blob: 2568d311be215a7301bc752f4813a9e64e866999 [file] [log] [blame]
/*
* linux/arch/arm/boot/compressed/head.S
*
* Copyright (C) 1996-2002 Russell King
* Copyright (C) 2004 Hyok S. Choi (MPU support)
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/linkage.h>
/*
* Debugging stuff
*
* Note that these macros must not contain any code which is not
* 100% relocatable. Any attempt to do so will result in a crash.
* Please select one of the following when turning on debugging.
*/
#ifdef DEBUG
#if defined(CONFIG_DEBUG_ICEDCC)
#ifdef CONFIG_CPU_V6
.macro loadsp, rb
.endm
.macro writeb, ch, rb
mcr p14, 0, \ch, c0, c5, 0
.endm
#else
.macro loadsp, rb
.endm
.macro writeb, ch, rb
mcr p14, 0, \ch, c0, c1, 0
.endm
#endif
#else
#include <asm/arch/debug-macro.S>
.macro writeb, ch, rb
senduart \ch, \rb
.endm
#if defined(CONFIG_ARCH_SA1100)
.macro loadsp, rb
mov \rb, #0x80000000 @ physical base address
#ifdef CONFIG_DEBUG_LL_SER3
add \rb, \rb, #0x00050000 @ Ser3
#else
add \rb, \rb, #0x00010000 @ Ser1
#endif
.endm
#elif defined(CONFIG_ARCH_S3C2410)
.macro loadsp, rb
mov \rb, #0x50000000
add \rb, \rb, #0x4000 * CONFIG_S3C2410_LOWLEVEL_UART_PORT
.endm
#else
.macro loadsp, rb
addruart \rb
.endm
#endif
#endif
#endif
.macro kputc,val
mov r0, \val
bl putc
.endm
.macro kphex,val,len
mov r0, \val
mov r1, #\len
bl phex
.endm
.macro debug_reloc_start
#ifdef DEBUG
kputc #'\n'
kphex r6, 8 /* processor id */
kputc #':'
kphex r7, 8 /* architecture id */
#ifdef CONFIG_CPU_CP15
kputc #':'
mrc p15, 0, r0, c1, c0
kphex r0, 8 /* control reg */
#endif
kputc #'\n'
kphex r5, 8 /* decompressed kernel start */
kputc #'-'
kphex r9, 8 /* decompressed kernel end */
kputc #'>'
kphex r4, 8 /* kernel execution address */
kputc #'\n'
#endif
.endm
.macro debug_reloc_end
#ifdef DEBUG
kphex r5, 8 /* end of kernel */
kputc #'\n'
mov r0, r4
bl memdump /* dump 256 bytes at start of kernel */
#endif
.endm
.section ".start", #alloc, #execinstr
/*
* sort out different calling conventions
*/
.align
start:
.type start,#function
.rept 8
mov r0, r0
.endr
b 1f
.word 0x016f2818 @ Magic numbers to help the loader
.word start @ absolute load/run zImage address
.word _edata @ zImage end address
1: mov r7, r1 @ save architecture ID
mov r8, r2 @ save atags pointer
#ifndef __ARM_ARCH_2__
/*
* Booting from Angel - need to enter SVC mode and disable
* FIQs/IRQs (numeric definitions from angel arm.h source).
* We only do this if we were in user mode on entry.
*/
mrs r2, cpsr @ get current mode
tst r2, #3 @ not user?
bne not_angel
mov r0, #0x17 @ angel_SWIreason_EnterSVC
swi 0x123456 @ angel_SWI_ARM
not_angel:
mrs r2, cpsr @ turn off interrupts to
orr r2, r2, #0xc0 @ prevent angel from running
msr cpsr_c, r2
#else
teqp pc, #0x0c000003 @ turn off interrupts
#endif
/*
* Note that some cache flushing and other stuff may
* be needed here - is there an Angel SWI call for this?
*/
/*
* some architecture specific code can be inserted
* by the linker here, but it should preserve r7, r8, and r9.
*/
.text
adr r0, LC0
ldmia r0, {r1, r2, r3, r4, r5, r6, ip, sp}
subs r0, r0, r1 @ calculate the delta offset
@ if delta is zero, we are
beq not_relocated @ running at the address we
@ were linked at.
/*
* We're running at a different address. We need to fix
* up various pointers:
* r5 - zImage base address
* r6 - GOT start
* ip - GOT end
*/
add r5, r5, r0
add r6, r6, r0
add ip, ip, r0
#ifndef CONFIG_ZBOOT_ROM
/*
* If we're running fully PIC === CONFIG_ZBOOT_ROM = n,
* we need to fix up pointers into the BSS region.
* r2 - BSS start
* r3 - BSS end
* sp - stack pointer
*/
add r2, r2, r0
add r3, r3, r0
add sp, sp, r0
/*
* Relocate all entries in the GOT table.
*/
1: ldr r1, [r6, #0] @ relocate entries in the GOT
add r1, r1, r0 @ table. This fixes up the
str r1, [r6], #4 @ C references.
cmp r6, ip
blo 1b
#else
/*
* Relocate entries in the GOT table. We only relocate
* the entries that are outside the (relocated) BSS region.
*/
1: ldr r1, [r6, #0] @ relocate entries in the GOT
cmp r1, r2 @ entry < bss_start ||
cmphs r3, r1 @ _end < entry
addlo r1, r1, r0 @ table. This fixes up the
str r1, [r6], #4 @ C references.
cmp r6, ip
blo 1b
#endif
not_relocated: mov r0, #0
1: str r0, [r2], #4 @ clear bss
str r0, [r2], #4
str r0, [r2], #4
str r0, [r2], #4
cmp r2, r3
blo 1b
/*
* The C runtime environment should now be setup
* sufficiently. Turn the cache on, set up some
* pointers, and start decompressing.
*/
bl cache_on
mov r1, sp @ malloc space above stack
add r2, sp, #0x10000 @ 64k max
/*
* Check to see if we will overwrite ourselves.
* r4 = final kernel address
* r5 = start of this image
* r2 = end of malloc space (and therefore this image)
* We basically want:
* r4 >= r2 -> OK
* r4 + image length <= r5 -> OK
*/
cmp r4, r2
bhs wont_overwrite
sub r3, sp, r5 @ > compressed kernel size
add r0, r4, r3, lsl #2 @ allow for 4x expansion
cmp r0, r5
bls wont_overwrite
mov r5, r2 @ decompress after malloc space
mov r0, r5
mov r3, r7
bl decompress_kernel
add r0, r0, #127
bic r0, r0, #127 @ align the kernel length
/*
* r0 = decompressed kernel length
* r1-r3 = unused
* r4 = kernel execution address
* r5 = decompressed kernel start
* r6 = processor ID
* r7 = architecture ID
* r8 = atags pointer
* r9-r14 = corrupted
*/
add r1, r5, r0 @ end of decompressed kernel
adr r2, reloc_start
ldr r3, LC1
add r3, r2, r3
1: ldmia r2!, {r9 - r14} @ copy relocation code
stmia r1!, {r9 - r14}
ldmia r2!, {r9 - r14}
stmia r1!, {r9 - r14}
cmp r2, r3
blo 1b
bl cache_clean_flush
add pc, r5, r0 @ call relocation code
/*
* We're not in danger of overwriting ourselves. Do this the simple way.
*
* r4 = kernel execution address
* r7 = architecture ID
*/
wont_overwrite: mov r0, r4
mov r3, r7
bl decompress_kernel
b call_kernel
.type LC0, #object
LC0: .word LC0 @ r1
.word __bss_start @ r2
.word _end @ r3
.word zreladdr @ r4
.word _start @ r5
.word _got_start @ r6
.word _got_end @ ip
.word user_stack+4096 @ sp
LC1: .word reloc_end - reloc_start
.size LC0, . - LC0
#ifdef CONFIG_ARCH_RPC
.globl params
params: ldr r0, =params_phys
mov pc, lr
.ltorg
.align
#endif
/*
* Turn on the cache. We need to setup some page tables so that we
* can have both the I and D caches on.
*
* We place the page tables 16k down from the kernel execution address,
* and we hope that nothing else is using it. If we're using it, we
* will go pop!
*
* On entry,
* r4 = kernel execution address
* r6 = processor ID
* r7 = architecture number
* r8 = atags pointer
* r9 = run-time address of "start" (???)
* On exit,
* r1, r2, r3, r9, r10, r12 corrupted
* This routine must preserve:
* r4, r5, r6, r7, r8
*/
.align 5
cache_on: mov r3, #8 @ cache_on function
b call_cache_fn
/*
* Initialize the highest priority protection region, PR7
* to cover all 32bit address and cacheable and bufferable.
*/
__armv4_mpu_cache_on:
mov r0, #0x3f @ 4G, the whole
mcr p15, 0, r0, c6, c7, 0 @ PR7 Area Setting
mcr p15, 0, r0, c6, c7, 1
mov r0, #0x80 @ PR7
mcr p15, 0, r0, c2, c0, 0 @ D-cache on
mcr p15, 0, r0, c2, c0, 1 @ I-cache on
mcr p15, 0, r0, c3, c0, 0 @ write-buffer on
mov r0, #0xc000
mcr p15, 0, r0, c5, c0, 1 @ I-access permission
mcr p15, 0, r0, c5, c0, 0 @ D-access permission
mov r0, #0
mcr p15, 0, r0, c7, c10, 4 @ drain write buffer
mcr p15, 0, r0, c7, c5, 0 @ flush(inval) I-Cache
mcr p15, 0, r0, c7, c6, 0 @ flush(inval) D-Cache
mrc p15, 0, r0, c1, c0, 0 @ read control reg
@ ...I .... ..D. WC.M
orr r0, r0, #0x002d @ .... .... ..1. 11.1
orr r0, r0, #0x1000 @ ...1 .... .... ....
mcr p15, 0, r0, c1, c0, 0 @ write control reg
mov r0, #0
mcr p15, 0, r0, c7, c5, 0 @ flush(inval) I-Cache
mcr p15, 0, r0, c7, c6, 0 @ flush(inval) D-Cache
mov pc, lr
__armv3_mpu_cache_on:
mov r0, #0x3f @ 4G, the whole
mcr p15, 0, r0, c6, c7, 0 @ PR7 Area Setting
mov r0, #0x80 @ PR7
mcr p15, 0, r0, c2, c0, 0 @ cache on
mcr p15, 0, r0, c3, c0, 0 @ write-buffer on
mov r0, #0xc000
mcr p15, 0, r0, c5, c0, 0 @ access permission
mov r0, #0
mcr p15, 0, r0, c7, c0, 0 @ invalidate whole cache v3
mrc p15, 0, r0, c1, c0, 0 @ read control reg
@ .... .... .... WC.M
orr r0, r0, #0x000d @ .... .... .... 11.1
mov r0, #0
mcr p15, 0, r0, c1, c0, 0 @ write control reg
mcr p15, 0, r0, c7, c0, 0 @ invalidate whole cache v3
mov pc, lr
__setup_mmu: sub r3, r4, #16384 @ Page directory size
bic r3, r3, #0xff @ Align the pointer
bic r3, r3, #0x3f00
/*
* Initialise the page tables, turning on the cacheable and bufferable
* bits for the RAM area only.
*/
mov r0, r3
mov r9, r0, lsr #18
mov r9, r9, lsl #18 @ start of RAM
add r10, r9, #0x10000000 @ a reasonable RAM size
mov r1, #0x12
orr r1, r1, #3 << 10
add r2, r3, #16384
1: cmp r1, r9 @ if virt > start of RAM
orrhs r1, r1, #0x0c @ set cacheable, bufferable
cmp r1, r10 @ if virt > end of RAM
bichs r1, r1, #0x0c @ clear cacheable, bufferable
str r1, [r0], #4 @ 1:1 mapping
add r1, r1, #1048576
teq r0, r2
bne 1b
/*
* If ever we are running from Flash, then we surely want the cache
* to be enabled also for our execution instance... We map 2MB of it
* so there is no map overlap problem for up to 1 MB compressed kernel.
* If the execution is in RAM then we would only be duplicating the above.
*/
mov r1, #0x1e
orr r1, r1, #3 << 10
mov r2, pc, lsr #20
orr r1, r1, r2, lsl #20
add r0, r3, r2, lsl #2
str r1, [r0], #4
add r1, r1, #1048576
str r1, [r0]
mov pc, lr
__armv4_mmu_cache_on:
mov r12, lr
bl __setup_mmu
mov r0, #0
mcr p15, 0, r0, c7, c10, 4 @ drain write buffer
mcr p15, 0, r0, c8, c7, 0 @ flush I,D TLBs
mrc p15, 0, r0, c1, c0, 0 @ read control reg
orr r0, r0, #0x5000 @ I-cache enable, RR cache replacement
orr r0, r0, #0x0030
bl __common_mmu_cache_on
mov r0, #0
mcr p15, 0, r0, c8, c7, 0 @ flush I,D TLBs
mov pc, r12
__arm6_mmu_cache_on:
mov r12, lr
bl __setup_mmu
mov r0, #0
mcr p15, 0, r0, c7, c0, 0 @ invalidate whole cache v3
mcr p15, 0, r0, c5, c0, 0 @ invalidate whole TLB v3
mov r0, #0x30
bl __common_mmu_cache_on
mov r0, #0
mcr p15, 0, r0, c5, c0, 0 @ invalidate whole TLB v3
mov pc, r12
__common_mmu_cache_on:
#ifndef DEBUG
orr r0, r0, #0x000d @ Write buffer, mmu
#endif
mov r1, #-1
mcr p15, 0, r3, c2, c0, 0 @ load page table pointer
mcr p15, 0, r1, c3, c0, 0 @ load domain access control
b 1f
.align 5 @ cache line aligned
1: mcr p15, 0, r0, c1, c0, 0 @ load control register
mrc p15, 0, r0, c1, c0, 0 @ and read it back to
sub pc, lr, r0, lsr #32 @ properly flush pipeline
/*
* All code following this line is relocatable. It is relocated by
* the above code to the end of the decompressed kernel image and
* executed there. During this time, we have no stacks.
*
* r0 = decompressed kernel length
* r1-r3 = unused
* r4 = kernel execution address
* r5 = decompressed kernel start
* r6 = processor ID
* r7 = architecture ID
* r8 = atags pointer
* r9-r14 = corrupted
*/
.align 5
reloc_start: add r9, r5, r0
debug_reloc_start
mov r1, r4
1:
.rept 4
ldmia r5!, {r0, r2, r3, r10 - r14} @ relocate kernel
stmia r1!, {r0, r2, r3, r10 - r14}
.endr
cmp r5, r9
blo 1b
debug_reloc_end
call_kernel: bl cache_clean_flush
bl cache_off
mov r0, #0 @ must be zero
mov r1, r7 @ restore architecture number
mov r2, r8 @ restore atags pointer
mov pc, r4 @ call kernel
/*
* Here follow the relocatable cache support functions for the
* various processors. This is a generic hook for locating an
* entry and jumping to an instruction at the specified offset
* from the start of the block. Please note this is all position
* independent code.
*
* r1 = corrupted
* r2 = corrupted
* r3 = block offset
* r6 = corrupted
* r12 = corrupted
*/
call_cache_fn: adr r12, proc_types
#ifdef CONFIG_CPU_CP15
mrc p15, 0, r6, c0, c0 @ get processor ID
#else
ldr r6, =CONFIG_PROCESSOR_ID
#endif
1: ldr r1, [r12, #0] @ get value
ldr r2, [r12, #4] @ get mask
eor r1, r1, r6 @ (real ^ match)
tst r1, r2 @ & mask
addeq pc, r12, r3 @ call cache function
add r12, r12, #4*5
b 1b
/*
* Table for cache operations. This is basically:
* - CPU ID match
* - CPU ID mask
* - 'cache on' method instruction
* - 'cache off' method instruction
* - 'cache flush' method instruction
*
* We match an entry using: ((real_id ^ match) & mask) == 0
*
* Writethrough caches generally only need 'on' and 'off'
* methods. Writeback caches _must_ have the flush method
* defined.
*/
.type proc_types,#object
proc_types:
.word 0x41560600 @ ARM6/610
.word 0xffffffe0
b __arm6_mmu_cache_off @ works, but slow
b __arm6_mmu_cache_off
mov pc, lr
@ b __arm6_mmu_cache_on @ untested
@ b __arm6_mmu_cache_off
@ b __armv3_mmu_cache_flush
.word 0x00000000 @ old ARM ID
.word 0x0000f000
mov pc, lr
mov pc, lr
mov pc, lr
.word 0x41007000 @ ARM7/710
.word 0xfff8fe00
b __arm7_mmu_cache_off
b __arm7_mmu_cache_off
mov pc, lr
.word 0x41807200 @ ARM720T (writethrough)
.word 0xffffff00
b __armv4_mmu_cache_on
b __armv4_mmu_cache_off
mov pc, lr
.word 0x41007400 @ ARM74x
.word 0xff00ff00
b __armv3_mpu_cache_on
b __armv3_mpu_cache_off
b __armv3_mpu_cache_flush
.word 0x41009400 @ ARM94x
.word 0xff00ff00
b __armv4_mpu_cache_on
b __armv4_mpu_cache_off
b __armv4_mpu_cache_flush
.word 0x00007000 @ ARM7 IDs
.word 0x0000f000
mov pc, lr
mov pc, lr
mov pc, lr
@ Everything from here on will be the new ID system.
.word 0x4401a100 @ sa110 / sa1100
.word 0xffffffe0
b __armv4_mmu_cache_on
b __armv4_mmu_cache_off
b __armv4_mmu_cache_flush
.word 0x6901b110 @ sa1110
.word 0xfffffff0
b __armv4_mmu_cache_on
b __armv4_mmu_cache_off
b __armv4_mmu_cache_flush
@ These match on the architecture ID
.word 0x00020000 @ ARMv4T
.word 0x000f0000
b __armv4_mmu_cache_on
b __armv4_mmu_cache_off
b __armv4_mmu_cache_flush
.word 0x00050000 @ ARMv5TE
.word 0x000f0000
b __armv4_mmu_cache_on
b __armv4_mmu_cache_off
b __armv4_mmu_cache_flush
.word 0x00060000 @ ARMv5TEJ
.word 0x000f0000
b __armv4_mmu_cache_on
b __armv4_mmu_cache_off
b __armv4_mmu_cache_flush
.word 0x0007b000 @ ARMv6
.word 0x0007f000
b __armv4_mmu_cache_on
b __armv4_mmu_cache_off
b __armv6_mmu_cache_flush
.word 0 @ unrecognised type
.word 0
mov pc, lr
mov pc, lr
mov pc, lr
.size proc_types, . - proc_types
/*
* Turn off the Cache and MMU. ARMv3 does not support
* reading the control register, but ARMv4 does.
*
* On entry, r6 = processor ID
* On exit, r0, r1, r2, r3, r12 corrupted
* This routine must preserve: r4, r6, r7
*/
.align 5
cache_off: mov r3, #12 @ cache_off function
b call_cache_fn
__armv4_mpu_cache_off:
mrc p15, 0, r0, c1, c0
bic r0, r0, #0x000d
mcr p15, 0, r0, c1, c0 @ turn MPU and cache off
mov r0, #0
mcr p15, 0, r0, c7, c10, 4 @ drain write buffer
mcr p15, 0, r0, c7, c6, 0 @ flush D-Cache
mcr p15, 0, r0, c7, c5, 0 @ flush I-Cache
mov pc, lr
__armv3_mpu_cache_off:
mrc p15, 0, r0, c1, c0
bic r0, r0, #0x000d
mcr p15, 0, r0, c1, c0, 0 @ turn MPU and cache off
mov r0, #0
mcr p15, 0, r0, c7, c0, 0 @ invalidate whole cache v3
mov pc, lr
__armv4_mmu_cache_off:
mrc p15, 0, r0, c1, c0
bic r0, r0, #0x000d
mcr p15, 0, r0, c1, c0 @ turn MMU and cache off
mov r0, #0
mcr p15, 0, r0, c7, c7 @ invalidate whole cache v4
mcr p15, 0, r0, c8, c7 @ invalidate whole TLB v4
mov pc, lr
__arm6_mmu_cache_off:
mov r0, #0x00000030 @ ARM6 control reg.
b __armv3_mmu_cache_off
__arm7_mmu_cache_off:
mov r0, #0x00000070 @ ARM7 control reg.
b __armv3_mmu_cache_off
__armv3_mmu_cache_off:
mcr p15, 0, r0, c1, c0, 0 @ turn MMU and cache off
mov r0, #0
mcr p15, 0, r0, c7, c0, 0 @ invalidate whole cache v3
mcr p15, 0, r0, c5, c0, 0 @ invalidate whole TLB v3
mov pc, lr
/*
* Clean and flush the cache to maintain consistency.
*
* On entry,
* r6 = processor ID
* On exit,
* r1, r2, r3, r11, r12 corrupted
* This routine must preserve:
* r0, r4, r5, r6, r7
*/
.align 5
cache_clean_flush:
mov r3, #16
b call_cache_fn
__armv4_mpu_cache_flush:
mov r2, #1
mov r3, #0
mcr p15, 0, ip, c7, c6, 0 @ invalidate D cache
mov r1, #7 << 5 @ 8 segments
1: orr r3, r1, #63 << 26 @ 64 entries
2: mcr p15, 0, r3, c7, c14, 2 @ clean & invalidate D index
subs r3, r3, #1 << 26
bcs 2b @ entries 63 to 0
subs r1, r1, #1 << 5
bcs 1b @ segments 7 to 0
teq r2, #0
mcrne p15, 0, ip, c7, c5, 0 @ invalidate I cache
mcr p15, 0, ip, c7, c10, 4 @ drain WB
mov pc, lr
__armv6_mmu_cache_flush:
mov r1, #0
mcr p15, 0, r1, c7, c14, 0 @ clean+invalidate D
mcr p15, 0, r1, c7, c5, 0 @ invalidate I+BTB
mcr p15, 0, r1, c7, c15, 0 @ clean+invalidate unified
mcr p15, 0, r1, c7, c10, 4 @ drain WB
mov pc, lr
__armv4_mmu_cache_flush:
mov r2, #64*1024 @ default: 32K dcache size (*2)
mov r11, #32 @ default: 32 byte line size
mrc p15, 0, r3, c0, c0, 1 @ read cache type
teq r3, r6 @ cache ID register present?
beq no_cache_id
mov r1, r3, lsr #18
and r1, r1, #7
mov r2, #1024
mov r2, r2, lsl r1 @ base dcache size *2
tst r3, #1 << 14 @ test M bit
addne r2, r2, r2, lsr #1 @ +1/2 size if M == 1
mov r3, r3, lsr #12
and r3, r3, #3
mov r11, #8
mov r11, r11, lsl r3 @ cache line size in bytes
no_cache_id:
bic r1, pc, #63 @ align to longest cache line
add r2, r1, r2
1: ldr r3, [r1], r11 @ s/w flush D cache
teq r1, r2
bne 1b
mcr p15, 0, r1, c7, c5, 0 @ flush I cache
mcr p15, 0, r1, c7, c6, 0 @ flush D cache
mcr p15, 0, r1, c7, c10, 4 @ drain WB
mov pc, lr
__armv3_mmu_cache_flush:
__armv3_mpu_cache_flush:
mov r1, #0
mcr p15, 0, r0, c7, c0, 0 @ invalidate whole cache v3
mov pc, lr
/*
* Various debugging routines for printing hex characters and
* memory, which again must be relocatable.
*/
#ifdef DEBUG
.type phexbuf,#object
phexbuf: .space 12
.size phexbuf, . - phexbuf
phex: adr r3, phexbuf
mov r2, #0
strb r2, [r3, r1]
1: subs r1, r1, #1
movmi r0, r3
bmi puts
and r2, r0, #15
mov r0, r0, lsr #4
cmp r2, #10
addge r2, r2, #7
add r2, r2, #'0'
strb r2, [r3, r1]
b 1b
puts: loadsp r3
1: ldrb r2, [r0], #1
teq r2, #0
moveq pc, lr
2: writeb r2, r3
mov r1, #0x00020000
3: subs r1, r1, #1
bne 3b
teq r2, #'\n'
moveq r2, #'\r'
beq 2b
teq r0, #0
bne 1b
mov pc, lr
putc:
mov r2, r0
mov r0, #0
loadsp r3
b 2b
memdump: mov r12, r0
mov r10, lr
mov r11, #0
2: mov r0, r11, lsl #2
add r0, r0, r12
mov r1, #8
bl phex
mov r0, #':'
bl putc
1: mov r0, #' '
bl putc
ldr r0, [r12, r11, lsl #2]
mov r1, #8
bl phex
and r0, r11, #7
teq r0, #3
moveq r0, #' '
bleq putc
and r0, r11, #7
add r11, r11, #1
teq r0, #7
bne 1b
mov r0, #'\n'
bl putc
cmp r11, #64
blt 2b
mov pc, r10
#endif
reloc_end:
.align
.section ".stack", "w"
user_stack: .space 4096