| /* |
| asb100.c - Part of lm_sensors, Linux kernel modules for hardware |
| monitoring |
| |
| Copyright (C) 2004 Mark M. Hoffman <mhoffman@lightlink.com> |
| |
| (derived from w83781d.c) |
| |
| Copyright (C) 1998 - 2003 Frodo Looijaard <frodol@dds.nl>, |
| Philip Edelbrock <phil@netroedge.com>, and |
| Mark Studebaker <mdsxyz123@yahoo.com> |
| |
| This program is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 2 of the License, or |
| (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program; if not, write to the Free Software |
| Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
| */ |
| |
| /* |
| This driver supports the hardware sensor chips: Asus ASB100 and |
| ASB100-A "BACH". |
| |
| ASB100-A supports pwm1, while plain ASB100 does not. There is no known |
| way for the driver to tell which one is there. |
| |
| Chip #vin #fanin #pwm #temp wchipid vendid i2c ISA |
| asb100 7 3 1 4 0x31 0x0694 yes no |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/slab.h> |
| #include <linux/i2c.h> |
| #include <linux/hwmon.h> |
| #include <linux/hwmon-vid.h> |
| #include <linux/err.h> |
| #include <linux/init.h> |
| #include <linux/jiffies.h> |
| #include <linux/mutex.h> |
| #include "lm75.h" |
| |
| /* |
| HISTORY: |
| 2003-12-29 1.0.0 Ported from lm_sensors project for kernel 2.6 |
| */ |
| #define ASB100_VERSION "1.0.0" |
| |
| /* I2C addresses to scan */ |
| static unsigned short normal_i2c[] = { 0x2d, I2C_CLIENT_END }; |
| |
| /* Insmod parameters */ |
| I2C_CLIENT_INSMOD_1(asb100); |
| I2C_CLIENT_MODULE_PARM(force_subclients, "List of subclient addresses: " |
| "{bus, clientaddr, subclientaddr1, subclientaddr2}"); |
| |
| /* Voltage IN registers 0-6 */ |
| #define ASB100_REG_IN(nr) (0x20 + (nr)) |
| #define ASB100_REG_IN_MAX(nr) (0x2b + (nr * 2)) |
| #define ASB100_REG_IN_MIN(nr) (0x2c + (nr * 2)) |
| |
| /* FAN IN registers 1-3 */ |
| #define ASB100_REG_FAN(nr) (0x28 + (nr)) |
| #define ASB100_REG_FAN_MIN(nr) (0x3b + (nr)) |
| |
| /* TEMPERATURE registers 1-4 */ |
| static const u16 asb100_reg_temp[] = {0, 0x27, 0x150, 0x250, 0x17}; |
| static const u16 asb100_reg_temp_max[] = {0, 0x39, 0x155, 0x255, 0x18}; |
| static const u16 asb100_reg_temp_hyst[] = {0, 0x3a, 0x153, 0x253, 0x19}; |
| |
| #define ASB100_REG_TEMP(nr) (asb100_reg_temp[nr]) |
| #define ASB100_REG_TEMP_MAX(nr) (asb100_reg_temp_max[nr]) |
| #define ASB100_REG_TEMP_HYST(nr) (asb100_reg_temp_hyst[nr]) |
| |
| #define ASB100_REG_TEMP2_CONFIG 0x0152 |
| #define ASB100_REG_TEMP3_CONFIG 0x0252 |
| |
| |
| #define ASB100_REG_CONFIG 0x40 |
| #define ASB100_REG_ALARM1 0x41 |
| #define ASB100_REG_ALARM2 0x42 |
| #define ASB100_REG_SMIM1 0x43 |
| #define ASB100_REG_SMIM2 0x44 |
| #define ASB100_REG_VID_FANDIV 0x47 |
| #define ASB100_REG_I2C_ADDR 0x48 |
| #define ASB100_REG_CHIPID 0x49 |
| #define ASB100_REG_I2C_SUBADDR 0x4a |
| #define ASB100_REG_PIN 0x4b |
| #define ASB100_REG_IRQ 0x4c |
| #define ASB100_REG_BANK 0x4e |
| #define ASB100_REG_CHIPMAN 0x4f |
| |
| #define ASB100_REG_WCHIPID 0x58 |
| |
| /* bit 7 -> enable, bits 0-3 -> duty cycle */ |
| #define ASB100_REG_PWM1 0x59 |
| |
| /* CONVERSIONS |
| Rounding and limit checking is only done on the TO_REG variants. */ |
| |
| /* These constants are a guess, consistent w/ w83781d */ |
| #define ASB100_IN_MIN ( 0) |
| #define ASB100_IN_MAX (4080) |
| |
| /* IN: 1/1000 V (0V to 4.08V) |
| REG: 16mV/bit */ |
| static u8 IN_TO_REG(unsigned val) |
| { |
| unsigned nval = SENSORS_LIMIT(val, ASB100_IN_MIN, ASB100_IN_MAX); |
| return (nval + 8) / 16; |
| } |
| |
| static unsigned IN_FROM_REG(u8 reg) |
| { |
| return reg * 16; |
| } |
| |
| static u8 FAN_TO_REG(long rpm, int div) |
| { |
| if (rpm == -1) |
| return 0; |
| if (rpm == 0) |
| return 255; |
| rpm = SENSORS_LIMIT(rpm, 1, 1000000); |
| return SENSORS_LIMIT((1350000 + rpm * div / 2) / (rpm * div), 1, 254); |
| } |
| |
| static int FAN_FROM_REG(u8 val, int div) |
| { |
| return val==0 ? -1 : val==255 ? 0 : 1350000/(val*div); |
| } |
| |
| /* These constants are a guess, consistent w/ w83781d */ |
| #define ASB100_TEMP_MIN (-128000) |
| #define ASB100_TEMP_MAX ( 127000) |
| |
| /* TEMP: 0.001C/bit (-128C to +127C) |
| REG: 1C/bit, two's complement */ |
| static u8 TEMP_TO_REG(long temp) |
| { |
| int ntemp = SENSORS_LIMIT(temp, ASB100_TEMP_MIN, ASB100_TEMP_MAX); |
| ntemp += (ntemp<0 ? -500 : 500); |
| return (u8)(ntemp / 1000); |
| } |
| |
| static int TEMP_FROM_REG(u8 reg) |
| { |
| return (s8)reg * 1000; |
| } |
| |
| /* PWM: 0 - 255 per sensors documentation |
| REG: (6.25% duty cycle per bit) */ |
| static u8 ASB100_PWM_TO_REG(int pwm) |
| { |
| pwm = SENSORS_LIMIT(pwm, 0, 255); |
| return (u8)(pwm / 16); |
| } |
| |
| static int ASB100_PWM_FROM_REG(u8 reg) |
| { |
| return reg * 16; |
| } |
| |
| #define DIV_FROM_REG(val) (1 << (val)) |
| |
| /* FAN DIV: 1, 2, 4, or 8 (defaults to 2) |
| REG: 0, 1, 2, or 3 (respectively) (defaults to 1) */ |
| static u8 DIV_TO_REG(long val) |
| { |
| return val==8 ? 3 : val==4 ? 2 : val==1 ? 0 : 1; |
| } |
| |
| /* For each registered client, we need to keep some data in memory. That |
| data is pointed to by client->data. The structure itself is |
| dynamically allocated, at the same time the client itself is allocated. */ |
| struct asb100_data { |
| struct i2c_client client; |
| struct device *hwmon_dev; |
| struct mutex lock; |
| enum chips type; |
| |
| struct mutex update_lock; |
| unsigned long last_updated; /* In jiffies */ |
| |
| /* array of 2 pointers to subclients */ |
| struct i2c_client *lm75[2]; |
| |
| char valid; /* !=0 if following fields are valid */ |
| u8 in[7]; /* Register value */ |
| u8 in_max[7]; /* Register value */ |
| u8 in_min[7]; /* Register value */ |
| u8 fan[3]; /* Register value */ |
| u8 fan_min[3]; /* Register value */ |
| u16 temp[4]; /* Register value (0 and 3 are u8 only) */ |
| u16 temp_max[4]; /* Register value (0 and 3 are u8 only) */ |
| u16 temp_hyst[4]; /* Register value (0 and 3 are u8 only) */ |
| u8 fan_div[3]; /* Register encoding, right justified */ |
| u8 pwm; /* Register encoding */ |
| u8 vid; /* Register encoding, combined */ |
| u32 alarms; /* Register encoding, combined */ |
| u8 vrm; |
| }; |
| |
| static int asb100_read_value(struct i2c_client *client, u16 reg); |
| static void asb100_write_value(struct i2c_client *client, u16 reg, u16 val); |
| |
| static int asb100_attach_adapter(struct i2c_adapter *adapter); |
| static int asb100_detect(struct i2c_adapter *adapter, int address, int kind); |
| static int asb100_detach_client(struct i2c_client *client); |
| static struct asb100_data *asb100_update_device(struct device *dev); |
| static void asb100_init_client(struct i2c_client *client); |
| |
| static struct i2c_driver asb100_driver = { |
| .driver = { |
| .name = "asb100", |
| }, |
| .id = I2C_DRIVERID_ASB100, |
| .attach_adapter = asb100_attach_adapter, |
| .detach_client = asb100_detach_client, |
| }; |
| |
| /* 7 Voltages */ |
| #define show_in_reg(reg) \ |
| static ssize_t show_##reg (struct device *dev, char *buf, int nr) \ |
| { \ |
| struct asb100_data *data = asb100_update_device(dev); \ |
| return sprintf(buf, "%d\n", IN_FROM_REG(data->reg[nr])); \ |
| } |
| |
| show_in_reg(in) |
| show_in_reg(in_min) |
| show_in_reg(in_max) |
| |
| #define set_in_reg(REG, reg) \ |
| static ssize_t set_in_##reg(struct device *dev, const char *buf, \ |
| size_t count, int nr) \ |
| { \ |
| struct i2c_client *client = to_i2c_client(dev); \ |
| struct asb100_data *data = i2c_get_clientdata(client); \ |
| unsigned long val = simple_strtoul(buf, NULL, 10); \ |
| \ |
| mutex_lock(&data->update_lock); \ |
| data->in_##reg[nr] = IN_TO_REG(val); \ |
| asb100_write_value(client, ASB100_REG_IN_##REG(nr), \ |
| data->in_##reg[nr]); \ |
| mutex_unlock(&data->update_lock); \ |
| return count; \ |
| } |
| |
| set_in_reg(MIN, min) |
| set_in_reg(MAX, max) |
| |
| #define sysfs_in(offset) \ |
| static ssize_t \ |
| show_in##offset (struct device *dev, struct device_attribute *attr, char *buf) \ |
| { \ |
| return show_in(dev, buf, offset); \ |
| } \ |
| static DEVICE_ATTR(in##offset##_input, S_IRUGO, \ |
| show_in##offset, NULL); \ |
| static ssize_t \ |
| show_in##offset##_min (struct device *dev, struct device_attribute *attr, char *buf) \ |
| { \ |
| return show_in_min(dev, buf, offset); \ |
| } \ |
| static ssize_t \ |
| show_in##offset##_max (struct device *dev, struct device_attribute *attr, char *buf) \ |
| { \ |
| return show_in_max(dev, buf, offset); \ |
| } \ |
| static ssize_t set_in##offset##_min (struct device *dev, struct device_attribute *attr, \ |
| const char *buf, size_t count) \ |
| { \ |
| return set_in_min(dev, buf, count, offset); \ |
| } \ |
| static ssize_t set_in##offset##_max (struct device *dev, struct device_attribute *attr, \ |
| const char *buf, size_t count) \ |
| { \ |
| return set_in_max(dev, buf, count, offset); \ |
| } \ |
| static DEVICE_ATTR(in##offset##_min, S_IRUGO | S_IWUSR, \ |
| show_in##offset##_min, set_in##offset##_min); \ |
| static DEVICE_ATTR(in##offset##_max, S_IRUGO | S_IWUSR, \ |
| show_in##offset##_max, set_in##offset##_max); |
| |
| sysfs_in(0); |
| sysfs_in(1); |
| sysfs_in(2); |
| sysfs_in(3); |
| sysfs_in(4); |
| sysfs_in(5); |
| sysfs_in(6); |
| |
| /* 3 Fans */ |
| static ssize_t show_fan(struct device *dev, char *buf, int nr) |
| { |
| struct asb100_data *data = asb100_update_device(dev); |
| return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr], |
| DIV_FROM_REG(data->fan_div[nr]))); |
| } |
| |
| static ssize_t show_fan_min(struct device *dev, char *buf, int nr) |
| { |
| struct asb100_data *data = asb100_update_device(dev); |
| return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan_min[nr], |
| DIV_FROM_REG(data->fan_div[nr]))); |
| } |
| |
| static ssize_t show_fan_div(struct device *dev, char *buf, int nr) |
| { |
| struct asb100_data *data = asb100_update_device(dev); |
| return sprintf(buf, "%d\n", DIV_FROM_REG(data->fan_div[nr])); |
| } |
| |
| static ssize_t set_fan_min(struct device *dev, const char *buf, |
| size_t count, int nr) |
| { |
| struct i2c_client *client = to_i2c_client(dev); |
| struct asb100_data *data = i2c_get_clientdata(client); |
| u32 val = simple_strtoul(buf, NULL, 10); |
| |
| mutex_lock(&data->update_lock); |
| data->fan_min[nr] = FAN_TO_REG(val, DIV_FROM_REG(data->fan_div[nr])); |
| asb100_write_value(client, ASB100_REG_FAN_MIN(nr), data->fan_min[nr]); |
| mutex_unlock(&data->update_lock); |
| return count; |
| } |
| |
| /* Note: we save and restore the fan minimum here, because its value is |
| determined in part by the fan divisor. This follows the principle of |
| least surprise; the user doesn't expect the fan minimum to change just |
| because the divisor changed. */ |
| static ssize_t set_fan_div(struct device *dev, const char *buf, |
| size_t count, int nr) |
| { |
| struct i2c_client *client = to_i2c_client(dev); |
| struct asb100_data *data = i2c_get_clientdata(client); |
| unsigned long min; |
| unsigned long val = simple_strtoul(buf, NULL, 10); |
| int reg; |
| |
| mutex_lock(&data->update_lock); |
| |
| min = FAN_FROM_REG(data->fan_min[nr], |
| DIV_FROM_REG(data->fan_div[nr])); |
| data->fan_div[nr] = DIV_TO_REG(val); |
| |
| switch(nr) { |
| case 0: /* fan 1 */ |
| reg = asb100_read_value(client, ASB100_REG_VID_FANDIV); |
| reg = (reg & 0xcf) | (data->fan_div[0] << 4); |
| asb100_write_value(client, ASB100_REG_VID_FANDIV, reg); |
| break; |
| |
| case 1: /* fan 2 */ |
| reg = asb100_read_value(client, ASB100_REG_VID_FANDIV); |
| reg = (reg & 0x3f) | (data->fan_div[1] << 6); |
| asb100_write_value(client, ASB100_REG_VID_FANDIV, reg); |
| break; |
| |
| case 2: /* fan 3 */ |
| reg = asb100_read_value(client, ASB100_REG_PIN); |
| reg = (reg & 0x3f) | (data->fan_div[2] << 6); |
| asb100_write_value(client, ASB100_REG_PIN, reg); |
| break; |
| } |
| |
| data->fan_min[nr] = |
| FAN_TO_REG(min, DIV_FROM_REG(data->fan_div[nr])); |
| asb100_write_value(client, ASB100_REG_FAN_MIN(nr), data->fan_min[nr]); |
| |
| mutex_unlock(&data->update_lock); |
| |
| return count; |
| } |
| |
| #define sysfs_fan(offset) \ |
| static ssize_t show_fan##offset(struct device *dev, struct device_attribute *attr, char *buf) \ |
| { \ |
| return show_fan(dev, buf, offset - 1); \ |
| } \ |
| static ssize_t show_fan##offset##_min(struct device *dev, struct device_attribute *attr, char *buf) \ |
| { \ |
| return show_fan_min(dev, buf, offset - 1); \ |
| } \ |
| static ssize_t show_fan##offset##_div(struct device *dev, struct device_attribute *attr, char *buf) \ |
| { \ |
| return show_fan_div(dev, buf, offset - 1); \ |
| } \ |
| static ssize_t set_fan##offset##_min(struct device *dev, struct device_attribute *attr, const char *buf, \ |
| size_t count) \ |
| { \ |
| return set_fan_min(dev, buf, count, offset - 1); \ |
| } \ |
| static ssize_t set_fan##offset##_div(struct device *dev, struct device_attribute *attr, const char *buf, \ |
| size_t count) \ |
| { \ |
| return set_fan_div(dev, buf, count, offset - 1); \ |
| } \ |
| static DEVICE_ATTR(fan##offset##_input, S_IRUGO, \ |
| show_fan##offset, NULL); \ |
| static DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR, \ |
| show_fan##offset##_min, set_fan##offset##_min); \ |
| static DEVICE_ATTR(fan##offset##_div, S_IRUGO | S_IWUSR, \ |
| show_fan##offset##_div, set_fan##offset##_div); |
| |
| sysfs_fan(1); |
| sysfs_fan(2); |
| sysfs_fan(3); |
| |
| /* 4 Temp. Sensors */ |
| static int sprintf_temp_from_reg(u16 reg, char *buf, int nr) |
| { |
| int ret = 0; |
| |
| switch (nr) { |
| case 1: case 2: |
| ret = sprintf(buf, "%d\n", LM75_TEMP_FROM_REG(reg)); |
| break; |
| case 0: case 3: default: |
| ret = sprintf(buf, "%d\n", TEMP_FROM_REG(reg)); |
| break; |
| } |
| return ret; |
| } |
| |
| #define show_temp_reg(reg) \ |
| static ssize_t show_##reg(struct device *dev, char *buf, int nr) \ |
| { \ |
| struct asb100_data *data = asb100_update_device(dev); \ |
| return sprintf_temp_from_reg(data->reg[nr], buf, nr); \ |
| } |
| |
| show_temp_reg(temp); |
| show_temp_reg(temp_max); |
| show_temp_reg(temp_hyst); |
| |
| #define set_temp_reg(REG, reg) \ |
| static ssize_t set_##reg(struct device *dev, const char *buf, \ |
| size_t count, int nr) \ |
| { \ |
| struct i2c_client *client = to_i2c_client(dev); \ |
| struct asb100_data *data = i2c_get_clientdata(client); \ |
| long val = simple_strtol(buf, NULL, 10); \ |
| \ |
| mutex_lock(&data->update_lock); \ |
| switch (nr) { \ |
| case 1: case 2: \ |
| data->reg[nr] = LM75_TEMP_TO_REG(val); \ |
| break; \ |
| case 0: case 3: default: \ |
| data->reg[nr] = TEMP_TO_REG(val); \ |
| break; \ |
| } \ |
| asb100_write_value(client, ASB100_REG_TEMP_##REG(nr+1), \ |
| data->reg[nr]); \ |
| mutex_unlock(&data->update_lock); \ |
| return count; \ |
| } |
| |
| set_temp_reg(MAX, temp_max); |
| set_temp_reg(HYST, temp_hyst); |
| |
| #define sysfs_temp(num) \ |
| static ssize_t show_temp##num(struct device *dev, struct device_attribute *attr, char *buf) \ |
| { \ |
| return show_temp(dev, buf, num-1); \ |
| } \ |
| static DEVICE_ATTR(temp##num##_input, S_IRUGO, show_temp##num, NULL); \ |
| static ssize_t show_temp_max##num(struct device *dev, struct device_attribute *attr, char *buf) \ |
| { \ |
| return show_temp_max(dev, buf, num-1); \ |
| } \ |
| static ssize_t set_temp_max##num(struct device *dev, struct device_attribute *attr, const char *buf, \ |
| size_t count) \ |
| { \ |
| return set_temp_max(dev, buf, count, num-1); \ |
| } \ |
| static DEVICE_ATTR(temp##num##_max, S_IRUGO | S_IWUSR, \ |
| show_temp_max##num, set_temp_max##num); \ |
| static ssize_t show_temp_hyst##num(struct device *dev, struct device_attribute *attr, char *buf) \ |
| { \ |
| return show_temp_hyst(dev, buf, num-1); \ |
| } \ |
| static ssize_t set_temp_hyst##num(struct device *dev, struct device_attribute *attr, const char *buf, \ |
| size_t count) \ |
| { \ |
| return set_temp_hyst(dev, buf, count, num-1); \ |
| } \ |
| static DEVICE_ATTR(temp##num##_max_hyst, S_IRUGO | S_IWUSR, \ |
| show_temp_hyst##num, set_temp_hyst##num); |
| |
| sysfs_temp(1); |
| sysfs_temp(2); |
| sysfs_temp(3); |
| sysfs_temp(4); |
| |
| /* VID */ |
| static ssize_t show_vid(struct device *dev, struct device_attribute *attr, char *buf) |
| { |
| struct asb100_data *data = asb100_update_device(dev); |
| return sprintf(buf, "%d\n", vid_from_reg(data->vid, data->vrm)); |
| } |
| |
| static DEVICE_ATTR(cpu0_vid, S_IRUGO, show_vid, NULL); |
| |
| /* VRM */ |
| static ssize_t show_vrm(struct device *dev, struct device_attribute *attr, char *buf) |
| { |
| struct asb100_data *data = asb100_update_device(dev); |
| return sprintf(buf, "%d\n", data->vrm); |
| } |
| |
| static ssize_t set_vrm(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) |
| { |
| struct i2c_client *client = to_i2c_client(dev); |
| struct asb100_data *data = i2c_get_clientdata(client); |
| unsigned long val = simple_strtoul(buf, NULL, 10); |
| data->vrm = val; |
| return count; |
| } |
| |
| /* Alarms */ |
| static DEVICE_ATTR(vrm, S_IRUGO | S_IWUSR, show_vrm, set_vrm); |
| |
| static ssize_t show_alarms(struct device *dev, struct device_attribute *attr, char *buf) |
| { |
| struct asb100_data *data = asb100_update_device(dev); |
| return sprintf(buf, "%u\n", data->alarms); |
| } |
| |
| static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL); |
| |
| /* 1 PWM */ |
| static ssize_t show_pwm1(struct device *dev, struct device_attribute *attr, char *buf) |
| { |
| struct asb100_data *data = asb100_update_device(dev); |
| return sprintf(buf, "%d\n", ASB100_PWM_FROM_REG(data->pwm & 0x0f)); |
| } |
| |
| static ssize_t set_pwm1(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) |
| { |
| struct i2c_client *client = to_i2c_client(dev); |
| struct asb100_data *data = i2c_get_clientdata(client); |
| unsigned long val = simple_strtoul(buf, NULL, 10); |
| |
| mutex_lock(&data->update_lock); |
| data->pwm &= 0x80; /* keep the enable bit */ |
| data->pwm |= (0x0f & ASB100_PWM_TO_REG(val)); |
| asb100_write_value(client, ASB100_REG_PWM1, data->pwm); |
| mutex_unlock(&data->update_lock); |
| return count; |
| } |
| |
| static ssize_t show_pwm_enable1(struct device *dev, struct device_attribute *attr, char *buf) |
| { |
| struct asb100_data *data = asb100_update_device(dev); |
| return sprintf(buf, "%d\n", (data->pwm & 0x80) ? 1 : 0); |
| } |
| |
| static ssize_t set_pwm_enable1(struct device *dev, struct device_attribute *attr, const char *buf, |
| size_t count) |
| { |
| struct i2c_client *client = to_i2c_client(dev); |
| struct asb100_data *data = i2c_get_clientdata(client); |
| unsigned long val = simple_strtoul(buf, NULL, 10); |
| |
| mutex_lock(&data->update_lock); |
| data->pwm &= 0x0f; /* keep the duty cycle bits */ |
| data->pwm |= (val ? 0x80 : 0x00); |
| asb100_write_value(client, ASB100_REG_PWM1, data->pwm); |
| mutex_unlock(&data->update_lock); |
| return count; |
| } |
| |
| static DEVICE_ATTR(pwm1, S_IRUGO | S_IWUSR, show_pwm1, set_pwm1); |
| static DEVICE_ATTR(pwm1_enable, S_IRUGO | S_IWUSR, |
| show_pwm_enable1, set_pwm_enable1); |
| |
| static struct attribute *asb100_attributes[] = { |
| &dev_attr_in0_input.attr, |
| &dev_attr_in0_min.attr, |
| &dev_attr_in0_max.attr, |
| &dev_attr_in1_input.attr, |
| &dev_attr_in1_min.attr, |
| &dev_attr_in1_max.attr, |
| &dev_attr_in2_input.attr, |
| &dev_attr_in2_min.attr, |
| &dev_attr_in2_max.attr, |
| &dev_attr_in3_input.attr, |
| &dev_attr_in3_min.attr, |
| &dev_attr_in3_max.attr, |
| &dev_attr_in4_input.attr, |
| &dev_attr_in4_min.attr, |
| &dev_attr_in4_max.attr, |
| &dev_attr_in5_input.attr, |
| &dev_attr_in5_min.attr, |
| &dev_attr_in5_max.attr, |
| &dev_attr_in6_input.attr, |
| &dev_attr_in6_min.attr, |
| &dev_attr_in6_max.attr, |
| |
| &dev_attr_fan1_input.attr, |
| &dev_attr_fan1_min.attr, |
| &dev_attr_fan1_div.attr, |
| &dev_attr_fan2_input.attr, |
| &dev_attr_fan2_min.attr, |
| &dev_attr_fan2_div.attr, |
| &dev_attr_fan3_input.attr, |
| &dev_attr_fan3_min.attr, |
| &dev_attr_fan3_div.attr, |
| |
| &dev_attr_temp1_input.attr, |
| &dev_attr_temp1_max.attr, |
| &dev_attr_temp1_max_hyst.attr, |
| &dev_attr_temp2_input.attr, |
| &dev_attr_temp2_max.attr, |
| &dev_attr_temp2_max_hyst.attr, |
| &dev_attr_temp3_input.attr, |
| &dev_attr_temp3_max.attr, |
| &dev_attr_temp3_max_hyst.attr, |
| &dev_attr_temp4_input.attr, |
| &dev_attr_temp4_max.attr, |
| &dev_attr_temp4_max_hyst.attr, |
| |
| &dev_attr_cpu0_vid.attr, |
| &dev_attr_vrm.attr, |
| &dev_attr_alarms.attr, |
| &dev_attr_pwm1.attr, |
| &dev_attr_pwm1_enable.attr, |
| |
| NULL |
| }; |
| |
| static const struct attribute_group asb100_group = { |
| .attrs = asb100_attributes, |
| }; |
| |
| /* This function is called when: |
| asb100_driver is inserted (when this module is loaded), for each |
| available adapter |
| when a new adapter is inserted (and asb100_driver is still present) |
| */ |
| static int asb100_attach_adapter(struct i2c_adapter *adapter) |
| { |
| if (!(adapter->class & I2C_CLASS_HWMON)) |
| return 0; |
| return i2c_probe(adapter, &addr_data, asb100_detect); |
| } |
| |
| static int asb100_detect_subclients(struct i2c_adapter *adapter, int address, |
| int kind, struct i2c_client *new_client) |
| { |
| int i, id, err; |
| struct asb100_data *data = i2c_get_clientdata(new_client); |
| |
| data->lm75[0] = kzalloc(sizeof(struct i2c_client), GFP_KERNEL); |
| if (!(data->lm75[0])) { |
| err = -ENOMEM; |
| goto ERROR_SC_0; |
| } |
| |
| data->lm75[1] = kzalloc(sizeof(struct i2c_client), GFP_KERNEL); |
| if (!(data->lm75[1])) { |
| err = -ENOMEM; |
| goto ERROR_SC_1; |
| } |
| |
| id = i2c_adapter_id(adapter); |
| |
| if (force_subclients[0] == id && force_subclients[1] == address) { |
| for (i = 2; i <= 3; i++) { |
| if (force_subclients[i] < 0x48 || |
| force_subclients[i] > 0x4f) { |
| dev_err(&new_client->dev, "invalid subclient " |
| "address %d; must be 0x48-0x4f\n", |
| force_subclients[i]); |
| err = -ENODEV; |
| goto ERROR_SC_2; |
| } |
| } |
| asb100_write_value(new_client, ASB100_REG_I2C_SUBADDR, |
| (force_subclients[2] & 0x07) | |
| ((force_subclients[3] & 0x07) <<4)); |
| data->lm75[0]->addr = force_subclients[2]; |
| data->lm75[1]->addr = force_subclients[3]; |
| } else { |
| int val = asb100_read_value(new_client, ASB100_REG_I2C_SUBADDR); |
| data->lm75[0]->addr = 0x48 + (val & 0x07); |
| data->lm75[1]->addr = 0x48 + ((val >> 4) & 0x07); |
| } |
| |
| if(data->lm75[0]->addr == data->lm75[1]->addr) { |
| dev_err(&new_client->dev, "duplicate addresses 0x%x " |
| "for subclients\n", data->lm75[0]->addr); |
| err = -ENODEV; |
| goto ERROR_SC_2; |
| } |
| |
| for (i = 0; i <= 1; i++) { |
| i2c_set_clientdata(data->lm75[i], NULL); |
| data->lm75[i]->adapter = adapter; |
| data->lm75[i]->driver = &asb100_driver; |
| data->lm75[i]->flags = 0; |
| strlcpy(data->lm75[i]->name, "asb100 subclient", I2C_NAME_SIZE); |
| } |
| |
| if ((err = i2c_attach_client(data->lm75[0]))) { |
| dev_err(&new_client->dev, "subclient %d registration " |
| "at address 0x%x failed.\n", i, data->lm75[0]->addr); |
| goto ERROR_SC_2; |
| } |
| |
| if ((err = i2c_attach_client(data->lm75[1]))) { |
| dev_err(&new_client->dev, "subclient %d registration " |
| "at address 0x%x failed.\n", i, data->lm75[1]->addr); |
| goto ERROR_SC_3; |
| } |
| |
| return 0; |
| |
| /* Undo inits in case of errors */ |
| ERROR_SC_3: |
| i2c_detach_client(data->lm75[0]); |
| ERROR_SC_2: |
| kfree(data->lm75[1]); |
| ERROR_SC_1: |
| kfree(data->lm75[0]); |
| ERROR_SC_0: |
| return err; |
| } |
| |
| static int asb100_detect(struct i2c_adapter *adapter, int address, int kind) |
| { |
| int err; |
| struct i2c_client *new_client; |
| struct asb100_data *data; |
| |
| if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) { |
| pr_debug("asb100.o: detect failed, " |
| "smbus byte data not supported!\n"); |
| err = -ENODEV; |
| goto ERROR0; |
| } |
| |
| /* OK. For now, we presume we have a valid client. We now create the |
| client structure, even though we cannot fill it completely yet. |
| But it allows us to access asb100_{read,write}_value. */ |
| |
| if (!(data = kzalloc(sizeof(struct asb100_data), GFP_KERNEL))) { |
| pr_debug("asb100.o: detect failed, kzalloc failed!\n"); |
| err = -ENOMEM; |
| goto ERROR0; |
| } |
| |
| new_client = &data->client; |
| mutex_init(&data->lock); |
| i2c_set_clientdata(new_client, data); |
| new_client->addr = address; |
| new_client->adapter = adapter; |
| new_client->driver = &asb100_driver; |
| new_client->flags = 0; |
| |
| /* Now, we do the remaining detection. */ |
| |
| /* The chip may be stuck in some other bank than bank 0. This may |
| make reading other information impossible. Specify a force=... or |
| force_*=... parameter, and the chip will be reset to the right |
| bank. */ |
| if (kind < 0) { |
| |
| int val1 = asb100_read_value(new_client, ASB100_REG_BANK); |
| int val2 = asb100_read_value(new_client, ASB100_REG_CHIPMAN); |
| |
| /* If we're in bank 0 */ |
| if ( (!(val1 & 0x07)) && |
| /* Check for ASB100 ID (low byte) */ |
| ( ((!(val1 & 0x80)) && (val2 != 0x94)) || |
| /* Check for ASB100 ID (high byte ) */ |
| ((val1 & 0x80) && (val2 != 0x06)) ) ) { |
| pr_debug("asb100.o: detect failed, " |
| "bad chip id 0x%02x!\n", val2); |
| err = -ENODEV; |
| goto ERROR1; |
| } |
| |
| } /* kind < 0 */ |
| |
| /* We have either had a force parameter, or we have already detected |
| Winbond. Put it now into bank 0 and Vendor ID High Byte */ |
| asb100_write_value(new_client, ASB100_REG_BANK, |
| (asb100_read_value(new_client, ASB100_REG_BANK) & 0x78) | 0x80); |
| |
| /* Determine the chip type. */ |
| if (kind <= 0) { |
| int val1 = asb100_read_value(new_client, ASB100_REG_WCHIPID); |
| int val2 = asb100_read_value(new_client, ASB100_REG_CHIPMAN); |
| |
| if ((val1 == 0x31) && (val2 == 0x06)) |
| kind = asb100; |
| else { |
| if (kind == 0) |
| dev_warn(&new_client->dev, "ignoring " |
| "'force' parameter for unknown chip " |
| "at adapter %d, address 0x%02x.\n", |
| i2c_adapter_id(adapter), address); |
| err = -ENODEV; |
| goto ERROR1; |
| } |
| } |
| |
| /* Fill in remaining client fields and put it into the global list */ |
| strlcpy(new_client->name, "asb100", I2C_NAME_SIZE); |
| data->type = kind; |
| |
| data->valid = 0; |
| mutex_init(&data->update_lock); |
| |
| /* Tell the I2C layer a new client has arrived */ |
| if ((err = i2c_attach_client(new_client))) |
| goto ERROR1; |
| |
| /* Attach secondary lm75 clients */ |
| if ((err = asb100_detect_subclients(adapter, address, kind, |
| new_client))) |
| goto ERROR2; |
| |
| /* Initialize the chip */ |
| asb100_init_client(new_client); |
| |
| /* A few vars need to be filled upon startup */ |
| data->fan_min[0] = asb100_read_value(new_client, ASB100_REG_FAN_MIN(0)); |
| data->fan_min[1] = asb100_read_value(new_client, ASB100_REG_FAN_MIN(1)); |
| data->fan_min[2] = asb100_read_value(new_client, ASB100_REG_FAN_MIN(2)); |
| |
| /* Register sysfs hooks */ |
| if ((err = sysfs_create_group(&new_client->dev.kobj, &asb100_group))) |
| goto ERROR3; |
| |
| data->hwmon_dev = hwmon_device_register(&new_client->dev); |
| if (IS_ERR(data->hwmon_dev)) { |
| err = PTR_ERR(data->hwmon_dev); |
| goto ERROR4; |
| } |
| |
| return 0; |
| |
| ERROR4: |
| sysfs_remove_group(&new_client->dev.kobj, &asb100_group); |
| ERROR3: |
| i2c_detach_client(data->lm75[1]); |
| i2c_detach_client(data->lm75[0]); |
| kfree(data->lm75[1]); |
| kfree(data->lm75[0]); |
| ERROR2: |
| i2c_detach_client(new_client); |
| ERROR1: |
| kfree(data); |
| ERROR0: |
| return err; |
| } |
| |
| static int asb100_detach_client(struct i2c_client *client) |
| { |
| struct asb100_data *data = i2c_get_clientdata(client); |
| int err; |
| |
| /* main client */ |
| if (data) { |
| hwmon_device_unregister(data->hwmon_dev); |
| sysfs_remove_group(&client->dev.kobj, &asb100_group); |
| } |
| |
| if ((err = i2c_detach_client(client))) |
| return err; |
| |
| /* main client */ |
| if (data) |
| kfree(data); |
| |
| /* subclient */ |
| else |
| kfree(client); |
| |
| return 0; |
| } |
| |
| /* The SMBus locks itself, usually, but nothing may access the chip between |
| bank switches. */ |
| static int asb100_read_value(struct i2c_client *client, u16 reg) |
| { |
| struct asb100_data *data = i2c_get_clientdata(client); |
| struct i2c_client *cl; |
| int res, bank; |
| |
| mutex_lock(&data->lock); |
| |
| bank = (reg >> 8) & 0x0f; |
| if (bank > 2) |
| /* switch banks */ |
| i2c_smbus_write_byte_data(client, ASB100_REG_BANK, bank); |
| |
| if (bank == 0 || bank > 2) { |
| res = i2c_smbus_read_byte_data(client, reg & 0xff); |
| } else { |
| /* switch to subclient */ |
| cl = data->lm75[bank - 1]; |
| |
| /* convert from ISA to LM75 I2C addresses */ |
| switch (reg & 0xff) { |
| case 0x50: /* TEMP */ |
| res = swab16(i2c_smbus_read_word_data (cl, 0)); |
| break; |
| case 0x52: /* CONFIG */ |
| res = i2c_smbus_read_byte_data(cl, 1); |
| break; |
| case 0x53: /* HYST */ |
| res = swab16(i2c_smbus_read_word_data (cl, 2)); |
| break; |
| case 0x55: /* MAX */ |
| default: |
| res = swab16(i2c_smbus_read_word_data (cl, 3)); |
| break; |
| } |
| } |
| |
| if (bank > 2) |
| i2c_smbus_write_byte_data(client, ASB100_REG_BANK, 0); |
| |
| mutex_unlock(&data->lock); |
| |
| return res; |
| } |
| |
| static void asb100_write_value(struct i2c_client *client, u16 reg, u16 value) |
| { |
| struct asb100_data *data = i2c_get_clientdata(client); |
| struct i2c_client *cl; |
| int bank; |
| |
| mutex_lock(&data->lock); |
| |
| bank = (reg >> 8) & 0x0f; |
| if (bank > 2) |
| /* switch banks */ |
| i2c_smbus_write_byte_data(client, ASB100_REG_BANK, bank); |
| |
| if (bank == 0 || bank > 2) { |
| i2c_smbus_write_byte_data(client, reg & 0xff, value & 0xff); |
| } else { |
| /* switch to subclient */ |
| cl = data->lm75[bank - 1]; |
| |
| /* convert from ISA to LM75 I2C addresses */ |
| switch (reg & 0xff) { |
| case 0x52: /* CONFIG */ |
| i2c_smbus_write_byte_data(cl, 1, value & 0xff); |
| break; |
| case 0x53: /* HYST */ |
| i2c_smbus_write_word_data(cl, 2, swab16(value)); |
| break; |
| case 0x55: /* MAX */ |
| i2c_smbus_write_word_data(cl, 3, swab16(value)); |
| break; |
| } |
| } |
| |
| if (bank > 2) |
| i2c_smbus_write_byte_data(client, ASB100_REG_BANK, 0); |
| |
| mutex_unlock(&data->lock); |
| } |
| |
| static void asb100_init_client(struct i2c_client *client) |
| { |
| struct asb100_data *data = i2c_get_clientdata(client); |
| int vid = 0; |
| |
| vid = asb100_read_value(client, ASB100_REG_VID_FANDIV) & 0x0f; |
| vid |= (asb100_read_value(client, ASB100_REG_CHIPID) & 0x01) << 4; |
| data->vrm = vid_which_vrm(); |
| vid = vid_from_reg(vid, data->vrm); |
| |
| /* Start monitoring */ |
| asb100_write_value(client, ASB100_REG_CONFIG, |
| (asb100_read_value(client, ASB100_REG_CONFIG) & 0xf7) | 0x01); |
| } |
| |
| static struct asb100_data *asb100_update_device(struct device *dev) |
| { |
| struct i2c_client *client = to_i2c_client(dev); |
| struct asb100_data *data = i2c_get_clientdata(client); |
| int i; |
| |
| mutex_lock(&data->update_lock); |
| |
| if (time_after(jiffies, data->last_updated + HZ + HZ / 2) |
| || !data->valid) { |
| |
| dev_dbg(&client->dev, "starting device update...\n"); |
| |
| /* 7 voltage inputs */ |
| for (i = 0; i < 7; i++) { |
| data->in[i] = asb100_read_value(client, |
| ASB100_REG_IN(i)); |
| data->in_min[i] = asb100_read_value(client, |
| ASB100_REG_IN_MIN(i)); |
| data->in_max[i] = asb100_read_value(client, |
| ASB100_REG_IN_MAX(i)); |
| } |
| |
| /* 3 fan inputs */ |
| for (i = 0; i < 3; i++) { |
| data->fan[i] = asb100_read_value(client, |
| ASB100_REG_FAN(i)); |
| data->fan_min[i] = asb100_read_value(client, |
| ASB100_REG_FAN_MIN(i)); |
| } |
| |
| /* 4 temperature inputs */ |
| for (i = 1; i <= 4; i++) { |
| data->temp[i-1] = asb100_read_value(client, |
| ASB100_REG_TEMP(i)); |
| data->temp_max[i-1] = asb100_read_value(client, |
| ASB100_REG_TEMP_MAX(i)); |
| data->temp_hyst[i-1] = asb100_read_value(client, |
| ASB100_REG_TEMP_HYST(i)); |
| } |
| |
| /* VID and fan divisors */ |
| i = asb100_read_value(client, ASB100_REG_VID_FANDIV); |
| data->vid = i & 0x0f; |
| data->vid |= (asb100_read_value(client, |
| ASB100_REG_CHIPID) & 0x01) << 4; |
| data->fan_div[0] = (i >> 4) & 0x03; |
| data->fan_div[1] = (i >> 6) & 0x03; |
| data->fan_div[2] = (asb100_read_value(client, |
| ASB100_REG_PIN) >> 6) & 0x03; |
| |
| /* PWM */ |
| data->pwm = asb100_read_value(client, ASB100_REG_PWM1); |
| |
| /* alarms */ |
| data->alarms = asb100_read_value(client, ASB100_REG_ALARM1) + |
| (asb100_read_value(client, ASB100_REG_ALARM2) << 8); |
| |
| data->last_updated = jiffies; |
| data->valid = 1; |
| |
| dev_dbg(&client->dev, "... device update complete\n"); |
| } |
| |
| mutex_unlock(&data->update_lock); |
| |
| return data; |
| } |
| |
| static int __init asb100_init(void) |
| { |
| return i2c_add_driver(&asb100_driver); |
| } |
| |
| static void __exit asb100_exit(void) |
| { |
| i2c_del_driver(&asb100_driver); |
| } |
| |
| MODULE_AUTHOR("Mark M. Hoffman <mhoffman@lightlink.com>"); |
| MODULE_DESCRIPTION("ASB100 Bach driver"); |
| MODULE_LICENSE("GPL"); |
| |
| module_init(asb100_init); |
| module_exit(asb100_exit); |
| |