALCON_XMAC_STATS_DMA_FLAG(efx) \ |
| (*(u32 *)((efx)->stats_buffer.addr + XgDmaDone_offset)) |
| |
| #define FALCON_DMA_STAT(ext_name, hw_name) \ |
| [FALCON_STAT_ ## ext_name] = \ |
| { #ext_name, \ |
| /* 48-bit stats are zero-padded to 64 on DMA */ \ |
| hw_name ## _ ## WIDTH == 48 ? 64 : hw_name ## _ ## WIDTH, \ |
| hw_name ## _ ## offset } |
| #define FALCON_OTHER_STAT(ext_name) \ |
| [FALCON_STAT_ ## ext_name] = { #ext_name, 0, 0 } |
| |
| static const struct efx_hw_stat_desc falcon_stat_desc[FALCON_STAT_COUNT] = { |
| FALCON_DMA_STAT(tx_bytes, XgTxOctets), |
| FALCON_DMA_STAT(tx_packets, XgTxPkts), |
| FALCON_DMA_STAT(tx_pause, XgTxPausePkts), |
| FALCON_DMA_STAT(tx_control, XgTxControlPkts), |
| FALCON_DMA_STAT(tx_unicast, XgTxUnicastPkts), |
| FALCON_DMA_STAT(tx_multicast, XgTxMulticastPkts), |
| FALCON_DMA_STAT(tx_broadcast, XgTxBroadcastPkts), |
| FALCON_DMA_STAT(tx_lt64, XgTxUndersizePkts), |
| FALCON_DMA_STAT(tx_64, XgTxPkts64Octets), |
| FALCON_DMA_STAT(tx_65_to_127, XgTxPkts65to127Octets), |
| FALCON_DMA_STAT(tx_128_to_255, XgTxPkts128to255Octets), |
| FALCON_DMA_STAT(tx_256_to_511, XgTxPkts256to511Octets), |
| FALCON_DMA_STAT(tx_512_to_1023, XgTxPkts512to1023Octets), |
| FALCON_DMA_STAT(tx_1024_to_15xx, XgTxPkts1024to15xxOctets), |
| FALCON_DMA_STAT(tx_15xx_to_jumbo, XgTxPkts1519toMaxOctets), |
| FALCON_DMA_STAT(tx_gtjumbo, XgTxOversizePkts), |
| FALCON_DMA_STAT(tx_non_tcpudp, XgTxNonTcpUdpPkt), |
| FALCON_DMA_STAT(tx_mac_src_error, XgTxMacSrcErrPkt), |
| FALCON_DMA_STAT(tx_ip_src_error, XgTxIpSrcErrPkt), |
| FALCON_DMA_STAT(rx_bytes, XgRxOctets), |
| FALCON_DMA_STAT(rx_good_bytes, XgRxOctetsOK), |
| FALCON_OTHER_STAT(rx_bad_bytes), |
| FALCON_DMA_STAT(rx_packets, XgRxPkts), |
| FALCON_DMA_STAT(rx_good, XgRxPktsOK), |
| FALCON_DMA_STAT(rx_bad, XgRxFCSerrorPkts), |
| FALCON_DMA_STAT(rx_pause, XgRxPausePkts), |
| FALCON_DMA_STAT(rx_control, XgRxControlPkts), |
| FALCON_DMA_STAT(rx_unicast, XgRxUnicastPkts), |
| FALCON_DMA_STAT(rx_multicast, XgRxMulticastPkts), |
| FALCON_DMA_STAT(rx_broadcast, XgRxBroadcastPkts), |
| FALCON_DMA_STAT(rx_lt64, XgRxUndersizePkts), |
| FALCON_DMA_STAT(rx_64, XgRxPkts64Octets), |
| FALCON_DMA_STAT(rx_65_to_127, XgRxPkts65to127Octets), |
| FALCON_DMA_STAT(rx_128_to_255, XgRxPkts128to255Octets), |
| FALCON_DMA_STAT(rx_256_to_511, XgRxPkts256to511Octets), |
| FALCON_DMA_STAT(rx_512_to_1023, XgRxPkts512to1023Octets), |
| FALCON_DMA_STAT(rx_1024_to_15xx, XgRxPkts1024to15xxOctets), |
| FALCON_DMA_STAT(rx_15xx_to_jumbo, XgRxPkts15xxtoMaxOctets), |
| FALCON_DMA_STAT(rx_gtjumbo, XgRxOversizePkts), |
| FALCON_DMA_STAT(rx_bad_lt64, XgRxUndersizeFCSerrorPkts), |
| FALCON_DMA_STAT(rx_bad_gtjumbo, XgRxJabberPkts), |
| FALCON_DMA_STAT(rx_overflow, XgRxDropEvents), |
| FALCON_DMA_STAT(rx_symbol_error, XgRxSymbolError), |
| FALCON_DMA_STAT(rx_align_error, XgRxAlignError), |
| FALCON_DMA_STAT(rx_length_error, XgRxLengthError), |
| FALCON_DMA_STAT(rx_internal_error, XgRxInternalMACError), |
| FALCON_OTHER_STAT(rx_nodesc_drop_cnt), |
| }; |
| static const unsigned long falcon_stat_mask[] = { |
| [0 ... BITS_TO_LONGS(FALCON_STAT_COUNT) - 1] = ~0UL, |
| }; |
| |
| /************************************************************************** |
| * |
| * Basic SPI command set and bit definitions |
| * |
| *************************************************************************/ |
| |
| #define SPI_WRSR 0x01 /* Write status register */ |
| #define SPI_WRITE 0x02 /* Write data to memory array */ |
| #define SPI_READ 0x03 /* Read data from memory array */ |
| #define SPI_WRDI 0x04 /* Reset write enable latch */ |
| #define SPI_RDSR 0x05 /* Read status register */ |
| #define SPI_WREN 0x06 /* Set write enable latch */ |
| #define SPI_SST_EWSR 0x50 /* SST: Enable write to status register */ |
| |
| #define SPI_STATUS_WPEN 0x80 /* Write-protect pin enabled */ |
| #define SPI_STATUS_BP2 0x10 /* Block protection bit 2 */ |
| #define SPI_STATUS_BP1 0x08 /* Block protection bit 1 */ |
| #define SPI_STATUS_BP0 0x04 /* Block protection bit 0 */ |
| #define SPI_STATUS_WEN 0x02 /* State of the write enable latch */ |
| #define SPI_STATUS_NRDY 0x01 /* Device busy flag */ |
| |
| /************************************************************************** |
| * |
| * Non-volatile memory layout |
| * |
| ************************************************************************** |
| */ |
| |
| /* SFC4000 flash is partitioned into: |
| * 0-0x400 chip and board config (see struct falcon_nvconfig) |
| * 0x400-0x8000 unused (or may contain VPD if EEPROM not present) |
| * 0x8000-end boot code (mapped to PCI expansion ROM) |
| * SFC4000 small EEPROM (size < 0x400) is used for VPD only. |
| * SFC4000 large EEPROM (size >= 0x400) is partitioned into: |
| * 0-0x400 chip and board config |
| * configurable VPD |
| * 0x800-0x1800 boot config |
| * Aside from the chip and board config, all of these are optional and may |
| * be absent or truncated depending on the devices used. |
| */ |
| #define FALCON_NVCONFIG_END 0x400U |
| #define FALCON_FLASH_BOOTCODE_START 0x8000U |
| #define FALCON_EEPROM_BOOTCONFIG_START 0x800U |
| #define FALCON_EEPROM_BOOTCONFIG_END 0x1800U |
| |
| /* Board configuration v2 (v1 is obsolete; later versions are compatible) */ |
| struct falcon_nvconfig_board_v2 { |
| __le16 nports; |
| u8 port0_phy_addr; |
| u8 port0_phy_type; |
| u8 port1_phy_addr; |
| u8 port1_phy_type; |
| __le16 asic_sub_revision; |
| __le16 board_revision; |
| } __packed; |
| |
| /* Board configuration v3 extra information */ |
| struct falcon_nvconfig_board_v3 { |
| __le32 spi_device_type[2]; |
| } __packed; |
| |
| /* Bit numbers for spi_device_type */ |
| #define SPI_DEV_TYPE_SIZE_LBN 0 |
| #define SPI_DEV_TYPE_SIZE_WIDTH 5 |
| #define SPI_DEV_TYPE_ADDR_LEN_LBN 6 |
| #define SPI_DEV_TYPE_ADDR_LEN_WIDTH 2 |
| #define SPI_DEV_TYPE_ERASE_CMD_LBN 8 |
| #define SPI_DEV_TYPE_ERASE_CMD_WIDTH 8 |
| #define SPI_DEV_TYPE_ERASE_SIZE_LBN 16 |
| #define SPI_DEV_TYPE_ERASE_SIZE_WIDTH 5 |
| #define SPI_DEV_TYPE_BLOCK_SIZE_LBN 24 |
| #define SPI_DEV_TYPE_BLOCK_SIZE_WIDTH 5 |
| #define SPI_DEV_TYPE_FIELD(type, field) \ |
| (((type) >> EFX_LOW_BIT(field)) & EFX_MASK32(EFX_WIDTH(field))) |
| |
| #define FALCON_NVCONFIG_OFFSET 0x300 |
| |
| #define FALCON_NVCONFIG_BOARD_MAGIC_NUM 0xFA1C |
| struct falcon_nvconfig { |
| efx_oword_t ee_vpd_cfg_reg; /* 0x300 */ |
| u8 mac_address[2][8]; /* 0x310 */ |
| efx_oword_t pcie_sd_ctl0123_reg; /* 0x320 */ |
| efx_oword_t pcie_sd_ctl45_reg; /* 0x330 */ |
| efx_oword_t pcie_pcs_ctl_stat_reg; /* 0x340 */ |
| efx_oword_t hw_init_reg; /* 0x350 */ |
| efx_oword_t nic_stat_reg; /* 0x360 */ |
| efx_oword_t glb_ctl_reg; /* 0x370 */ |
| efx_oword_t srm_cfg_reg; /* 0x380 */ |
| efx_oword_t spare_reg; /* 0x390 */ |
| __le16 board_magic_num; /* 0x3A0 */ |
| __le16 board_struct_ver; |
| __le16 board_checksum; |
| struct falcon_nvconfig_board_v2 board_v2; |
| efx_oword_t ee_base_page_reg; /* 0x3B0 */ |
| struct falcon_nvconfig_board_v3 board_v3; /* 0x3C0 */ |
| } __packed; |
| |
| /*************************************************************************/ |
| |
| static int falcon_reset_hw(struct efx_nic *efx, enum reset_type method); |
| static void falcon_reconfigure_mac_wrapper(struct efx_nic *efx); |
| |
| static const unsigned int |
| /* "Large" EEPROM device: Atmel AT25640 or similar |
| * 8 KB, 16-bit address, 32 B write block */ |
| large_eeprom_type = ((13 << SPI_DEV_TYPE_SIZE_LBN) |
| | (2 << SPI_DEV_TYPE_ADDR_LEN_LBN) |
| | (5 << SPI_DEV_TYPE_BLOCK_SIZE_LBN)), |
| /* Default flash device: Atmel AT25F1024 |
| * 128 KB, 24-bit address, 32 KB erase block, 256 B write block */ |
| default_flash_type = ((17 << SPI_DEV_TYPE_SIZE_LBN) |
| | (3 << SPI_DEV_TYPE_ADDR_LEN_LBN) |
| | (0x52 << SPI_DEV_TYPE_ERASE_CMD_LBN) |
| | (15 << SPI_DEV_TYPE_ERASE_SIZE_LBN) |
| | (8 << SPI_DEV_TYPE_BLOCK_SIZE_LBN)); |
| |
| /************************************************************************** |
| * |
| * I2C bus - this is a bit-bashing interface using GPIO pins |
| * Note that it uses the output enables to tristate the outputs |
| * SDA is the data pin and SCL is the clock |
| * |
| ************************************************************************** |
| */ |
| static void falcon_setsda(void *data, int state) |
| { |
| struct efx_nic *efx = (struct efx_nic *)data; |
| efx_oword_t reg; |
| |
| efx_reado(efx, ®, FR_AB_GPIO_CTL); |
| EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO3_OEN, !state); |
| efx_writeo(efx, ®, FR_AB_GPIO_CTL); |
| } |
| |
| static void falcon_setscl(void *data, int state) |
| { |
| struct efx_nic *efx = (struct efx_nic *)data; |
| efx_oword_t reg; |
| |
| efx_reado(efx, ®, FR_AB_GPIO_CTL); |
| EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO0_OEN, !state); |
| efx_writeo(efx, ®, FR_AB_GPIO_CTL); |
| } |
| |
| static int falcon_getsda(void *data) |
| { |
| struct efx_nic *efx = (struct efx_nic *)data; |
| efx_oword_t reg; |
| |
| efx_reado(efx, ®, FR_AB_GPIO_CTL); |
| return EFX_OWORD_FIELD(reg, FRF_AB_GPIO3_IN); |
| } |
| |
| static int falcon_getscl(void *data) |
| { |
| struct efx_nic *efx = (struct efx_nic *)data; |
| efx_oword_t reg; |
| |
| efx_reado(efx, ®, FR_AB_GPIO_CTL); |
| return EFX_OWORD_FIELD(reg, FRF_AB_GPIO0_IN); |
| } |
| |
| static const struct i2c_algo_bit_data falcon_i2c_bit_operations = { |
| .setsda = falcon_setsda, |
| .setscl = falcon_setscl, |
| .getsda = falcon_getsda, |
| .getscl = falcon_getscl, |
| .udelay = 5, |
| /* Wait up to 50 ms for slave to let us pull SCL high */ |
| .timeout = DIV_ROUND_UP(HZ, 20), |
| }; |
| |
| static void falcon_push_irq_moderation(struct efx_channel *channel) |
| { |
| efx_dword_t timer_cmd; |
| struct efx_nic *efx = channel->efx; |
| |
| /* Set timer register */ |
| if (channel->irq_moderation) { |
| EFX_POPULATE_DWORD_2(timer_cmd, |
| FRF_AB_TC_TIMER_MODE, |
| FFE_BB_TIMER_MODE_INT_HLDOFF, |
| FRF_AB_TC_TIMER_VAL, |
| channel->irq_moderation - 1); |
| } else { |
| EFX_POPULATE_DWORD_2(timer_cmd, |
| FRF_AB_TC_TIMER_MODE, |
| FFE_BB_TIMER_MODE_DIS, |
| FRF_AB_TC_TIMER_VAL, 0); |
| } |
| BUILD_BUG_ON(FR_AA_TIMER_COMMAND_KER != FR_BZ_TIMER_COMMAND_P0); |
| efx_writed_page_locked(efx, &timer_cmd, FR_BZ_TIMER_COMMAND_P0, |
| channel->channel); |
| } |
| |
| static void falcon_deconfigure_mac_wrapper(struct efx_nic *efx); |
| |
| static void falcon_prepare_flush(struct efx_nic *efx) |
| { |
| falcon_deconfigure_mac_wrapper(efx); |
| |
| /* Wait for the tx and rx fifo's to get to the next packet boundary |
| * (~1ms without back-pressure), then to drain the remainder of the |
| * fifo's at data path speeds (negligible), with a healthy margin. */ |
| msleep(10); |
| } |
| |
| /* Acknowledge a legacy interrupt from Falcon |
| * |
| * This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG. |
| * |
| * Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the |
| * BIU. Interrupt acknowledge is read sensitive so must write instead |
| * (then read to ensure the BIU collector is flushed) |
| * |
| * NB most hardware supports MSI interrupts |
| */ |
| static inline void falcon_irq_ack_a1(struct efx_nic *efx) |
| { |
| efx_dword_t reg; |
| |
| EFX_POPULATE_DWORD_1(reg, FRF_AA_INT_ACK_KER_FIELD, 0xb7eb7e); |
| efx_writed(efx, ®, FR_AA_INT_ACK_KER); |
| efx_readd(efx, ®, FR_AA_WORK_AROUND_BROKEN_PCI_READS); |
| } |
| |
| static irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id) |
| { |
| struct efx_nic *efx = dev_id; |
| efx_oword_t *int_ker = efx->irq_status.addr; |
| int syserr; |
| int queues; |
| |
| /* Check to see if this is our interrupt. If it isn't, we |
| * exit without having touched the hardware. |
| */ |
| if (unlikely(EFX_OWORD_IS_ZERO(*int_ker))) { |
| netif_vdbg(efx, intr, efx->net_dev, |
| "IRQ %d on CPU %d not for me\n", irq, |
| raw_smp_processor_id()); |
| return IRQ_NONE; |
| } |
| efx->last_irq_cpu = raw_smp_processor_id(); |
| netif_vdbg(efx, intr, efx->net_dev, |
| "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n", |
| irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker)); |
| |
| if (!likely(ACCESS_ONCE(efx->irq_soft_enabled))) |
| return IRQ_HANDLED; |
| |
| /* Check to see if we have a serious error condition */ |
| syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT); |
| if (unlikely(syserr)) |
| return efx_farch_fatal_interrupt(efx); |
| |
| /* Determine interrupting queues, clear interrupt status |
| * register and acknowledge the device interrupt. |
| */ |
| BUILD_BUG_ON(FSF_AZ_NET_IVEC_INT_Q_WIDTH > EFX_MAX_CHANNELS); |
| queues = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_INT_Q); |
| EFX_ZERO_OWORD(*int_ker); |
| wmb(); /* Ensure the vector is cleared before interrupt ack */ |
| falcon_irq_ack_a1(efx); |
| |
| if (queues & 1) |
| efx_schedule_channel_irq(efx_get_channel(efx, 0)); |
| if (queues & 2) |
| efx_schedule_channel_irq(efx_get_channel(efx, 1)); |
| return IRQ_HANDLED; |
| } |
| |
| /************************************************************************** |
| * |
| * RSS |
| * |
| ************************************************************************** |
| */ |
| |
| static void falcon_b0_rx_push_rss_config(struct efx_nic *efx) |
| { |
| efx_oword_t temp; |
| |
| /* Set hash key for IPv4 */ |
| memcpy(&temp, efx->rx_hash_key, sizeof(temp)); |
| efx_writeo(efx, &temp, FR_BZ_RX_RSS_TKEY); |
| |
| efx_farch_rx_push_indir_table(efx); |
| } |
| |
| /************************************************************************** |
| * |
| * EEPROM/flash |
| * |
| ************************************************************************** |
| */ |
| |
| #define FALCON_SPI_MAX_LEN sizeof(efx_oword_t) |
| |
| static int falcon_spi_poll(struct efx_nic *efx) |
| { |
| efx_oword_t reg; |
| efx_reado(efx, ®, FR_AB_EE_SPI_HCMD); |
| return EFX_OWORD_FIELD(reg, FRF_AB_EE_SPI_HCMD_CMD_EN) ? -EBUSY : 0; |
| } |
| |
| /* Wait for SPI command completion */ |
| static int falcon_spi_wait(struct efx_nic *efx) |
| { |
| /* Most commands will finish quickly, so we start polling at |
| * very short intervals. Sometimes the command may have to |
| * wait for VPD or expansion ROM access outside of our |
| * control, so we allow up to 100 ms. */ |
| unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 10); |
| int i; |
| |
| for (i = 0; i < 10; i++) { |
| if (!falcon_spi_poll(efx)) |
| return 0; |
| udelay(10); |
| } |
| |
| for (;;) { |
| if (!falcon_spi_poll(efx)) |
| return 0; |
| if (time_after_eq(jiffies, timeout)) { |
| netif_err(efx, hw, efx->net_dev, |
| "timed out waiting for SPI\n"); |
| return -ETIMEDOUT; |
| } |
| schedule_timeout_uninterruptible(1); |
| } |
| } |
| |
| static int |
| falcon_spi_cmd(struct efx_nic *efx, const struct falcon_spi_device *spi, |
| unsigned int command, int address, |
| const void *in, void *out, size_t len) |
| { |
| bool addressed = (address >= 0); |
| bool reading = (out != NULL); |
| efx_oword_t reg; |
| int rc; |
| |
| /* Input validation */ |
| if (len > FALCON_SPI_MAX_LEN) |
| return -EINVAL; |
| |
| /* Check that previous command is not still running */ |
| rc = falcon_spi_poll(efx); |
| if (rc) |
| return rc; |
| |
| /* Program address register, if we have an address */ |
| if (addressed) { |
| EFX_POPULATE_OWORD_1(reg, FRF_AB_EE_SPI_HADR_ADR, address); |
| efx_writeo(efx, ®, FR_AB_EE_SPI_HADR); |
| } |
| |
| /* Program data register, if we have data */ |
| if (in != NULL) { |
| memcpy(®, in, len); |
| efx_writeo(efx, ®, FR_AB_EE_SPI_HDATA); |
| } |
| |
| /* Issue read/write command */ |
| EFX_POPULATE_OWORD_7(reg, |
| FRF_AB_EE_SPI_HCMD_CMD_EN, 1, |
| FRF_AB_EE_SPI_HCMD_SF_SEL, spi->device_id, |
| FRF_AB_EE_SPI_HCMD_DABCNT, len, |
| FRF_AB_EE_SPI_HCMD_READ, reading, |
| FRF_AB_EE_SPI_HCMD_DUBCNT, 0, |
| FRF_AB_EE_SPI_HCMD_ADBCNT, |
| (addressed ? spi->addr_len : 0), |
| FRF_AB_EE_SPI_HCMD_ENC, command); |
| efx_writeo(efx, ®, FR_AB_EE_SPI_HCMD); |
| |
| /* Wait for read/write to complete */ |
| rc = falcon_spi_wait(efx); |
| if (rc) |
| return rc; |
| |
| /* Read data */ |
| if (out != NULL) { |
| efx_reado(efx, ®, FR_AB_EE_SPI_HDATA); |
| memcpy(out, ®, len); |
| } |
| |
| return 0; |
| } |
| |
| static inline u8 |
| falcon_spi_munge_command(const struct falcon_spi_device *spi, |
| const u8 command, const unsigned int address) |
| { |
| return command | (((address >> 8) & spi->munge_address) << 3); |
| } |
| |
| static int |
| falcon_spi_read(struct efx_nic *efx, const struct falcon_spi_device *spi, |
| loff_t start, size_t len, size_t *retlen, u8 *buffer) |
| { |
| size_t block_len, pos = 0; |
| unsigned int command; |
| int rc = 0; |
| |
| while (pos < len) { |
| block_len = min(len - pos, FALCON_SPI_MAX_LEN); |
| |
| command = falcon_spi_munge_command(spi, SPI_READ, start + pos); |
| rc = falcon_spi_cmd(efx, spi, command, start + pos, NULL, |
| buffer + pos, block_len); |
| if (rc) |
| break; |
| pos += block_len; |
| |
| /* Avoid locking up the system */ |
| cond_resched(); |
| if (signal_pending(current)) { |
| rc = -EINTR; |
| break; |
| } |
| } |
| |
| if (retlen) |
| *retlen = pos; |
| return rc; |
| } |
| |
| #ifdef CONFIG_SFC_MTD |
| |
| struct falcon_mtd_partition { |
| struct efx_mtd_partition common; |
| const struct falcon_spi_device *spi; |
| size_t offset; |
| }; |
| |
| #define to_falcon_mtd_partition(mtd) \ |
| container_of(mtd, struct falcon_mtd_partition, common.mtd) |
| |
| static size_t |
| falcon_spi_write_limit(const struct falcon_spi_device *spi, size_t start) |
| { |
| return min(FALCON_SPI_MAX_LEN, |
| (spi->block_size - (start & (spi->block_size - 1)))); |
| } |
| |
| /* Wait up to 10 ms for buffered write completion */ |
| static int |
| falcon_spi_wait_write(struct efx_nic *efx, const struct falcon_spi_device *spi) |
| { |
| unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 100); |
| u8 status; |
| int rc; |
| |
| for (;;) { |
| rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL, |
| &status, sizeof(status)); |
| if (rc) |
| return rc; |
| if (!(status & SPI_STATUS_NRDY)) |
| return 0; |
| if (time_after_eq(jiffies, timeout)) { |
| netif_err(efx, hw, efx->net_dev, |
| "SPI write timeout on device %d" |
| " last status=0x%02x\n", |
| spi->device_id, status); |
| return -ETIMEDOUT; |
| } |
| schedule_timeout_uninterruptible(1); |
| } |
| } |
| |
| static int |
| falcon_spi_write(struct efx_nic *efx, const struct falcon_spi_device *spi, |
| loff_t start, size_t len, size_t *retlen, const u8 *buffer) |
| { |
| u8 verify_buffer[FALCON_SPI_MAX_LEN]; |
| size_t block_len, pos = 0; |
| unsigned int command; |
| int rc = 0; |
| |
| while (pos < len) { |
| rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0); |
| if (rc) |
| break; |
| |
| block_len = min(len - pos, |
| falcon_spi_write_limit(spi, start + pos)); |
| command = falcon_spi_munge_command(spi, SPI_WRITE, start + pos); |
| rc = falcon_spi_cmd(efx, spi, command, start + pos, |
| buffer + pos, NULL, block_len); |
| if (rc) |
| break; |
| |
| rc = falcon_spi_wait_write(efx, spi); |
| if (rc) |
| break; |
| |
| command = falcon_spi_munge_command(spi, SPI_READ, start + pos); |
| rc = falcon_spi_cmd(efx, spi, command, start + pos, |
| NULL, verify_buffer, block_len); |
| if (memcmp(verify_buffer, buffer + pos, block_len)) { |
| rc = -EIO; |
| break; |
| } |
| |
| pos += block_len; |
| |
| /* Avoid locking up the system */ |
| cond_resched(); |
| if (signal_pending(current)) { |
| rc = -EINTR; |
| break; |
| } |
| } |
| |
| if (retlen) |
| *retlen = pos; |
| return rc; |
| } |
| |
| static int |
| falcon_spi_slow_wait(struct falcon_mtd_partition *part, bool uninterruptible) |
| { |
| const struct falcon_spi_device *spi = part->spi; |
| struct efx_nic *efx = part->common.mtd.priv; |
| u8 status; |
| int rc, i; |
| |
| /* Wait up to 4s for flash/EEPROM to finish a slow operation. */ |
| for (i = 0; i < 40; i++) { |
| __set_current_state(uninterruptible ? |
| TASK_UNINTERRUPTIBLE : TASK_INTERRUPTIBLE); |
| schedule_timeout(HZ / 10); |
| rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL, |
| &status, sizeof(status)); |
| if (rc) |
| return rc; |
| if (!(status & SPI_STATUS_NRDY)) |
| return 0; |
| if (signal_pending(current)) |
| return -EINTR; |
| } |
| pr_err("%s: timed out waiting for %s\n", |
| part->common.name, part->common.dev_type_name); |
| return -ETIMEDOUT; |
| } |
| |
| static int |
| falcon_spi_unlock(struct efx_nic *efx, const struct falcon_spi_device *spi) |
| { |
| const u8 unlock_mask = (SPI_STATUS_BP2 | SPI_STATUS_BP1 | |
| SPI_STATUS_BP0); |
| u8 status; |
| int rc; |
| |
| rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL, |
| &status, sizeof(status)); |
| if (rc) |
| return rc; |
| |
| if (!(status & unlock_mask)) |
| return 0; /* already unlocked */ |
| |
| rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0); |
| if (rc) |
| return rc; |
| rc = falcon_spi_cmd(efx, spi, SPI_SST_EWSR, -1, NULL, NULL, 0); |
| if (rc) |
| return rc; |
| |
| status &= ~unlock_mask; |
| rc = falcon_spi_cmd(efx, spi, SPI_WRSR, -1, &status, |
| NULL, sizeof(status)); |
| if (rc) |
| return rc; |
| rc = falcon_spi_wait_write(efx, spi); |
| if (rc) |
| return rc; |
| |
| return 0; |
| } |
| |
| #define FALCON_SPI_VERIFY_BUF_LEN 16 |
| |
| static int |
| falcon_spi_erase(struct falcon_mtd_partition *part, loff_t start, size_t len) |
| { |
| const struct falcon_spi_device *spi = part->spi; |
| struct efx_nic *efx = part->common.mtd.priv; |
| unsigned pos, block_len; |
| u8 empty[FALCON_SPI_VERIFY_BUF_LEN]; |
| u8 buffer[FALCON_SPI_VERIFY_BUF_LEN]; |
| int rc; |
| |
| if (len != spi->erase_size) |
| return -EINVAL; |
| |
| if (spi->erase_command == 0) |
| return -EOPNOTSUPP; |
| |
| rc = falcon_spi_unlock(efx, spi); |
| if (rc) |
| return rc; |
| rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0); |
| if (rc) |
| return rc; |
| rc = falcon_spi_cmd(efx, spi, spi->erase_command, start, NULL, |
| NULL, 0); |
| if (rc) |
| return rc; |
| rc = falcon_spi_slow_wait(part, false); |
| |
| /* Verify the entire region has been wiped */ |
| memset(empty, 0xff, sizeof(empty)); |
| for (pos = 0; pos < len; pos += block_len) { |
| block_len = min(len - pos, sizeof(buffer)); |
| rc = falcon_spi_read(efx, spi, start + pos, block_len, |
| NULL, buffer); |
| if (rc) |
| return rc; |
| if (memcmp(empty, buffer, block_len)) |
| return -EIO; |
| |
| /* Avoid locking up the system */ |
| cond_resched(); |
| if (signal_pending(current)) |
| return -EINTR; |
| } |
| |
| return rc; |
| } |
| |
| static void falcon_mtd_rename(struct efx_mtd_partition *part) |
| { |
| struct efx_nic *efx = part->mtd.priv; |
| |
| snprintf(part->name, sizeof(part->name), "%s %s", |
| efx->name, part->type_name); |
| } |
| |
| static int falcon_mtd_read(struct mtd_info *mtd, loff_t start, |
| size_t len, size_t *retlen, u8 *buffer) |
| { |
| struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd); |
| struct efx_nic *efx = mtd->priv; |
| struct falcon_nic_data *nic_data = efx->nic_data; |
| int rc; |
| |
| rc = mutex_lock_interruptible(&nic_data->spi_lock); |
| if (rc) |
| return rc; |
| rc = falcon_spi_read(efx, part->spi, part->offset + start, |
| len, retlen, buffer); |
| mutex_unlock(&nic_data->spi_lock); |
| return rc; |
| } |
| |
| static int falcon_mtd_erase(struct mtd_info *mtd, loff_t start, size_t len) |
| { |
| struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd); |
| struct efx_nic *efx = mtd->priv; |
| struct falcon_nic_data *nic_data = efx->nic_data; |
| int rc; |
| |
| rc = mutex_lock_interruptible(&nic_data->spi_lock); |
| if (rc) |
| return rc; |
| rc = falcon_spi_erase(part, part->offset + start, len); |
| mutex_unlock(&nic_data->spi_lock); |
| return rc; |
| } |
| |
| static int falcon_mtd_write(struct mtd_info *mtd, loff_t start, |
| size_t len, size_t *retlen, const u8 *buffer) |
| { |
| struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd); |
| struct efx_nic *efx = mtd->priv; |
| struct falcon_nic_data *nic_data = efx->nic_data; |
| int rc; |
| |
| rc = mutex_lock_interruptible(&nic_data->spi_lock); |
| if (rc) |
| return rc; |
| rc = falcon_spi_write(efx, part->spi, part->offset + start, |
| len, retlen, buffer); |
| mutex_unlock(&nic_data->spi_lock); |
| return rc; |
| } |
| |
| static int falcon_mtd_sync(struct mtd_info *mtd) |
| { |
| struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd); |
| struct efx_nic *efx = mtd->priv; |
| struct falcon_nic_data *nic_data = efx->nic_data; |
| int rc; |
| |
| mutex_lock(&nic_data->spi_lock); |
| rc = falcon_spi_slow_wait(part, true); |
| mutex_unlock(&nic_data->spi_lock); |
| return rc; |
| } |
| |
| static int falcon_mtd_probe(struct efx_nic *efx) |
| { |
| struct falcon_nic_data *nic_data = efx->nic_data; |
| struct falcon_mtd_partition *parts; |
| struct falcon_spi_device *spi; |
| size_t n_parts; |
| int rc = -ENODEV; |
| |
| ASSERT_RTNL(); |
| |
| /* Allocate space for maximum number of partitions */ |
| parts = kcalloc(2, sizeof(*parts), GFP_KERNEL); |
| if (!parts) |
| return -ENOMEM; |
| n_parts = 0; |
| |
| spi = &nic_data->spi_flash; |
| if (falcon_spi_present(spi) && spi->size > FALCON_FLASH_BOOTCODE_START) { |
| parts[n_parts].spi = spi; |
| parts[n_parts].offset = FALCON_FLASH_BOOTCODE_START; |
| parts[n_parts].common.dev_type_name = "flash"; |
| parts[n_parts].common.type_name = "sfc_flash_bootrom"; |
| parts[n_parts].common.mtd.type = MTD_NORFLASH; |
| parts[n_parts].common.mtd.flags = MTD_CAP_NORFLASH; |
| parts[n_parts].common.mtd.size = spi->size - FALCON_FLASH_BOOTCODE_START; |
| parts[n_parts].common.mtd.erasesize = spi->erase_size; |
| n_parts++; |
| } |
| |
| spi = &nic_data->spi_eeprom; |
| if (falcon_spi_present(spi) && spi->size > FALCON_EEPROM_BOOTCONFIG_START) { |
| parts[n_parts].spi = spi; |
| parts[n_parts].offset = FALCON_EEPROM_BOOTCONFIG_START; |
| parts[n_parts].common.dev_type_name = "EEPROM"; |
| parts[n_parts].common.type_name = "sfc_bootconfig"; |
| parts[n_parts].common.mtd.type = MTD_RAM; |
| parts[n_parts].common.mtd.flags = MTD_CAP_RAM; |
| parts[n_parts].common.mtd.size = |
| min(spi->size, FALCON_EEPROM_BOOTCONFIG_END) - |
| FALCON_EEPROM_BOOTCONFIG_START; |
| parts[n_parts].common.mtd.erasesize = spi->erase_size; |
| n_parts++; |
| } |
| |
| rc = efx_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts)); |
| if (rc) |
| kfree(parts); |
| return rc; |
| } |
| |
| #endif /* CONFIG_SFC_MTD */ |
| |
| /************************************************************************** |
| * |
| * XMAC operations |
| * |
| ************************************************************************** |
| */ |
| |
| /* Configure the XAUI driver that is an output from Falcon */ |
| static void falcon_setup_xaui(struct efx_nic *efx) |
| { |
| efx_oword_t sdctl, txdrv; |
| |
| /* Move the XAUI into low power, unless there is no PHY, in |
| * which case the XAUI will have to drive a cable. */ |
| if (efx->phy_type == PHY_TYPE_NONE) |
| return; |
| |
| efx_reado(efx, &sdctl, FR_AB_XX_SD_CTL); |
| EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVD, FFE_AB_XX_SD_CTL_DRV_DEF); |
| EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVD, FFE_AB_XX_SD_CTL_DRV_DEF); |
| EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVC, FFE_AB_XX_SD_CTL_DRV_DEF); |
| EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVC, FFE_AB_XX_SD_CTL_DRV_DEF); |
| EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVB, FFE_AB_XX_SD_CTL_DRV_DEF); |
| EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVB, FFE_AB_XX_SD_CTL_DRV_DEF); |
| EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVA, FFE_AB_XX_SD_CTL_DRV_DEF); |
| EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVA, FFE_AB_XX_SD_CTL_DRV_DEF); |
| efx_writeo(efx, &sdctl, FR_AB_XX_SD_CTL); |
| |
| EFX_POPULATE_OWORD_8(txdrv, |
| FRF_AB_XX_DEQD, FFE_AB_XX_TXDRV_DEQ_DEF, |
| FRF_AB_XX_DEQC, FFE_AB_XX_TXDRV_DEQ_DEF, |
| FRF_AB_XX_DEQB, FFE_AB_XX_TXDRV_DEQ_DEF, |
| FRF_AB_XX_DEQA, FFE_AB_XX_TXDRV_DEQ_DEF, |
| FRF_AB_XX_DTXD, FFE_AB_XX_TXDRV_DTX_DEF, |
| FRF_AB_XX_DTXC, FFE_AB_XX_TXDRV_DTX_DEF, |
| FRF_AB_XX_DTXB, FFE_AB_XX_TXDRV_DTX_DEF, |
| FRF_AB_XX_DTXA, FFE_AB_XX_TXDRV_DTX_DEF); |
| efx_writeo(efx, &txdrv, FR_AB_XX_TXDRV_CTL); |
| } |
| |
| int falcon_reset_xaui(struct efx_nic *efx) |
| { |
| struct falcon_nic_data *nic_data = efx->nic_data; |
| efx_oword_t reg; |
| int count; |
| |
| /* Don't fetch MAC statistics over an XMAC reset */ |
| WARN_ON(nic_data->stats_disable_count == 0); |
| |
| /* Start reset sequence */ |
| EFX_POPULATE_OWORD_1(reg, FRF_AB_XX_RST_XX_EN, 1); |
| efx_writeo(efx, ®, FR_AB_XX_PWR_RST); |
| |
| /* Wait up to 10 ms for completion, then reinitialise */ |
| for (count = 0; count < 1000; count++) { |
| efx_reado(efx, ®, FR_AB_XX_PWR_RST); |
| if (EFX_OWORD_FIELD(reg, FRF_AB_XX_RST_XX_EN) == 0 && |
| EFX_OWORD_FIELD(reg, FRF_AB_XX_SD_RST_ACT) == 0) { |
| falcon_setup_xaui(efx); |
| return 0; |
| } |
| udelay(10); |
| } |
| netif_err(efx, hw, efx->net_dev, |
| "timed out waiting for XAUI/XGXS reset\n"); |
| return -ETIMEDOUT; |
| } |
| |
| static void falcon_ack_status_intr(struct efx_nic *efx) |
| { |
| struct falcon_nic_data *nic_data = efx->nic_data; |
| efx_oword_t reg; |
| |
| if ((efx_nic_rev(efx) != EFX_REV_FALCON_B0) || LOOPBACK_INTERNAL(efx)) |
| return; |
| |
| /* We expect xgmii faults if the wireside link is down */ |
| if (!efx->link_state.up) |
| return; |
| |
| /* We can only use this interrupt to signal the negative edge of |
| * xaui_align [we have to poll the positive edge]. */ |
| if (nic_data->xmac_poll_required) |
| return; |
| |
| efx_reado(efx, ®, FR_AB_XM_MGT_INT_MSK); |
| } |
| |
| static bool falcon_xgxs_link_ok(struct efx_nic *efx) |
| { |
| efx_oword_t reg; |
| bool align_done, link_ok = false; |
| int sync_status; |
| |
| /* Read link status */ |
| efx_reado(efx, ®, FR_AB_XX_CORE_STAT); |
| |
| align_done = EFX_OWORD_FIELD(reg, FRF_AB_XX_ALIGN_DONE); |
| sync_status = EFX_OWORD_FIELD(reg, FRF_AB_XX_SYNC_STAT); |
| if (align_done && (sync_status == FFE_AB_XX_STAT_ALL_LANES)) |
| link_ok = true; |
| |
| /* Clear link status ready for next read */ |
| EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_COMMA_DET, FFE_AB_XX_STAT_ALL_LANES); |
| EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_CHAR_ERR, FFE_AB_XX_STAT_ALL_LANES); |
| EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_DISPERR, FFE_AB_XX_STAT_ALL_LANES); |
| efx_writeo(efx, ®, FR_AB_XX_CORE_STAT); |
| |
| return link_ok; |
| } |
| |
| static bool falcon_xmac_link_ok(struct efx_nic *efx) |
| { |
| /* |
| * Check MAC's XGXS link status except when using XGMII loopback |
| * which bypasses the XGXS block. |
| * If possible, check PHY's XGXS link status except when using |
| * MAC loopback. |
| */ |
| return (efx->loopback_mode == LOOPBACK_XGMII || |
| falcon_xgxs_link_ok(efx)) && |
| (!(efx->mdio.mmds & (1 << MDIO_MMD_PHYXS)) || |
| LOOPBACK_INTERNAL(efx) || |
| efx_mdio_phyxgxs_lane_sync(efx)); |
| } |
| |
| static void falcon_reconfigure_xmac_core(struct efx_nic *efx) |
| { |
| unsigned int max_frame_len; |
| efx_oword_t reg; |
| bool rx_fc = !!(efx->link_state.fc & EFX_FC_RX); |
| bool tx_fc = !!(efx->link_state.fc & EFX_FC_TX); |
| |
| /* Configure MAC - cut-thru mode is hard wired on */ |
| EFX_POPULATE_OWORD_3(reg, |
| FRF_AB_XM_RX_JUMBO_MODE, 1, |
| FRF_AB_XM_TX_STAT_EN, 1, |
| FRF_AB_XM_RX_STAT_EN, 1); |
| efx_writeo(efx, ®, FR_AB_XM_GLB_CFG); |
| |
| /* Configure TX */ |
| EFX_POPULATE_OWORD_6(reg, |
| FRF_AB_XM_TXEN, 1, |
| FRF_AB_XM_TX_PRMBL, 1, |
| FRF_AB_XM_AUTO_PAD, 1, |
| FRF_AB_XM_TXCRC, 1, |
| FRF_AB_XM_FCNTL, tx_fc, |
| FRF_AB_XM_IPG, 0x3); |
| efx_writeo(efx, ®, FR_AB_XM_TX_CFG); |
| |
| /* Configure RX */ |
| EFX_POPULATE_OWORD_5(reg, |
| FRF_AB_XM_RXEN, 1, |
| FRF_AB_XM_AUTO_DEPAD, 0, |
| FRF_AB_XM_ACPT_ALL_MCAST, 1, |
| FRF_AB_XM_ACPT_ALL_UCAST, !efx->unicast_filter, |
| FRF_AB_XM_PASS_CRC_ERR, 1); |
| efx_writeo(efx, ®, FR_AB_XM_RX_CFG); |
| |
| /* Set frame length */ |
| max_frame_len = EFX_MAX_FRAME_LEN(efx->net_dev->mtu); |
| EFX_POPULATE_OWORD_1(reg, FRF_AB_XM_MAX_RX_FRM_SIZE, max_frame_len); |
| efx_writeo(efx, ®, FR_AB_XM_RX_PARAM); |
| EFX_POPULATE_OWORD_2(reg, |
| FRF_AB_XM_MAX_TX_FRM_SIZE, max_frame_len, |
| FRF_AB_XM_TX_JUMBO_MODE, 1); |
| efx_writeo(efx, ®, FR_AB_XM_TX_PARAM); |
| |
| EFX_POPULATE_OWORD_2(reg, |
| FRF_AB_XM_PAUSE_TIME, 0xfffe, /* MAX PAUSE TIME */ |
| FRF_AB_XM_DIS_FCNTL, !rx_fc); |
| efx_writeo(efx, ®, FR_AB_XM_FC); |
| |
| /* Set MAC address */ |
| memcpy(®, &efx->net_dev->dev_addr[0], 4); |
| efx_writeo(efx, ®, FR_AB_XM_ADR_LO); |
| memcpy(®, &efx->net_dev->dev_addr[4], 2); |
| efx_writeo(efx, ®, FR_AB_XM_ADR_HI); |
| } |
| |
| static void falcon_reconfigure_xgxs_core(struct efx_nic *efx) |
| { |
| efx_oword_t reg; |
| bool xgxs_loopback = (efx->loopback_mode == LOOPBACK_XGXS); |
| bool xaui_loopback = (efx->loopback_mode == LOOPBACK_XAUI); |
| bool xgmii_loopback = (efx->loopback_mode == LOOPBACK_XGMII); |
| bool old_xgmii_loopback, old_xgxs_loopback, old_xaui_loopback; |
| |
| /* XGXS block is flaky and will need to be reset if moving |
| * into our out of XGMII, XGXS or XAUI loopbacks. */ |
| efx_reado(efx, ®, FR_AB_XX_CORE_STAT); |
| old_xgxs_loopback = EFX_OWORD_FIELD(reg, FRF_AB_XX_XGXS_LB_EN); |
| old_xgmii_loopback = EFX_OWORD_FIELD(reg, FRF_AB_XX_XGMII_LB_EN); |
| |
| efx_reado(efx, ®, FR_AB_XX_SD_CTL); |
| old_xaui_loopback = EFX_OWORD_FIELD(reg, FRF_AB_XX_LPBKA); |
| |
| /* The PHY driver may have turned XAUI off */ |
| if ((xgxs_loopback != old_xgxs_loopback) || |
| (xaui_loopback != old_xaui_loopback) || |
| (xgmii_loopback != old_xgmii_loopback)) |
| falcon_reset_xaui(efx); |
| |
| efx_reado(efx, ®, FR_AB_XX_CORE_STAT); |
| EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_FORCE_SIG, |
| (xgxs_loopback || xaui_loopback) ? |
| FFE_AB_XX_FORCE_SIG_ALL_LANES : 0); |
| EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_XGXS_LB_EN, xgxs_loopback); |
| EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_XGMII_LB_EN, xgmii_loopback); |
| efx_writeo(efx, ®, FR_AB_XX_CORE_STAT); |
| |
| efx_reado(efx, ®, FR_AB_XX_SD_CTL); |
| EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKD, xaui_loopback); |
| EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKC, xaui_loopback); |
| EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKB, xaui_loopback); |
| EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKA, xaui_loopback); |
| efx_writeo(efx, ®, FR_AB_XX_SD_CTL); |
| } |
| |
| |
| /* Try to bring up the Falcon side of the Falcon-Phy XAUI link */ |
| static bool falcon_xmac_link_ok_retry(struct efx_nic *efx, int tries) |
| { |
| bool mac_up = falcon_xmac_link_ok(efx); |
| |
| if (LOOPBACK_MASK(efx) & LOOPBACKS_EXTERNAL(efx) & LOOPBACKS_WS || |
| efx_phy_mode_disabled(efx->phy_mode)) |
| /* XAUI link is expected to be down */ |
| return mac_up; |
| |
| falcon_stop_nic_stats(efx); |
| |
| while (!mac_up && tries) { |
| netif_dbg(efx, hw, efx->net_dev, "bashing xaui\n"); |
| falcon_reset_xaui(efx); |
| udelay(200); |
| |
| mac_up = falcon_xmac_link_ok(efx); |
| --tries; |
| } |
| |
| falcon_start_nic_stats(efx); |
| |
| return mac_up; |
| } |
| |
| static bool falcon_xmac_check_fault(struct efx_nic *efx) |
| { |
| return !falcon_xmac_link_ok_retry(efx, 5); |
| } |
| |
| static int falcon_reconfigure_xmac(struct efx_nic *efx) |
| { |
| struct falcon_nic_data *nic_data = efx->nic_data; |
| |
| efx_farch_filter_sync_rx_mode(efx); |
| |
| falcon_reconfigure_xgxs_core(efx); |
| falcon_reconfigure_xmac_core(efx); |
| |
| falcon_reconfigure_mac_wrapper(efx); |
| |
| nic_data->xmac_poll_required = !falcon_xmac_link_ok_retry(efx, 5); |
| falcon_ack_status_intr(efx); |
| |
| return 0; |
| } |
| |
| static void falcon_poll_xmac(struct efx_nic *efx) |
| { |
| struct falcon_nic_data *nic_data = efx->nic_data; |
| |
| /* We expect xgmii faults if the wireside link is down */ |
| if (!efx->link_state.up || !nic_data->xmac_poll_required) |
| return; |
| |
| nic_data->xmac_poll_required = !falcon_xmac_link_ok_retry(efx, 1); |
| falcon_ack_status_intr(efx); |
| } |
| |
| /************************************************************************** |
| * |
| * MAC wrapper |
| * |
| ************************************************************************** |
| */ |
| |
| static void falcon_push_multicast_hash(struct efx_nic *efx) |
| { |
| union efx_multicast_hash *mc_hash = &efx->multicast_hash; |
| |
| WARN_ON(!mutex_is_locked(&efx->mac_lock)); |
| |
| efx_writeo(efx, &mc_hash->oword[0], FR_AB_MAC_MC_HASH_REG0); |
| efx_writeo(efx, &mc_hash->oword[1], FR_AB_MAC_MC_HASH_REG1); |
| } |
| |
| static void falcon_reset_macs(struct efx_nic *efx) |
| { |
| struct falcon_nic_data *nic_data = efx->nic_data; |
| efx_oword_t reg, mac_ctrl; |
| int count; |
| |
| if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) { |
| /* It's not safe to use GLB_CTL_REG to reset the |
| * macs, so instead use the internal MAC resets |
| */ |
| EFX_POPULATE_OWORD_1(reg, FRF_AB_XM_CORE_RST, 1); |
| efx_writeo(efx, ®, FR_AB_XM_GLB_CFG); |
| |
| for (count = 0; count < 10000; count++) { |
| efx_reado(efx, ®, FR_AB_XM_GLB_CFG); |
| if (EFX_OWORD_FIELD(reg, FRF_AB_XM_CORE_RST) == |
| 0) |
| return; |
| udelay(10); |
| } |
| |
| netif_err(efx, hw, efx->net_dev, |
| "timed out waiting for XMAC core reset\n"); |
| } |
| |
| /* Mac stats will fail whist the TX fifo is draining */ |
| WARN_ON(nic_data->stats_disable_count == 0); |
| |
| efx_reado(efx, &mac_ctrl, FR_AB_MAC_CTRL); |
| EFX_SET_OWORD_FIELD(mac_ctrl, FRF_BB_TXFIFO_DRAIN_EN, 1); |
| efx_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL); |
| |
| efx_reado(efx, ®, FR_AB_GLB_CTL); |
| EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGTX, 1); |
| EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGRX, 1); |
| EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_EM, 1); |
| efx_writeo(efx, ®, FR_AB_GLB_CTL); |
| |
| count = 0; |
| while (1) { |
| efx_reado(efx, ®, FR_AB_GLB_CTL); |
| if (!EFX_OWORD_FIELD(reg, FRF_AB_RST_XGTX) && |
| !EFX_OWORD_FIELD(reg, FRF_AB_RST_XGRX) && |
| !EFX_OWORD_FIELD(reg, FRF_AB_RST_EM)) { |
| netif_dbg(efx, hw, efx->net_dev, |
| "Completed MAC reset after %d loops\n", |
| count); |
| break; |
| } |
| if (count > 20) { |
| netif_err(efx, hw, efx->net_dev, "MAC reset failed\n"); |
| break; |
| } |
| count++; |
| udelay(10); |
| } |
| |
| /* Ensure the correct MAC is selected before statistics |
| * are re-enabled by the caller */ |
| efx_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL); |
| |
| falcon_setup_xaui(efx); |
| } |
| |
| static void falcon_drain_tx_fifo(struct efx_nic *efx) |
| { |
| efx_oword_t reg; |
| |
| if ((efx_nic_rev(efx) < EFX_REV_FALCON_B0) || |
| (efx->loopback_mode != LOOPBACK_NONE)) |
| return; |
| |
| efx_reado(efx, ®, FR_AB_MAC_CTRL); |
| /* There is no point in draining more than once */ |
| if (EFX_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN)) |
| return; |
| |
| falcon_reset_macs(efx); |
| } |
| |
| static void falcon_deconfigure_mac_wrapper(struct efx_nic *efx) |
| { |
| efx_oword_t reg; |
| |
| if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) |
| return; |
| |
| /* Isolate the MAC -> RX */ |
| efx_reado(efx, ®, FR_AZ_RX_CFG); |
| EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 0); |
| efx_writeo(efx, ®, FR_AZ_RX_CFG); |
| |
| /* Isolate TX -> MAC */ |
| falcon_drain_tx_fifo(efx); |
| } |
| |
| static void falcon_reconfigure_mac_wrapper(struct efx_nic *efx) |
| { |
| struct efx_link_state *link_state = &efx->link_state; |
| efx_oword_t reg; |
| int link_speed, isolate; |
| |
| isolate = !!ACCESS_ONCE(efx->reset_pending); |
| |
| switch (link_state->speed) { |
| case 10000: link_speed = 3; break; |
| case 1000: link_speed = 2; break; |
| case 100: link_speed = 1; break; |
| default: link_speed = 0; break; |
| } |
| |
| /* MAC_LINK_STATUS controls MAC backpressure but doesn't work |
| * as advertised. Disable to ensure packets are not |
| * indefinitely held and TX queue can be flushed at any point |
| * while the link is down. */ |
| EFX_POPULATE_OWORD_5(reg, |
| FRF_AB_MAC_XOFF_VAL, 0xffff /* max pause time */, |
| FRF_AB_MAC_BCAD_ACPT, 1, |
| FRF_AB_MAC_UC_PROM, !efx->unicast_filter, |
| FRF_AB_MAC_LINK_STATUS, 1, /* always set */ |
| FRF_AB_MAC_SPEED, link_speed); |
| /* On B0, MAC backpressure can be disabled and packets get |
| * discarded. */ |
| if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) { |
| EFX_SET_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN, |
| !link_state->up || isolate); |
| } |
| |
| efx_writeo(efx, ®, FR_AB_MAC_CTRL); |
| |
| /* Restore the multicast hash registers. */ |
| falcon_push_multicast_hash(efx); |
| |
| efx_reado(efx, ®, FR_AZ_RX_CFG); |
| /* Enable XOFF signal from RX FIFO (we enabled it during NIC |
| * initialisation but it may read back as 0) */ |
| EFX_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1); |
| /* Unisolate the MAC -> RX */ |
| if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) |
| EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, !isolate); |
| efx_writeo(efx, ®, FR_AZ_RX_CFG); |
| } |
| |
| static void falcon_stats_request(struct efx_nic *efx) |
| { |
| struct falcon_nic_data *nic_data = efx->nic_data; |
| efx_oword_t reg; |
| |
| WARN_ON(nic_data->stats_pending); |
| WARN_ON(nic_data->stats_disable_count); |
| |
| FALCON_XMAC_STATS_DMA_FLAG(efx) = 0; |
| nic_data->stats_pending = true; |
| wmb(); /* ensure done flag is clear */ |
| |
| /* Initiate DMA transfer of stats */ |
| EFX_POPULATE_OWORD_2(reg, |
| FRF_AB_MAC_STAT_DMA_CMD, 1, |
| FRF_AB_MAC_STAT_DMA_ADR, |
| efx->stats_buffer.dma_addr); |
| efx_writeo(efx, ®, FR_AB_MAC_STAT_DMA); |
| |
| mod_timer(&nic_data->stats_timer, round_jiffies_up(jiffies + HZ / 2)); |
| } |
| |
| static void falcon_stats_complete(struct efx_nic *efx) |
| { |
| struct falcon_nic_data *nic_data = efx->nic_data; |
| |
| if (!nic_data->stats_pending) |
| return; |
| |
| nic_data->stats_pending = false; |
| if (FALCON_XMAC_STATS_DMA_FLAG(efx)) { |
| rmb(); /* read the done flag before the stats */ |
| efx_nic_update_stats(falcon_stat_desc, FALCON_STAT_COUNT, |
| falcon_stat_mask, nic_data->stats, |
| efx->stats_buffer.addr, true); |
| } else { |
| netif_err(efx, hw, efx->net_dev, |
| "timed out waiting for statistics\n"); |
| } |
| } |
| |
| static void falcon_stats_timer_func(unsigned long context) |
| { |
| struct efx_nic *efx = (struct efx_nic *)context; |
| struct falcon_nic_data *nic_data = efx->nic_data; |
| |
| spin_lock(&efx->stats_lock); |
| |
| falcon_stats_complete(efx); |
| if (nic_data->stats_disable_count == 0) |
| falcon_stats_request(efx); |
| |
| spin_unlock(&efx->stats_lock); |
| } |
| |
| static bool falcon_loopback_link_poll(struct efx_nic *efx) |
| { |
| struct efx_link_state old_state = efx->link_state; |
| |
| WARN_ON(!mutex_is_locked(&efx->mac_lock)); |
| WARN_ON(!LOOPBACK_INTERNAL(efx)); |
| |
| efx->link_state.fd = true; |
| efx->link_state.fc = efx->wanted_fc; |
| efx->link_state.up = true; |
| efx->link_state.speed = 10000; |
| |
| return !efx_link_state_equal(&efx->link_state, &old_state); |
| } |
| |
| static int falcon_reconfigure_port(struct efx_nic *efx) |
| { |
| int rc; |
| |
| WARN_ON(efx_nic_rev(efx) > EFX_REV_FALCON_B0); |
| |
| /* Poll the PHY link state *before* reconfiguring it. This means we |
| * will pick up the correct speed (in loopback) to select the correct |
| * MAC. |
| */ |
| if (LOOPBACK_INTERNAL(efx)) |
| falcon_loopback_link_poll(efx); |
| else |
| efx->phy_op->poll(efx); |
| |
| falcon_stop_nic_stats(efx); |
| falcon_deconfigure_mac_wrapper(efx); |
| |
| falcon_reset_macs(efx); |
| |
| efx->phy_op->reconfigure(efx); |
| rc = falcon_reconfigure_xmac(efx); |
| BUG_ON(rc); |
| |
| falcon_start_nic_stats(efx); |
| |
| /* Synchronise efx->link_state with the kernel */ |
| efx_link_status_changed(efx); |
| |
| return 0; |
| } |
| |
| /* TX flow control may automatically turn itself off if the link |
| * partner (intermittently) stops responding to pause frames. There |
| * isn't any indication that this has happened, so the best we do is |
| * leave it up to the user to spot this and fix it by cycling transmit |
| * flow control on this end. |
| */ |
| |
| static void falcon_a1_prepare_enable_fc_tx(struct efx_nic *efx) |
| { |
| /* Schedule a reset to recover */ |
| efx_schedule_reset(efx, RESET_TYPE_INVISIBLE); |
| } |
| |
| static void falcon_b0_prepare_enable_fc_tx(struct efx_nic *efx) |
| { |
| /* Recover by resetting the EM block */ |
| falcon_stop_nic_stats(efx); |
| falcon_drain_tx_fifo(efx); |
| falcon_reconfigure_xmac(efx); |
| falcon_start_nic_stats(efx); |
| } |
| |
| /************************************************************************** |
| * |
| * PHY access via GMII |
| * |
| ************************************************************************** |
| */ |
| |
| /* Wait for GMII access to complete */ |
| static int falcon_gmii_wait(struct efx_nic *efx) |
| { |
| efx_oword_t md_stat; |
| int count; |
| |
| /* wait up to 50ms - taken max from datasheet */ |
| for (count = 0; count < 5000; count++) { |
| efx_reado(efx, &md_stat, FR_AB_MD_STAT); |
| if (EFX_OWORD_FIELD(md_stat, FRF_AB_MD_BSY) == 0) { |
| if (EFX_OWORD_FIELD(md_stat, FRF_AB_MD_LNFL) != 0 || |
| EFX_OWORD_FIELD(md_stat, FRF_AB_MD_BSERR) != 0) { |
| netif_err(efx, hw, efx->net_dev, |
| "error from GMII access " |
| EFX_OWORD_FMT"\n", |
| EFX_OWORD_VAL(md_stat)); |
| return -EIO; |
| } |
| return 0; |
| } |
| udelay(10); |
| } |
| netif_err(efx, hw, efx->net_dev, "timed out waiting for GMII\n"); |
| return -ETIMEDOUT; |
| } |
| |
| /* Write an MDIO register of a PHY connected to Falcon. */ |
| static int falcon_mdio_write(struct net_device *net_dev, |
| int prtad, int devad, u16 addr, u16 value) |
| { |
| struct efx_nic *efx = netdev_priv(net_dev); |
| struct falcon_nic_data *nic_data = efx->nic_data; |
| efx_oword_t reg; |
| int rc; |
| |
| netif_vdbg(efx, hw, efx->net_dev, |
| "writing MDIO %d register %d.%d with 0x%04x\n", |
| prtad, devad, addr, value); |
| |
| mutex_lock(&nic_data->mdio_lock); |
| |
| /* Check MDIO not currently being accessed */ |
| rc = falcon_gmii_wait(efx); |
| if (rc) |
| goto out; |
| |
| /* Write the address/ID register */ |
| EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr); |
| efx_writeo(efx, ®, FR_AB_MD_PHY_ADR); |
| |
| EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad, |
| FRF_AB_MD_DEV_ADR, devad); |
| efx_writeo(efx, ®, FR_AB_MD_ID); |
| |
| /* Write data */ |
| EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_TXD, value); |
| efx_writeo(efx, ®, FR_AB_MD_TXD); |
| |
| EFX_POPULATE_OWORD_2(reg, |
| FRF_AB_MD_WRC, 1, |
| FRF_AB_MD_GC, 0); |
| efx_writeo(efx, ®, FR_AB_MD_CS); |
| |
| /* Wait for data to be written */ |
| rc = falcon_gmii_wait(efx); |
| if (rc) { |
| /* Abort the write operation */ |
| EFX_POPULATE_OWORD_2(reg, |
| FRF_AB_MD_WRC, 0, |
| FRF_AB_MD_GC, 1); |
| efx_writeo(efx, ®, FR_AB_MD_CS); |
| udelay(10); |
| } |
| |
| out: |
| mutex_unlock(&nic_data->mdio_lock); |
| return rc; |
| } |
| |
| /* Read an MDIO register of a PHY connected to Falcon. */ |
| static int falcon_mdio_read(struct net_device *net_dev, |
| int prtad, int devad, u16 addr) |
| { |
| struct efx_nic *efx = netdev_priv(net_dev); |
| struct falcon_nic_data *nic_data = efx->nic_data; |
| efx_oword_t reg; |
| int rc; |
| |
| mutex_lock(&nic_data->mdio_lock); |
| |
| /* Check MDIO not currently being accessed */ |
| rc = falcon_gmii_wait(efx); |
| if (rc) |
| goto out; |
| |
| EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr); |
| efx_writeo(efx, ®, FR_AB_MD_PHY_ADR); |
| |
| EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad, |
| FRF_AB_MD_DEV_ADR, devad); |
| efx_writeo(efx, ®, FR_AB_MD_ID); |
| |
| /* Request data to be read */ |
| EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_RDC, 1, FRF_AB_MD_GC, 0); |
| efx_writeo(efx, ®, FR_AB_MD_CS); |
| |
| /* Wait for data to become available */ |
| rc = falcon_gmii_wait(efx); |
| if (rc == 0) { |
| efx_reado(efx, ®, FR_AB_MD_RXD); |
| rc = EFX_OWORD_FIELD(reg, FRF_AB_MD_RXD); |
| netif_vdbg(efx, hw, efx->net_dev, |
| "read from MDIO %d register %d.%d, got %04x\n", |
| prtad, devad, addr, rc); |
| } else { |
| /* Abort the read operation */ |
| EFX_POPULATE_OWORD_2(reg, |
| FRF_AB_MD_RIC, 0, |
| FRF_AB_MD_GC, 1); |
| efx_writeo(efx, ®, FR_AB_MD_CS); |
| |
| netif_dbg(efx, hw, efx->net_dev, |
| "read from MDIO %d register %d.%d, got error %d\n", |
| prtad, devad, addr, rc); |
| } |
| |
| out: |
| mutex_unlock(&nic_data->mdio_lock); |
| return rc; |
| } |
| |
| /* This call is responsible for hooking in the MAC and PHY operations */ |
| static int falcon_probe_port(struct efx_nic *efx) |
| { |
| struct falcon_nic_data *nic_data = efx->nic_data; |
| int rc; |
| |
| switch (efx->phy_type) { |
| case PHY_TYPE_SFX7101: |
| efx->phy_op = &falcon_sfx7101_phy_ops; |
| break; |
| case PHY_TYPE_QT2022C2: |
| case PHY_TYPE_QT2025C: |
| efx->phy_op = &falcon_qt202x_phy_ops; |
| break; |
| case PHY_TYPE_TXC43128: |
| efx->phy_op = &falcon_txc_phy_ops; |
| break; |
| default: |
| netif_err(efx, probe, efx->net_dev, "Unknown PHY type %d\n", |
| efx->phy_type); |
| return -ENODEV; |
| } |
| |
| /* Fill out MDIO structure and loopback modes */ |
| mutex_init(&nic_data->mdio_lock); |
| efx->mdio.mdio_read = falcon_mdio_read; |
| efx->mdio.mdio_write = falcon_mdio_write; |
| rc = efx->phy_op->probe(efx); |
| if (rc != 0) |
| return rc; |
| |
| /* Initial assumption */ |
| efx->link_state.speed = 10000; |
| efx->link_state.fd = true; |
| |
| /* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */ |
| if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) |
| efx->wanted_fc = EFX_FC_RX | EFX_FC_TX; |
| else |
| efx->wanted_fc = EFX_FC_RX; |
| if (efx->mdio.mmds & MDIO_DEVS_AN) |
| efx->wanted_fc |= EFX_FC_AUTO; |
| |
| /* Allocate buffer for stats */ |
| rc = efx_nic_alloc_buffer(efx, &efx->stats_buffer, |
| FALCON_MAC_STATS_SIZE, GFP_KERNEL); |
| if (rc) |
| return rc; |
| netif_dbg(efx, probe, efx->net_dev, |
| "stats buffer at %llx (virt %p phys %llx)\n", |
| (u64)efx->stats_buffer.dma_addr, |
| efx->stats_buffer.addr, |
| (u64)virt_to_phys(efx->stats_buffer.addr)); |
| |
| return 0; |
| } |
| |
| static void falcon_remove_port(struct efx_nic *efx) |
| { |
| efx->phy_op->remove(efx); |
| efx_nic_free_buffer(efx, &efx->stats_buffer); |
| } |
| |
| /* Global events are basically PHY events */ |
| static bool |
| falcon_handle_global_event(struct efx_channel *channel, efx_qword_t *event) |
| { |
| struct efx_nic *efx = channel->efx; |
| struct falcon_nic_data *nic_data = efx->nic_data; |
| |
| if (EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_G_PHY0_INTR) || |
| EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XG_PHY0_INTR) || |
| EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XFP_PHY0_INTR)) |
| /* Ignored */ |
| return true; |
| |
| if ((efx_nic_rev(efx) == EFX_REV_FALCON_B0) && |
| EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_XG_MGT_INTR)) { |
| nic_data->xmac_poll_required = true; |
| return true; |
| } |
| |
| if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1 ? |
| EFX_QWORD_FIELD(*event, FSF_AA_GLB_EV_RX_RECOVERY) : |
| EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_RX_RECOVERY)) { |
| netif_err(efx, rx_err, efx->net_dev, |
| "channel %d seen global RX_RESET event. Resetting.\n", |
| channel->channel); |
| |
| atomic_inc(&efx->rx_reset); |
| efx_schedule_reset(efx, EFX_WORKAROUND_6555(efx) ? |
| RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /************************************************************************** |
| * |
| * Falcon test code |
| * |
| **************************************************************************/ |
| |
| static int |
| falcon_read_nvram(struct efx_nic *efx, struct falcon_nvconfig *nvconfig_out) |
| { |
| struct falcon_nic_data *nic_data = efx->nic_data; |
| struct falcon_nvconfig *nvconfig; |
| struct falcon_spi_device *spi; |
| void *region; |
| int rc, magic_num, struct_ver; |
| __le16 *word, *limit; |
| u32 csum; |
| |
| if (falcon_spi_present(&nic_data->spi_flash)) |
| spi = &nic_data->spi_flash; |
| else if (falcon_spi_present(&nic_data->spi_eeprom)) |
| spi = &nic_data->spi_eeprom; |
| else |
| return -EINVAL; |
| |
| region = kmalloc(FALCON_NVCONFIG_END, GFP_KERNEL); |
| if (!region) |
| return -ENOMEM; |
| nvconfig = region + FALCON_NVCONFIG_OFFSET; |
| |
| mutex_lock(&nic_data->spi_lock); |
| rc = falcon_spi_read(efx, spi, 0, FALCON_NVCONFIG_END, NULL, region); |
| mutex_unlock(&nic_data->spi_lock); |
| if (rc) { |
| netif_err(efx, hw, efx->net_dev, "Failed to read %s\n", |
| falcon_spi_present(&nic_data->spi_flash) ? |
| "flash" : "EEPROM"); |
| rc = -EIO; |
| goto out; |
| } |
| |
| magic_num = le16_to_cpu(nvconfig->board_magic_num); |
| struct_ver = le16_to_cpu(nvconfig->board_struct_ver); |
| |
| rc = -EINVAL; |
| if (magic_num != FALCON_NVCONFIG_BOARD_MAGIC_NUM) { |
| netif_err(efx, hw, efx->net_dev, |
| "NVRAM bad magic 0x%x\n", magic_num); |
| goto out; |
| } |
| if (struct_ver < 2) { |
| netif_err(efx, hw, efx->net_dev, |
| "NVRAM has ancient version 0x%x\n", struct_ver); |
| goto out; |
| } else if (struct_ver < 4) { |
| word = &nvconfig->board_magic_num; |
| limit = (__le16 *) (nvconfig + 1); |
| } else { |
| word = region; |
| limit = region + FALCON_NVCONFIG_END; |
| } |
| for (csum = 0; word < limit; ++word) |
| csum += le16_to_cpu(*word); |
| |
| if (~csum & 0xffff) { |
| netif_err(efx, hw, efx->net_dev, |
| "NVRAM has incorrect checksum\n"); |
| goto out; |
| } |
| |
| rc = 0; |
| if (nvconfig_out) |
| memcpy(nvconfig_out, nvconfig, sizeof(*nvconfig)); |
| |
| out: |
| kfree(region); |
| return rc; |
| } |
| |
| static int falcon_test_nvram(struct efx_nic *efx) |
| { |
| return falcon_read_nvram(efx, NULL); |
| } |
| |
| static const struct efx_farch_register_test falcon_b0_register_tests[] = { |
| { FR_AZ_ADR_REGION, |
| EFX_OWORD32(0x0003FFFF, 0x0003FFFF, 0x0003FFFF, 0x0003FFFF) }, |
| { FR_AZ_RX_CFG, |
| EFX_OWORD32(0xFFFFFFFE, 0x00017FFF, 0x00000000, 0x00000000) }, |
| { FR_AZ_TX_CFG, |
| EFX_OWORD32(0x7FFF0037, 0x00000000, 0x00000000, 0x00000000) }, |
| { FR_AZ_TX_RESERVED, |
| EFX_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) }, |
| { FR_AB_MAC_CTRL, |
| EFX_OWORD32(0xFFFF0000, 0x00000000, 0x00000000, 0x00000000) }, |
| { FR_AZ_SRM_TX_DC_CFG, |
| EFX_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) }, |
| { FR_AZ_RX_DC_CFG, |
| EFX_OWORD32(0x0000000F, 0x00000000, 0x00000000, 0x00000000) }, |
| { FR_AZ_RX_DC_PF_WM, |
| EFX_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) }, |
| { FR_BZ_DP_CTRL, |
| EFX_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) }, |
| { FR_AB_GM_CFG2, |
| EFX_OWORD32(0x00007337, 0x00000000, 0x00000000, 0x00000000) }, |
| { FR_AB_GMF_CFG0, |
| EFX_OWORD32(0x00001F1F, 0x00000000, 0x00000000, 0x00000000) }, |
| { FR_AB_XM_GLB_CFG, |
| EFX_OWORD32(0x00000C68, 0x00000000, 0x00000000, 0x00000000) }, |
| { FR_AB_XM_TX_CFG, |
| EFX_OWORD32(0x00080164, 0x00000000, 0x00000000, 0x00000000) }, |
| { FR_AB_XM_RX_CFG, |
| EFX_OWORD32(0x07100A0C, 0x00000000, 0x00000000, 0x00000000) }, |
| { FR_AB_XM_RX_PARAM, |
| EFX_OWORD32(0x00001FF8, 0x00000000, 0x00000000, 0x00000000) }, |
| { FR_AB_XM_FC, |
| EFX_OWORD32(0xFFFF0001, 0x00000000, 0x00000000, 0x00000000) }, |
| { FR_AB_XM_ADR_LO, |
| EFX_OWORD32(0xFFFFFFFF, 0x00000000, 0x00000000, 0x00000000) }, |
| { FR_AB_XX_SD_CTL, |
| EFX_OWORD32(0x0003FF0F, 0x00000000, 0x00000000, 0x00000000) }, |
| }; |
| |
| static int |
| falcon_b0_test_chip(struct efx_nic *efx, struct efx_self_tests *tests) |
| { |
| enum reset_type reset_method = RESET_TYPE_INVISIBLE; |
| int rc, rc2; |
| |
| mutex_lock(&efx->mac_lock); |
| if (efx->loopback_modes) { |
| /* We need the 312 clock from the PHY to test the XMAC |
| * registers, so move into XGMII loopback if available */ |
| if (efx->loopback_modes & (1 << LOOPBACK_XGMII)) |
| efx->loopback_mode = LOOPBACK_XGMII; |
| else |
| efx->loopback_mode = __ffs(efx->loopback_modes); |
| } |
| __efx_reconfigure_port(efx); |
| mutex_unlock(&efx->mac_lock); |
| |
| efx_reset_down(efx, reset_method); |
| |
| tests->registers = |
| efx_farch_test_registers(efx, falcon_b0_register_tests, |
| ARRAY_SIZE(falcon_b0_register_tests)) |
| ? -1 : 1; |
| |
| rc = falcon_reset_hw(efx, reset_method); |
| rc2 = efx_reset_up(efx, reset_method, rc == 0); |
| return rc ? rc : rc2; |
| } |
| |
| /************************************************************************** |
| * |
| * Device reset |
| * |
| ************************************************************************** |
| */ |
| |
| static enum reset_type falcon_map_reset_reason(enum reset_type reason) |
| { |
| switch (reason) { |
| case RESET_TYPE_RX_RECOVERY: |
| case RESET_TYPE_DMA_ERROR: |
| case RESET_TYPE_TX_SKIP: |
| /* These can occasionally occur due to hardware bugs. |
| * We try to reset without disrupting the link. |
| */ |
| return RESET_TYPE_INVISIBLE; |
| default: |
| return RESET_TYPE_ALL; |
| } |
| } |
| |
| static int falcon_map_reset_flags(u32 *flags) |
| { |
| enum { |
| FALCON_RESET_INVISIBLE = (ETH_RESET_DMA | ETH_RESET_FILTER | |
| ETH_RESET_OFFLOAD | ETH_RESET_MAC), |
| FALCON_RESET_ALL = FALCON_RESET_INVISIBLE | ETH_RESET_PHY, |
| FALCON_RESET_WORLD = FALCON_RESET_ALL | ETH_RESET_IRQ, |
| }; |
| |
| if ((*flags & FALCON_RESET_WORLD) == FALCON_RESET_WORLD) { |
| *flags &= ~FALCON_RESET_WORLD; |
| return RESET_TYPE_WORLD; |
| } |
| |
| if ((*flags & FALCON_RESET_ALL) == FALCON_RESET_ALL) { |
| *flags &= ~FALCON_RESET_ALL; |
| return RESET_TYPE_ALL; |
| } |
| |
| if ((*flags & FALCON_RESET_INVISIBLE) == FALCON_RESET_INVISIBLE) { |
| *flags &= ~FALCON_RESET_INVISIBLE; |
| return RESET_TYPE_INVISIBLE; |
| } |
| |
| return -EINVAL; |
| } |
| |
| /* Resets NIC to known state. This routine must be called in process |
| * context and is allowed to sleep. */ |
| static int __falcon_reset_hw(struct efx_nic *efx, enum reset_type method) |
| { |
| struct falcon_nic_data *nic_data = efx->nic_data; |
| efx_oword_t glb_ctl_reg_ker; |
| int rc; |
| |
| netif_dbg(efx, hw, efx->net_dev, "performing %s hardware reset\n", |
| RESET_TYPE(method)); |
| |
| /* Initiate device reset */ |
| if (method == RESET_TYPE_WORLD) { |
| rc = pci_save_state(efx->pci_dev); |
| if (rc) { |
| netif_err(efx, drv, efx->net_dev, |
| "failed to backup PCI state of primary " |
| "function prior to hardware reset\n"); |
| goto fail1; |
| } |
| if (efx_nic_is_dual_func(efx)) { |
| rc = pci_save_state(nic_data->pci_dev2); |
| if (rc) { |
| netif_err(efx, drv, efx->net_dev, |
| "failed to backup PCI state of " |
| "secondary function prior to " |
| "hardware reset\n"); |
| goto fail2; |
| } |
| } |
| |
| EFX_POPULATE_OWORD_2(glb_ctl_reg_ker, |
| FRF_AB_EXT_PHY_RST_DUR, |
| FFE_AB_EXT_PHY_RST_DUR_10240US, |
| FRF_AB_SWRST, 1); |
| } else { |
| EFX_POPULATE_OWORD_7(glb_ctl_reg_ker, |
| /* exclude PHY from "invisible" reset */ |
| FRF_AB_EXT_PHY_RST_CTL, |
| method == RESET_TYPE_INVISIBLE, |
| /* exclude EEPROM/flash and PCIe */ |
| FRF_AB_PCIE_CORE_RST_CTL, 1, |
| FRF_AB_PCIE_NSTKY_RST_CTL, 1, |
| FRF_AB_PCIE_SD_RST_CTL, 1, |
| FRF_AB_EE_RST_CTL, 1, |
| FRF_AB_EXT_PHY_RST_DUR, |
| FFE_AB_EXT_PHY_RST_DUR_10240US, |
| FRF_AB_SWRST, 1); |
| } |
| efx_writeo(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL); |
| |
| netif_dbg(efx, hw, efx->net_dev, "waiting for hardware reset\n"); |
| schedule_timeout_uninterruptible(HZ / 20); |
| |
| /* Restore PCI configuration if needed */ |
| if (method == RESET_TYPE_WORLD) { |
| if (efx_nic_is_dual_func(efx)) |
| pci_restore_state(nic_data->pci_dev2); |
| pci_restore_state(efx->pci_dev); |
| netif_dbg(efx, drv, efx->net_dev, |
| "successfully restored PCI config\n"); |
| } |
| |
| /* Assert that reset complete */ |
| efx_reado(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL); |
| if (EFX_OWORD_FIELD(glb_ctl_reg_ker, FRF_AB_SWRST) != 0) { |
| rc = -ETIMEDOUT; |
| netif_err(efx, hw, efx->net_dev, |
| "timed out waiting for hardware reset\n"); |
| goto fail3; |
| } |
| netif_dbg(efx, hw, efx->net_dev, "hardware reset complete\n"); |
| |
| return 0; |
| |
| /* pci_save_state() and pci_restore_state() MUST be called in pairs */ |
| fail2: |
| pci_restore_state(efx->pci_dev); |
| fail1: |
| fail3: |
| return rc; |
| } |
| |
| static int falcon_reset_hw(struct efx_nic *efx, enum reset_type method) |
| { |
| struct falcon_nic_data *nic_data = efx->nic_data; |
| int rc; |
| |
| mutex_lock(&nic_data->spi_lock); |
| rc = __falcon_reset_hw(efx, method); |
| mutex_unlock(&nic_data->spi_lock); |
| |
| return rc; |
| } |
| |
| static void falcon_monitor(struct efx_nic *efx) |
| { |
| bool link_changed; |
| int rc; |
| |
| BUG_ON(!mutex_is_locked(&efx->mac_lock)); |
| |
| rc = falcon_board(efx)->type->monitor(efx); |
| if (rc) { |
| netif_err(efx, hw, efx->net_dev, |
| "Board sensor %s; shutting down PHY\n", |
| (rc == -ERANGE) ? "reported fault" : "failed"); |
| efx->phy_mode |= PHY_MODE_LOW_POWER; |
| rc = __efx_reconfigure_port(efx); |
| WARN_ON(rc); |
| } |
| |
| if (LOOPBACK_INTERNAL(efx)) |
| link_changed = falcon_loopback_link_poll(efx); |
| else |
| link_changed = efx->phy_op->poll(efx); |
| |
| if (link_changed) { |
| falcon_stop_nic_stats(efx); |
| falcon_deconfigure_mac_wrapper(efx); |
| |
| falcon_reset_macs(efx); |
| rc = falcon_reconfigure_xmac(efx); |
| BUG_ON(rc); |
| |
| falcon_start_nic_stats(efx); |
| |
| efx_link_status_changed(efx); |
| } |
| |
| falcon_poll_xmac(efx); |
| } |
| |
| /* Zeroes out the SRAM contents. This routine must be called in |
| * process context and is allowed to sleep. |
| */ |
| static int falcon_reset_sram(struct efx_nic *efx) |
| { |
| efx_oword_t srm_cfg_reg_ker, gpio_cfg_reg_ker; |
| int count; |
| |
| /* Set the SRAM wake/sleep GPIO appropriately. */ |
| efx_reado(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL); |
| EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OEN, 1); |
| EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OUT, 1); |
| efx_writeo(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL); |
| |
| /* Initiate SRAM reset */ |
| EFX_POPULATE_OWORD_2(srm_cfg_reg_ker, |
| FRF_AZ_SRM_INIT_EN, 1, |
| FRF_AZ_SRM_NB_SZ, 0); |
| efx_writeo(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG); |
| |
| /* Wait for SRAM reset to complete */ |
| count = 0; |
| do { |
| netif_dbg(efx, hw, efx->net_dev, |
| "waiting for SRAM reset (attempt %d)...\n", count); |
| |
| /* SRAM reset is slow; expect around 16ms */ |
| schedule_timeout_uninterruptible(HZ / 50); |
| |
| /* Check for reset complete */ |
| efx_reado(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG); |
| if (!EFX_OWORD_FIELD(srm_cfg_reg_ker, FRF_AZ_SRM_INIT_EN)) { |
| netif_dbg(efx, hw, efx->net_dev, |
| "SRAM reset complete\n"); |
| |
| return 0; |
| } |
| } while (++count < 20); /* wait up to 0.4 sec */ |
| |
| netif_err(efx, hw, efx->net_dev, "timed out waiting for SRAM reset\n"); |
| return -ETIMEDOUT; |
| } |
| |
| static void falcon_spi_device_init(struct efx_nic *efx, |
| struct falcon_spi_device *spi_device, |
| unsigned int device_id, u32 device_type) |
| { |
| if (device_type != 0) { |
| spi_device->device_id = device_id; |
| spi_device->size = |
| 1 << SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_SIZE); |
| spi_device->addr_len = |
| SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ADDR_LEN); |
| spi_device->munge_address = (spi_device->size == 1 << 9 && |
| spi_device->addr_len == 1); |
| spi_device->erase_command = |
| SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ERASE_CMD); |
| spi_device->erase_size = |
| 1 << SPI_DEV_TYPE_FIELD(device_type, |
| SPI_DEV_TYPE_ERASE_SIZE); |
| spi_device->block_size = |
| 1 << SPI_DEV_TYPE_FIELD(device_type, |
| SPI_DEV_TYPE_BLOCK_SIZE); |
| } else { |
| spi_device->size = 0; |
| } |
| } |
| |
| /* Extract non-volatile configuration */ |
| static int falcon_probe_nvconfig(struct efx_nic *efx) |
| { |
| struct falcon_nic_data *nic_data = efx->nic_data; |
| struct falcon_nvconfig *nvconfig; |
| int rc; |
| |
| nvconfig = kmalloc(sizeof(*nvconfig), GFP_KERNEL); |
| if (!nvconfig) |
| return -ENOMEM; |
| |
| rc = falcon_read_nvram(efx, nvconfig); |
| if (rc) |
| goto out; |
| |
| efx->phy_type = nvconfig->board_v2.port0_phy_type; |
| efx->mdio.prtad = nvconfig->board_v2.port0_phy_addr; |
| |
| if (le16_to_cpu(nvconfig->board_struct_ver) >= 3) { |
| falcon_spi_device_init( |
| efx, &nic_data->spi_flash, FFE_AB_SPI_DEVICE_FLASH, |
| le32_to_cpu(nvconfig->board_v3 |
| .spi_device_type[FFE_AB_SPI_DEVICE_FLASH])); |
| falcon_spi_device_init( |
| efx, &nic_data->spi_eeprom, FFE_AB_SPI_DEVICE_EEPROM, |
| le32_to_cpu(nvconfig->board_v3 |
| .spi_device_type[FFE_AB_SPI_DEVICE_EEPROM])); |
| } |
| |
| /* Read the MAC addresses */ |
| memcpy(efx->net_dev->perm_addr, nvconfig->mac_address[0], ETH_ALEN); |
| |
| netif_dbg(efx, probe, efx->net_dev, "PHY is %d phy_id %d\n", |
| efx->phy_type, efx->mdio.prtad); |
| |
| rc = falcon_probe_board(efx, |
| le16_to_cpu(nvconfig->board_v2.board_revision)); |
| out: |
| kfree(nvconfig); |
| return rc; |
| } |
| |
| static int falcon_dimension_resources(struct efx_nic *efx) |
| { |
| efx->rx_dc_base = 0x20000; |
| efx->tx_dc_base = 0x26000; |
| return 0; |
| } |
| |
| /* Probe all SPI devices on the NIC */ |
| static void falcon_probe_spi_devices(struct efx_nic *efx) |
| { |
| struct falcon_nic_data *nic_data = efx->nic_data; |
| efx_oword_t nic_stat, gpio_ctl, ee_vpd_cfg; |
| int boot_dev; |
| |
| efx_reado(efx, &gpio_ctl, FR_AB_GPIO_CTL); |
| efx_reado(efx, &nic_stat, FR_AB_NIC_STAT); |
| efx_reado(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0); |
| |
| if (EFX_OWORD_FIELD(gpio_ctl, FRF_AB_GPIO3_PWRUP_VALUE)) { |
| boot_dev = (EFX_OWORD_FIELD(nic_stat, FRF_AB_SF_PRST) ? |
| FFE_AB_SPI_DEVICE_FLASH : FFE_AB_SPI_DEVICE_EEPROM); |
| netif_dbg(efx, probe, efx->net_dev, "Booted from %s\n", |
| boot_dev == FFE_AB_SPI_DEVICE_FLASH ? |
| "flash" : "EEPROM"); |
| } else { |
| /* Disable VPD and set clock dividers to safe |
| * values for initial programming. */ |
| boot_dev = -1; |
| netif_dbg(efx, probe, efx->net_dev, |
| "Booted from internal ASIC settings;" |
| " setting SPI config\n"); |
| EFX_POPULATE_OWORD_3(ee_vpd_cfg, FRF_AB_EE_VPD_EN, 0, |
| /* 125 MHz / 7 ~= 20 MHz */ |
| FRF_AB_EE_SF_CLOCK_DIV, 7, |
| /* 125 MHz / 63 ~= 2 MHz */ |
| FRF_AB_EE_EE_CLOCK_DIV, 63); |
| efx_writeo(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0); |
| } |
| |
| mutex_init(&nic_data->spi_lock); |
| |
| if (boot_dev == FFE_AB_SPI_DEVICE_FLASH) |
| falcon_spi_device_init(efx, &nic_data->spi_flash, |
| FFE_AB_SPI_DEVICE_FLASH, |
| default_flash_type); |
| if (boot_dev == FFE_AB_SPI_DEVICE_EEPROM) |
| falcon_spi_device_init(efx, &nic_data->spi_eeprom, |
| FFE_AB_SPI_DEVICE_EEPROM, |
| large_eeprom_type); |
| } |
| |
| static unsigned int falcon_a1_mem_map_size(struct efx_nic *efx) |
| { |
| return 0x20000; |
| } |
| |
| static unsigned int falcon_b0_mem_map_size(struct efx_nic *efx) |
| { |
| /* Map everything up to and including the RSS indirection table. |
| * The PCI core takes care of mapping the MSI-X tables. |
| */ |
| return FR_BZ_RX_INDIRECTION_TBL + |
| FR_BZ_RX_INDIRECTION_TBL_STEP * FR_BZ_RX_INDIRECTION_TBL_ROWS; |
| } |
| |
| static int falcon_probe_nic(struct efx_nic *efx) |
| { |
| struct falcon_nic_data *nic_data; |
| struct falcon_board *board; |
| int rc; |
| |
| efx->primary = efx; /* only one usable function per controller */ |
| |
| /* Allocate storage for hardware specific data */ |
| nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL); |
| if (!nic_data) |
| return -ENOMEM; |
| efx->nic_data = nic_data; |
| |
| rc = -ENODEV; |
| |
| if (efx_farch_fpga_ver(efx) != 0) { |
| netif_err(efx, probe, efx->net_dev, |
| "Falcon FPGA not supported\n"); |
| goto fail1; |
| } |
| |
| if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1) { |
| efx_oword_t nic_stat; |
| struct pci_dev *dev; |
| u8 pci_rev = efx->pci_dev->revision; |
| |
| if ((pci_rev == 0xff) || (pci_rev == 0)) { |
| netif_err(efx, probe, efx->net_dev, |
| "Falcon rev A0 not supported\n"); |
| goto fail1; |
| } |
| efx_reado(efx, &nic_stat, FR_AB_NIC_STAT); |
| if (EFX_OWORD_FIELD(nic_stat, FRF_AB_STRAP_10G) == 0) { |
| netif_err(efx, probe, efx->net_dev, |
| "Falcon rev A1 1G not supported\n"); |
| goto fail1; |
| } |
| if (EFX_OWORD_FIELD(nic_stat, FRF_AA_STRAP_PCIE) == 0) { |
| netif_err(efx, probe, efx->net_dev, |
| "Falcon rev A1 PCI-X not supported\n"); |
| goto fail1; |
| } |
| |
| dev = pci_dev_get(efx->pci_dev); |
| while ((dev = pci_get_device(PCI_VENDOR_ID_SOLARFLARE, |
| PCI_DEVICE_ID_SOLARFLARE_SFC4000A_1, |
| dev))) { |
| if (dev->bus == efx->pci_dev->bus && |
| dev->devfn == efx->pci_dev->devfn + 1) { |
| nic_data->pci_dev2 = dev; |
| break; |
| } |
| } |
| if (!nic_data->pci_dev2) { |
| netif_err(efx, probe, efx->net_dev, |
| "failed to find secondary function\n"); |
| rc = -ENODEV; |
| goto fail2; |
| } |
| } |
| |
| /* Now we can reset the NIC */ |
| rc = __falcon_reset_hw(efx, RESET_TYPE_ALL); |
| if (rc) { |
| netif_err(efx, probe, efx->net_dev, "failed to reset NIC\n"); |
| goto fail3; |
| } |
| |
| /* Allocate memory for INT_KER */ |
| rc = efx_nic_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t), |
| GFP_KERNEL); |
| if (rc) |
| goto fail4; |
| BUG_ON(efx->irq_status.dma_addr & 0x0f); |
| |
| netif_dbg(efx, probe, efx->net_dev, |
| "INT_KER at %llx (virt %p phys %llx)\n", |
| (u64)efx->irq_status.dma_addr, |
| efx->irq_status.addr, |
| (u64)virt_to_phys(efx->irq_status.addr)); |
| |
| falcon_probe_spi_devices(efx); |
| |
| /* Read in the non-volatile configuration */ |
| rc = falcon_probe_nvconfig(efx); |
| if (rc) { |
| if (rc == -EINVAL) |
| netif_err(efx, probe, efx->net_dev, "NVRAM is invalid\n"); |
| goto fail5; |
| } |
| |
| efx->max_channels = (efx_nic_rev(efx) <= EFX_REV_FALCON_A1 ? 4 : |
| EFX_MAX_CHANNELS); |
| efx->timer_quantum_ns = 4968; /* 621 cycles */ |
| |
| /* Initialise I2C adapter */ |
| board = falcon_board(efx); |
| board->i2c_adap.owner = THIS_MODULE; |
| board->i2c_data = falcon_i2c_bit_operations; |
| board->i2c_data.data = efx; |
| board->i2c_adap.algo_data = &board->i2c_data; |
| board->i2c_adap.dev.parent = &efx->pci_dev->dev; |
| strlcpy(board->i2c_adap.name, "SFC4000 GPIO", |
| sizeof(board->i2c_adap.name)); |
| rc = i2c_bit_add_bus(&board->i2c_adap); |
| if (rc) |
| goto fail5; |
| |
| rc = falcon_board(efx)->type->init(efx); |
| if (rc) { |
| netif_err(efx, probe, efx->net_dev, |
| "failed to initialise board\n"); |
| goto fail6; |
| } |
| |
| nic_data->stats_disable_count = 1; |
| setup_timer(&nic_data->stats_timer, &falcon_stats_timer_func, |
| (unsigned long)efx); |
| |
| return 0; |
| |
| fail6: |
| i2c_del_adapter(&board->i2c_adap); |
| memset(&board->i2c_adap, 0, sizeof(board->i2c_adap)); |
| fail5: |
| efx_nic_free_buffer(efx, &efx->irq_status); |
| fail4: |
| fail3: |
| if (nic_data->pci_dev2) { |
| pci_dev_put(nic_data->pci_dev2); |
| nic_data->pci_dev2 = NULL; |
| } |
| fail2: |
| fail1: |
| kfree(efx->nic_data); |
| return rc; |
| } |
| |
| static void falcon_init_rx_cfg(struct efx_nic *efx) |
| { |
| /* RX control FIFO thresholds (32 entries) */ |
| const unsigned ctrl_xon_thr = 20; |
| const unsigned ctrl_xoff_thr = 25; |
| efx_oword_t reg; |
| |
| efx_reado(efx, ®, FR_AZ_RX_CFG); |
| if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1) { |
| /* Data FIFO size is 5.5K. The RX DMA engine only |
| * supports scattering for user-mode queues, but will |
| * split DMA writes at intervals of RX_USR_BUF_SIZE |
| * (32-byte units) even for kernel-mode queues. We |
| * set it to be so large that that never happens. |
| */ |
| EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_DESC_PUSH_EN, 0); |
| EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_USR_BUF_SIZE, |
| (3 * 4096) >> 5); |
| EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_MAC_TH, 512 >> 8); |
| EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_MAC_TH, 2048 >> 8); |
| EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_TX_TH, ctrl_xon_thr); |
| EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_TX_TH, ctrl_xoff_thr); |
| } else { |
| /* Data FIFO size is 80K; register fields moved */ |
| EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_DESC_PUSH_EN, 0); |
| EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_USR_BUF_SIZE, |
| EFX_RX_USR_BUF_SIZE >> 5); |
| /* Send XON and XOFF at ~3 * max MTU away from empty/full */ |
| EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_MAC_TH, 27648 >> 8); |
| EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_MAC_TH, 54272 >> 8); |
| EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_TX_TH, ctrl_xon_thr); |
| EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_TX_TH, ctrl_xoff_thr); |
| EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 1); |
| |
| /* Enable hash insertion. This is broken for the |
| * 'Falcon' hash so also select Toeplitz TCP/IPv4 and |
| * IPv4 hashes. */ |
| EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_HASH_INSRT_HDR, 1); |
| EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_HASH_ALG, 1); |
| EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_IP_HASH, 1); |
| } |
| /* Always enable XOFF signal from RX FIFO. We enable |
| * or disable transmission of pause frames at the MAC. */ |
| EFX_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1); |
| efx_writeo(efx, ®, FR_AZ_RX_CFG); |
| } |
| |
| /* This call performs hardware-specific global initialisation, such as |
| * defining the descriptor cache sizes and number of RSS channels. |
| * It does not set up any buffers, descriptor rings or event queues. |
| */ |
| static int falcon_init_nic(struct efx_nic *efx) |
| { |
| efx_oword_t temp; |
| int rc; |
| |
| /* Use on-chip SRAM */ |
| efx_reado(efx, &temp, FR_AB_NIC_STAT); |
| EFX_SET_OWORD_FIELD(temp, FRF_AB_ONCHIP_SRAM, 1); |
| efx_writeo(efx, &temp, FR_AB_NIC_STAT); |
| |
| rc = falcon_reset_sram(efx); |
| if (rc) |
| return rc; |
| |
| /* Clear the parity enables on the TX data fifos as |
| * they produce false parity errors because of timing issues |
| */ |
| if (EFX_WORKAROUND_5129(efx)) { |
| efx_reado(efx, &temp, FR_AZ_CSR_SPARE); |
| EFX_SET_OWORD_FIELD(temp, FRF_AB_MEM_PERR_EN_TX_DATA, 0); |
| efx_writeo(efx, &temp, FR_AZ_CSR_SPARE); |
| } |
| |
| if (EFX_WORKAROUND_7244(efx)) { |
| efx_reado(efx, &temp, FR_BZ_RX_FILTER_CTL); |
| EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_FULL_SRCH_LIMIT, 8); |
| EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_WILD_SRCH_LIMIT, 8); |
| EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_FULL_SRCH_LIMIT, 8); |
| EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_WILD_SRCH_LIMIT, 8); |
| efx_writeo(efx, &temp, FR_BZ_RX_FILTER_CTL); |
| } |
| |
| /* XXX This is documented only for Falcon A0/A1 */ |
| /* Setup RX. Wait for descriptor is broken and must |
| * be disabled. RXDP recovery shouldn't be needed, but is. |
| */ |
| efx_reado(efx, &temp, FR_AA_RX_SELF_RST); |
| EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_NODESC_WAIT_DIS, 1); |
| EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_SELF_RST_EN, 1); |
| if (EFX_WORKAROUND_5583(efx)) |
| EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_ISCSI_DIS, 1); |
| efx_writeo(efx, &temp, FR_AA_RX_SELF_RST); |
| |
| /* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16 |
| * descriptors (which is bad). |
| */ |
| efx_reado(efx, &temp, FR_AZ_TX_CFG); |
| EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_NO_EOP_DISC_EN, 0); |
| efx_writeo(efx, &temp, FR_AZ_TX_CFG); |
| |
| falcon_init_rx_cfg(efx); |
| |
| if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) { |
| falcon_b0_rx_push_rss_config(efx); |
| |
| /* Set destination of both TX and RX Flush events */ |
| EFX_POPULATE_OWORD_1(temp, FRF_BZ_FLS_EVQ_ID, 0); |
| efx_writeo(efx, &temp, FR_BZ_DP_CTRL); |
| } |
| |
| efx_farch_init_common(efx); |
| |
| return 0; |
| } |
| |
| static void falcon_remove_nic(struct efx_nic *efx) |
| { |
| struct falcon_nic_data *nic_data = efx->nic_data; |
| struct falcon_board *board = falcon_board(efx); |
| |
| board->type->fini(efx); |
| |
| /* Remove I2C adapter and clear it in preparation for a retry */ |
| i2c_del_adapter(&board->i2c_adap); |
| memset(&board->i2c_adap, 0, sizeof(board->i2c_adap)); |
| |
| efx_nic_free_buffer(efx, &efx->irq_status); |
| |
| __falcon_reset_hw(efx, RESET_TYPE_ALL); |
| |
| /* Release the second function after the reset */ |
| if (nic_data->pci_dev2) { |
| pci_dev_put(nic_data->pci_dev2); |
| nic_data->pci_dev2 = NULL; |
| } |
| |
| /* Tear down the private nic state */ |
| kfree(efx->nic_data); |
| efx->nic_data = NULL; |
| } |
| |
| static size_t falcon_describe_nic_stats(struct efx_nic *efx, u8 *names) |
| { |
| return efx_nic_describe_stats(falcon_stat_desc, FALCON_STAT_COUNT, |
| falcon_stat_mask, names); |
| } |
| |
| static size_t falcon_update_nic_stats(struct efx_nic *efx, u64 *full_stats, |
| struct rtnl_link_stats64 *core_stats) |
| { |
| struct falcon_nic_data *nic_data = efx->nic_data; |
| u64 *stats = nic_data->stats; |
| efx_oword_t cnt; |
| |
| if (!nic_data->stats_disable_count) { |
| efx_reado(efx, &cnt, FR_AZ_RX_NODESC_DROP); |
| stats[FALCON_STAT_rx_nodesc_drop_cnt] += |
| EFX_OWORD_FIELD(cnt, FRF_AB_RX_NODESC_DROP_CNT); |
| |
| if (nic_data->stats_pending && |
| FALCON_XMAC_STATS_DMA_FLAG(efx)) { |
| nic_data->stats_pending = false; |
| rmb(); /* read the done flag before the stats */ |
| efx_nic_update_stats( |
| falcon_stat_desc, FALCON_STAT_COUNT, |
| falcon_stat_mask, |
| stats, efx->stats_buffer.addr, true); |
| } |
| |
| /* Update derived statistic */ |
| efx_update_diff_stat(&stats[FALCON_STAT_rx_bad_bytes], |
| stats[FALCON_STAT_rx_bytes] - |
| stats[FALCON_STAT_rx_good_bytes] - |
| stats[FALCON_STAT_rx_control] * 64); |
| } |
| |
| if (full_stats) |
| memcpy(full_stats, stats, sizeof(u64) * FALCON_STAT_COUNT); |
| |
| if (core_stats) { |
| core_stats->rx_packets = stats[FALCON_STAT_rx_packets]; |
| core_stats->tx_packets = stats[FALCON_STAT_tx_packets]; |
| core_stats->rx_bytes = stats[FALCON_STAT_rx_bytes]; |
| core_stats->tx_bytes = stats[FALCON_STAT_tx_bytes]; |
| core_stats->rx_dropped = stats[FALCON_STAT_rx_nodesc_drop_cnt]; |
| core_stats->multicast = stats[FALCON_STAT_rx_multicast]; |
| core_stats->rx_length_errors = |
| stats[FALCON_STAT_rx_gtjumbo] + |
| stats[FALCON_STAT_rx_length_error]; |
| core_stats->rx_crc_errors = stats[FALCON_STAT_rx_bad]; |
| core_stats->rx_frame_errors = stats[FALCON_STAT_rx_align_error]; |
| core_stats->rx_fifo_errors = stats[FALCON_STAT_rx_overflow]; |
| |
| core_stats->rx_errors = (core_stats->rx_length_errors + |
| core_stats->rx_crc_errors + |
| core_stats->rx_frame_errors + |
| stats[FALCON_STAT_rx_symbol_error]); |
| } |
| |
| return FALCON_STAT_COUNT; |
| } |
| |
| void falcon_start_nic_stats(struct efx_nic *efx) |
| { |
| struct falcon_nic_data *nic_data = efx->nic_data; |
| |
| spin_lock_bh(&efx->stats_lock); |
| if (--nic_data->stats_disable_count == 0) |
| falcon_stats_request(efx); |
| spin_unlock_bh(&efx->stats_lock); |
| } |
| |
| /* We don't acutally pull stats on falcon. Wait 10ms so that |
| * they arrive when we call this just after start_stats |
| */ |
| static void falcon_pull_nic_stats(struct efx_nic *efx) |
| { |
| msleep(10); |
| } |
| |
| void falcon_stop_nic_stats(struct efx_nic *efx) |
| { |
| struct falcon_nic_data *nic_data = efx->nic_data; |
| int i; |
| |
| might_sleep(); |
| |
| spin_lock_bh(&efx->stats_lock); |
| ++nic_data->stats_disable_count; |
| spin_unlock_bh(&efx->stats_lock); |
| |
| del_timer_sync(&nic_data->stats_timer); |
| |
| /* Wait enough time for the most recent transfer to |
| * complete. */ |
| for (i = 0; i < 4 && nic_data->stats_pending; i++) { |
| if (FALCON_XMAC_STATS_DMA_FLAG(efx)) |
| break; |
| msleep(1); |
| } |
| |
| spin_lock_bh(&efx->stats_lock); |
| falcon_stats_complete(efx); |
| spin_unlock_bh(&efx->stats_lock); |
| } |
| |
| static void falcon_set_id_led(struct efx_nic *efx, enum efx_led_mode mode) |
| { |
| falcon_board(efx)->type->set_id_led(efx, mode); |
| } |
| |
| /************************************************************************** |
| * |
| * Wake on LAN |
| * |
| ************************************************************************** |
| */ |
| |
| static void falcon_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol) |
| { |
| wol->supported = 0; |
| wol->wolopts = 0; |
| memset(&wol->sopass, 0, sizeof(wol->sopass)); |
| } |
| |
| static int falcon_set_wol(struct efx_nic *efx, u32 type) |
| { |
| if (type != 0) |
| return -EINVAL; |
| return 0; |
| } |
| |
| /************************************************************************** |
| * |
| * Revision-dependent attributes used by efx.c and nic.c |
| * |
| ************************************************************************** |
| */ |
| |
| const struct efx_nic_type falcon_a1_nic_type = { |
| .mem_map_size = falcon_a1_mem_map_size, |
| .probe = falcon_probe_nic, |
| .remove = falcon_remove_nic, |
| .init = falcon_init_nic, |
| .dimension_resources = falcon_dimension_resources, |
| .fini = falcon_irq_ack_a1, |
| .monitor = falcon_monitor, |
| .map_reset_reason = falcon_map_reset_reason, |
| .map_reset_flags = falcon_map_reset_flags, |
| .reset = falcon_reset_hw, |
| .probe_port = falcon_probe_port, |
| .remove_port = falcon_remove_port, |
| .handle_global_event = falcon_handle_global_event, |
| .fini_dmaq = efx_farch_fini_dmaq, |
| .prepare_flush = falcon_prepare_flush, |
| .finish_flush = efx_port_dummy_op_void, |
| .describe_stats = falcon_describe_nic_stats, |
| .update_stats = falcon_update_nic_stats, |
| .start_stats = falcon_start_nic_stats, |
| .pull_stats = falcon_pull_nic_stats, |
| .stop_stats = falcon_stop_nic_stats, |
| .set_id_led = falcon_set_id_led, |
| .push_irq_moderation = falcon_push_irq_moderation, |
| .reconfigure_port = falcon_reconfigure_port, |
| .prepare_enable_fc_tx = falcon_a1_prepare_enable_fc_tx, |
| .reconfigure_mac = falcon_reconfigure_xmac, |
| .check_mac_fault = falcon_xmac_check_fault, |
| .get_wol = falcon_get_wol, |
| .set_wol = falcon_set_wol, |
| .resume_wol = efx_port_dummy_op_void, |
| .test_nvram = falcon_test_nvram, |
| .irq_enable_master = efx_farch_irq_enable_master, |
| .irq_test_generate = efx_farch_irq_test_generate, |
| .irq_disable_non_ev = efx_farch_irq_disable_master, |
| .irq_handle_msi = efx_farch_msi_interrupt, |
| .irq_handle_legacy = falcon_legacy_interrupt_a1, |
| .tx_probe = efx_farch_tx_probe, |
| .tx_init = efx_farch_tx_init, |
| .tx_remove = efx_farch_tx_remove, |
| .tx_write = efx_farch_tx_write, |
| .rx_push_rss_config = efx_port_dummy_op_void, |
| .rx_probe = efx_farch_rx_probe, |
| .rx_init = efx_farch_rx_init, |
| .rx_remove = efx_farch_rx_remove, |
| .rx_write = efx_farch_rx_write, |
| .rx_defer_refill = efx_farch_rx_defer_refill, |
| .ev_probe = efx_farch_ev_probe, |
| .ev_init = efx_farch_ev_init, |
| .ev_fini = efx_farch_ev_fini, |
| .ev_remove = efx_farch_ev_remove, |
| .ev_process = efx_farch_ev_process, |
| .ev_read_ack = efx_farch_ev_read_ack, |
| .ev_test_generate = efx_farch_ev_test_generate, |
| |
| /* We don't expose the filter table on Falcon A1 as it is not |
| * mapped into function 0, but these implementations still |
| * work with a degenerate case of all tables set to size 0. |
| */ |
| .filter_table_probe = efx_farch_filter_table_probe, |
| .filter_table_restore = efx_farch_filter_table_restore, |
| .filter_table_remove = efx_farch_filter_table_remove, |
| .filter_insert = efx_farch_filter_insert, |
| .filter_remove_safe = efx_farch_filter_remove_safe, |
| .filter_get_safe = efx_farch_filter_get_safe, |
| .filter_clear_rx = efx_farch_filter_clear_rx, |
| .filter_count_rx_used = efx_farch_filter_count_rx_used, |
| .filter_get_rx_id_limit = efx_farch_filter_get_rx_id_limit, |
| .filter_get_rx_ids = efx_farch_filter_get_rx_ids, |
| |
| #ifdef CONFIG_SFC_MTD |
| .mtd_probe = falcon_mtd_probe, |
| .mtd_rename = falcon_mtd_rename, |
| .mtd_read = falcon_mtd_read, |
| .mtd_erase = falcon_mtd_erase, |
| .mtd_write = falcon_mtd_write, |
| .mtd_sync = falcon_mtd_sync, |
| #endif |
| |
| .revision = EFX_REV_FALCON_A1, |
| .txd_ptr_tbl_base = FR_AA_TX_DESC_PTR_TBL_KER, |
| .rxd_ptr_tbl_base = FR_AA_RX_DESC_PTR_TBL_KER, |
| .buf_tbl_base = FR_AA_BUF_FULL_TBL_KER, |
| .evq_ptr_tbl_base = FR_AA_EVQ_PTR_TBL_KER, |
| .evq_rptr_tbl_base = FR_AA_EVQ_RPTR_KER, |
| .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH), |
| .rx_buffer_padding = 0x24, |
| .can_rx_scatter = false, |
| .max_interrupt_mode = EFX_INT_MODE_MSI, |
| .timer_period_max = 1 << FRF_AB_TC_TIMER_VAL_WIDTH, |
| .offload_features = NETIF_F_IP_CSUM, |
| .mcdi_max_ver = -1, |
| }; |
| |
| const struct efx_nic_type falcon_b0_nic_type = { |
| .mem_map_size = falcon_b0_mem_map_size, |
| .probe = falcon_probe_nic, |
| .remove = falcon_remove_nic, |
| .init = falcon_init_nic, |
| .dimension_resources = falcon_dimension_resources, |
| .fini = efx_port_dummy_op_void, |
| .monitor = falcon_monitor, |
| .map_reset_reason = falcon_map_reset_reason, |
| .map_reset_flags = falcon_map_reset_flags, |
| .reset = falcon_reset_hw, |
| .probe_port = falcon_probe_port, |
| .remove_port = falcon_remove_port, |
| .handle_global_event = falcon_handle_global_event, |
| .fini_dmaq = efx_farch_fini_dmaq, |
| .prepare_flush = falcon_prepare_flush, |
| .finish_flush = efx_port_dummy_op_void, |
| .describe_stats = falcon_describe_nic_stats, |
| .update_stats = falcon_update_nic_stats, |
| .start_stats = falcon_start_nic_stats, |
| .pull_stats = falcon_pull_nic_stats, |
| .stop_stats = falcon_stop_nic_stats, |
| .set_id_led = falcon_set_id_led, |
| .push_irq_moderation = falcon_push_irq_moderation, |
| .reconfigure_port = falcon_reconfigure_port, |
| .prepare_enable_fc_tx = falcon_b0_prepare_enable_fc_tx, |
| .reconfigure_mac = falcon_reconfigure_xmac, |
| .check_mac_fault = falcon_xmac_check_fault, |
| .get_wol = falcon_get_wol, |
| .set_wol = falcon_set_wol, |
| .resume_wol = efx_port_dummy_op_void, |
| .test_chip = falcon_b0_test_chip, |
| .test_nvram = falcon_test_nvram, |
| .irq_enable_master = efx_farch_irq_enable_master, |
| .irq_test_generate = efx_farch_irq_test_generate, |
| .irq_disable_non_ev = efx_farch_irq_disable_master, |
| .irq_handle_msi = efx_farch_msi_interrupt, |
| .irq_handle_legacy = efx_farch_legacy_interrupt, |
| .tx_probe = efx_farch_tx_probe, |
| .tx_init = efx_farch_tx_init, |
| .tx_remove = efx_farch_tx_remove, |
| .tx_write = efx_farch_tx_write, |
| .rx_push_rss_config = falcon_b0_rx_push_rss_config, |
| .rx_probe = efx_farch_rx_probe, |
| .rx_init = efx_farch_rx_init, |
| .rx_remove = efx_farch_rx_remove, |
| .rx_write = efx_farch_rx_write, |
| .rx_defer_refill = efx_farch_rx_defer_refill, |
| .ev_probe = efx_farch_ev_probe, |
| .ev_init = efx_farch_ev_init, |
| .ev_fini = efx_farch_ev_fini, |
| .ev_remove = efx_farch_ev_remove, |
| .ev_process = efx_farch_ev_process, |
| .ev_read_ack = efx_farch_ev_read_ack, |
| .ev_test_generate = efx_farch_ev_test_generate, |
| .filter_table_probe = efx_farch_filter_table_probe, |
| .filter_table_restore = efx_farch_filter_table_restore, |
| .filter_table_remove = efx_farch_filter_table_remove, |
| .filter_update_rx_scatter = efx_farch_filter_update_rx_scatter, |
| .filter_insert = efx_farch_filter_insert, |
| .filter_remove_safe = efx_farch_filter_remove_safe, |
| .filter_get_safe = efx_farch_filter_get_safe, |
| .filter_clear_rx = efx_farch_filter_clear_rx, |
| .filter_count_rx_used = efx_farch_filter_count_rx_used, |
| .filter_get_rx_id_limit = efx_farch_filter_get_rx_id_limit, |
| .filter_get_rx_ids = efx_farch_filter_get_rx_ids, |
| #ifdef CONFIG_RFS_ACCEL |
| .filter_rfs_insert = efx_farch_filter_rfs_insert, |
| .filter_rfs_expire_one = efx_farch_filter_rfs_expire_one, |
| #endif |
| #ifdef CONFIG_SFC_MTD |
| .mtd_probe = falcon_mtd_probe, |
| .mtd_rename = falcon_mtd_rename, |
| .mtd_read = falcon_mtd_read, |
| .mtd_erase = falcon_mtd_erase, |
| .mtd_write = falcon_mtd_write, |
| .mtd_sync = falcon_mtd_sync, |
| #endif |
| |
| .revision = EFX_REV_FALCON_B0, |
| .txd_ptr_tbl_base = FR_BZ_TX_DESC_PTR_TBL, |
| .rxd_ptr_tbl_base = FR_BZ_RX_DESC_PTR_TBL, |
| .buf_tbl_base = FR_BZ_BUF_FULL_TBL, |
| .evq_ptr_tbl_base = FR_BZ_EVQ_PTR_TBL, |
| .evq_rptr_tbl_base = FR_BZ_EVQ_RPTR, |
| .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH), |
| .rx_prefix_size = FS_BZ_RX_PREFIX_SIZE, |
| .rx_hash_offset = FS_BZ_RX_PREFIX_HASH_OFST, |
| .rx_buffer_padding = 0, |
| .can_rx_scatter = true, |
| .max_interrupt_mode = EFX_INT_MODE_MSIX, |
| .timer_period_max = 1 << FRF_AB_TC_TIMER_VAL_WIDTH, |
| .offload_features = NETIF_F_IP_CSUM | NETIF_F_RXHASH | NETIF_F_NTUPLE, |
| .mcdi_max_ver = -1, |
| .max_rx_ip_filters = FR_BZ_RX_FILTER_TBL0_ROWS, |
| }; |