blob: bd305f7f3efd64bab4ddaba0e3236f8cfb6e1e13 [file] [log] [blame]
/*
Copyright (C) 2004 - 2007 rt2x00 SourceForge Project
<http://rt2x00.serialmonkey.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the
Free Software Foundation, Inc.,
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
/*
Module: rt2x00lib
Abstract: rt2x00 generic device routines.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include "rt2x00.h"
#include "rt2x00lib.h"
#include "rt2x00dump.h"
/*
* Ring handler.
*/
struct data_ring *rt2x00lib_get_ring(struct rt2x00_dev *rt2x00dev,
const unsigned int queue)
{
int beacon = test_bit(DRIVER_REQUIRE_BEACON_RING, &rt2x00dev->flags);
/*
* Check if we are requesting a reqular TX ring,
* or if we are requesting a Beacon or Atim ring.
* For Atim rings, we should check if it is supported.
*/
if (queue < rt2x00dev->hw->queues && rt2x00dev->tx)
return &rt2x00dev->tx[queue];
if (!rt2x00dev->bcn || !beacon)
return NULL;
if (queue == IEEE80211_TX_QUEUE_BEACON)
return &rt2x00dev->bcn[0];
else if (queue == IEEE80211_TX_QUEUE_AFTER_BEACON)
return &rt2x00dev->bcn[1];
return NULL;
}
EXPORT_SYMBOL_GPL(rt2x00lib_get_ring);
/*
* Link tuning handlers
*/
void rt2x00lib_reset_link_tuner(struct rt2x00_dev *rt2x00dev)
{
if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
return;
/*
* Reset link information.
* Both the currently active vgc level as well as
* the link tuner counter should be reset. Resetting
* the counter is important for devices where the
* device should only perform link tuning during the
* first minute after being enabled.
*/
rt2x00dev->link.count = 0;
rt2x00dev->link.vgc_level = 0;
/*
* Reset the link tuner.
*/
rt2x00dev->ops->lib->reset_tuner(rt2x00dev);
}
static void rt2x00lib_start_link_tuner(struct rt2x00_dev *rt2x00dev)
{
/*
* Clear all (possibly) pre-existing quality statistics.
*/
memset(&rt2x00dev->link.qual, 0, sizeof(rt2x00dev->link.qual));
/*
* The RX and TX percentage should start at 50%
* this will assure we will get at least get some
* decent value when the link tuner starts.
* The value will be dropped and overwritten with
* the correct (measured )value anyway during the
* first run of the link tuner.
*/
rt2x00dev->link.qual.rx_percentage = 50;
rt2x00dev->link.qual.tx_percentage = 50;
rt2x00lib_reset_link_tuner(rt2x00dev);
queue_delayed_work(rt2x00dev->hw->workqueue,
&rt2x00dev->link.work, LINK_TUNE_INTERVAL);
}
static void rt2x00lib_stop_link_tuner(struct rt2x00_dev *rt2x00dev)
{
cancel_delayed_work_sync(&rt2x00dev->link.work);
}
/*
* Ring initialization
*/
static void rt2x00lib_init_rxrings(struct rt2x00_dev *rt2x00dev)
{
struct data_ring *ring = rt2x00dev->rx;
unsigned int i;
if (!rt2x00dev->ops->lib->init_rxentry)
return;
if (ring->data_addr)
memset(ring->data_addr, 0, rt2x00_get_ring_size(ring));
for (i = 0; i < ring->stats.limit; i++)
rt2x00dev->ops->lib->init_rxentry(rt2x00dev, &ring->entry[i]);
rt2x00_ring_index_clear(ring);
}
static void rt2x00lib_init_txrings(struct rt2x00_dev *rt2x00dev)
{
struct data_ring *ring;
unsigned int i;
if (!rt2x00dev->ops->lib->init_txentry)
return;
txringall_for_each(rt2x00dev, ring) {
if (ring->data_addr)
memset(ring->data_addr, 0, rt2x00_get_ring_size(ring));
for (i = 0; i < ring->stats.limit; i++)
rt2x00dev->ops->lib->init_txentry(rt2x00dev,
&ring->entry[i]);
rt2x00_ring_index_clear(ring);
}
}
/*
* Radio control handlers.
*/
int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
{
int status;
/*
* Don't enable the radio twice.
* And check if the hardware button has been disabled.
*/
if (test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags) ||
test_bit(DEVICE_DISABLED_RADIO_HW, &rt2x00dev->flags))
return 0;
/*
* Initialize all data rings.
*/
rt2x00lib_init_rxrings(rt2x00dev);
rt2x00lib_init_txrings(rt2x00dev);
/*
* Enable radio.
*/
status = rt2x00dev->ops->lib->set_device_state(rt2x00dev,
STATE_RADIO_ON);
if (status)
return status;
__set_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags);
/*
* Enable RX.
*/
rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
/*
* Start the TX queues.
*/
ieee80211_start_queues(rt2x00dev->hw);
return 0;
}
void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
{
if (!__test_and_clear_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
return;
/*
* Stop all scheduled work.
*/
if (work_pending(&rt2x00dev->beacon_work))
cancel_work_sync(&rt2x00dev->beacon_work);
if (work_pending(&rt2x00dev->filter_work))
cancel_work_sync(&rt2x00dev->filter_work);
if (work_pending(&rt2x00dev->config_work))
cancel_work_sync(&rt2x00dev->config_work);
/*
* Stop the TX queues.
*/
ieee80211_stop_queues(rt2x00dev->hw);
/*
* Disable RX.
*/
rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
/*
* Disable radio.
*/
rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
}
void rt2x00lib_toggle_rx(struct rt2x00_dev *rt2x00dev, enum dev_state state)
{
/*
* When we are disabling the RX, we should also stop the link tuner.
*/
if (state == STATE_RADIO_RX_OFF)
rt2x00lib_stop_link_tuner(rt2x00dev);
rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
/*
* When we are enabling the RX, we should also start the link tuner.
*/
if (state == STATE_RADIO_RX_ON &&
is_interface_present(&rt2x00dev->interface))
rt2x00lib_start_link_tuner(rt2x00dev);
}
static void rt2x00lib_evaluate_antenna_sample(struct rt2x00_dev *rt2x00dev)
{
enum antenna rx = rt2x00dev->link.ant.active.rx;
enum antenna tx = rt2x00dev->link.ant.active.tx;
int sample_a =
rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_A);
int sample_b =
rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_B);
/*
* We are done sampling. Now we should evaluate the results.
*/
rt2x00dev->link.ant.flags &= ~ANTENNA_MODE_SAMPLE;
/*
* During the last period we have sampled the RSSI
* from both antenna's. It now is time to determine
* which antenna demonstrated the best performance.
* When we are already on the antenna with the best
* performance, then there really is nothing for us
* left to do.
*/
if (sample_a == sample_b)
return;
if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY)
rx = (sample_a > sample_b) ? ANTENNA_A : ANTENNA_B;
if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)
tx = (sample_a > sample_b) ? ANTENNA_A : ANTENNA_B;
rt2x00lib_config_antenna(rt2x00dev, rx, tx);
}
static void rt2x00lib_evaluate_antenna_eval(struct rt2x00_dev *rt2x00dev)
{
enum antenna rx = rt2x00dev->link.ant.active.rx;
enum antenna tx = rt2x00dev->link.ant.active.tx;
int rssi_curr = rt2x00_get_link_ant_rssi(&rt2x00dev->link);
int rssi_old = rt2x00_update_ant_rssi(&rt2x00dev->link, rssi_curr);
/*
* Legacy driver indicates that we should swap antenna's
* when the difference in RSSI is greater that 5. This
* also should be done when the RSSI was actually better
* then the previous sample.
* When the difference exceeds the threshold we should
* sample the rssi from the other antenna to make a valid
* comparison between the 2 antennas.
*/
if (abs(rssi_curr - rssi_old) < 5)
return;
rt2x00dev->link.ant.flags |= ANTENNA_MODE_SAMPLE;
if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY)
rx = (rx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)
tx = (tx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
rt2x00lib_config_antenna(rt2x00dev, rx, tx);
}
static void rt2x00lib_evaluate_antenna(struct rt2x00_dev *rt2x00dev)
{
/*
* Determine if software diversity is enabled for
* either the TX or RX antenna (or both).
* Always perform this check since within the link
* tuner interval the configuration might have changed.
*/
rt2x00dev->link.ant.flags &= ~ANTENNA_RX_DIVERSITY;
rt2x00dev->link.ant.flags &= ~ANTENNA_TX_DIVERSITY;
if (rt2x00dev->hw->conf.antenna_sel_rx == 0 &&
rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
rt2x00dev->link.ant.flags |= ANTENNA_RX_DIVERSITY;
if (rt2x00dev->hw->conf.antenna_sel_tx == 0 &&
rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
rt2x00dev->link.ant.flags |= ANTENNA_TX_DIVERSITY;
if (!(rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY) &&
!(rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)) {
rt2x00dev->link.ant.flags = 0;
return;
}
/*
* If we have only sampled the data over the last period
* we should now harvest the data. Otherwise just evaluate
* the data. The latter should only be performed once
* every 2 seconds.
*/
if (rt2x00dev->link.ant.flags & ANTENNA_MODE_SAMPLE)
rt2x00lib_evaluate_antenna_sample(rt2x00dev);
else if (rt2x00dev->link.count & 1)
rt2x00lib_evaluate_antenna_eval(rt2x00dev);
}
static void rt2x00lib_update_link_stats(struct link *link, int rssi)
{
int avg_rssi = rssi;
/*
* Update global RSSI
*/
if (link->qual.avg_rssi)
avg_rssi = MOVING_AVERAGE(link->qual.avg_rssi, rssi, 8);
link->qual.avg_rssi = avg_rssi;
/*
* Update antenna RSSI
*/
if (link->ant.rssi_ant)
rssi = MOVING_AVERAGE(link->ant.rssi_ant, rssi, 8);
link->ant.rssi_ant = rssi;
}
static void rt2x00lib_precalculate_link_signal(struct link_qual *qual)
{
if (qual->rx_failed || qual->rx_success)
qual->rx_percentage =
(qual->rx_success * 100) /
(qual->rx_failed + qual->rx_success);
else
qual->rx_percentage = 50;
if (qual->tx_failed || qual->tx_success)
qual->tx_percentage =
(qual->tx_success * 100) /
(qual->tx_failed + qual->tx_success);
else
qual->tx_percentage = 50;
qual->rx_success = 0;
qual->rx_failed = 0;
qual->tx_success = 0;
qual->tx_failed = 0;
}
static int rt2x00lib_calculate_link_signal(struct rt2x00_dev *rt2x00dev,
int rssi)
{
int rssi_percentage = 0;
int signal;
/*
* We need a positive value for the RSSI.
*/
if (rssi < 0)
rssi += rt2x00dev->rssi_offset;
/*
* Calculate the different percentages,
* which will be used for the signal.
*/
if (rt2x00dev->rssi_offset)
rssi_percentage = (rssi * 100) / rt2x00dev->rssi_offset;
/*
* Add the individual percentages and use the WEIGHT
* defines to calculate the current link signal.
*/
signal = ((WEIGHT_RSSI * rssi_percentage) +
(WEIGHT_TX * rt2x00dev->link.qual.tx_percentage) +
(WEIGHT_RX * rt2x00dev->link.qual.rx_percentage)) / 100;
return (signal > 100) ? 100 : signal;
}
static void rt2x00lib_link_tuner(struct work_struct *work)
{
struct rt2x00_dev *rt2x00dev =
container_of(work, struct rt2x00_dev, link.work.work);
/*
* When the radio is shutting down we should
* immediately cease all link tuning.
*/
if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
return;
/*
* Update statistics.
*/
rt2x00dev->ops->lib->link_stats(rt2x00dev, &rt2x00dev->link.qual);
rt2x00dev->low_level_stats.dot11FCSErrorCount +=
rt2x00dev->link.qual.rx_failed;
/*
* Only perform the link tuning when Link tuning
* has been enabled (This could have been disabled from the EEPROM).
*/
if (!test_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags))
rt2x00dev->ops->lib->link_tuner(rt2x00dev);
/*
* Precalculate a portion of the link signal which is
* in based on the tx/rx success/failure counters.
*/
rt2x00lib_precalculate_link_signal(&rt2x00dev->link.qual);
/*
* Evaluate antenna setup, make this the last step since this could
* possibly reset some statistics.
*/
rt2x00lib_evaluate_antenna(rt2x00dev);
/*
* Increase tuner counter, and reschedule the next link tuner run.
*/
rt2x00dev->link.count++;
queue_delayed_work(rt2x00dev->hw->workqueue, &rt2x00dev->link.work,
LINK_TUNE_INTERVAL);
}
static void rt2x00lib_packetfilter_scheduled(struct work_struct *work)
{
struct rt2x00_dev *rt2x00dev =
container_of(work, struct rt2x00_dev, filter_work);
unsigned int filter = rt2x00dev->packet_filter;
/*
* Since we had stored the filter inside interface.filter,
* we should now clear that field. Otherwise the driver will
* assume nothing has changed (*total_flags will be compared
* to interface.filter to determine if any action is required).
*/
rt2x00dev->packet_filter = 0;
rt2x00dev->ops->hw->configure_filter(rt2x00dev->hw,
filter, &filter, 0, NULL);
}
static void rt2x00lib_configuration_scheduled(struct work_struct *work)
{
struct rt2x00_dev *rt2x00dev =
container_of(work, struct rt2x00_dev, config_work);
struct ieee80211_bss_conf bss_conf;
bss_conf.use_short_preamble =
test_bit(CONFIG_SHORT_PREAMBLE, &rt2x00dev->flags);
/*
* FIXME: shouldn't invoke it this way because all other contents
* of bss_conf is invalid.
*/
rt2x00mac_bss_info_changed(rt2x00dev->hw, rt2x00dev->interface.id,
&bss_conf, BSS_CHANGED_ERP_PREAMBLE);
}
/*
* Interrupt context handlers.
*/
static void rt2x00lib_beacondone_scheduled(struct work_struct *work)
{
struct rt2x00_dev *rt2x00dev =
container_of(work, struct rt2x00_dev, beacon_work);
struct data_ring *ring =
rt2x00lib_get_ring(rt2x00dev, IEEE80211_TX_QUEUE_BEACON);
struct data_entry *entry = rt2x00_get_data_entry(ring);
struct sk_buff *skb;
skb = ieee80211_beacon_get(rt2x00dev->hw,
rt2x00dev->interface.id,
&entry->tx_status.control);
if (!skb)
return;
rt2x00dev->ops->hw->beacon_update(rt2x00dev->hw, skb,
&entry->tx_status.control);
dev_kfree_skb(skb);
}
void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
{
if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
return;
queue_work(rt2x00dev->hw->workqueue, &rt2x00dev->beacon_work);
}
EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
void rt2x00lib_txdone(struct data_entry *entry,
const int status, const int retry)
{
struct rt2x00_dev *rt2x00dev = entry->ring->rt2x00dev;
struct ieee80211_tx_status *tx_status = &entry->tx_status;
struct ieee80211_low_level_stats *stats = &rt2x00dev->low_level_stats;
int success = !!(status == TX_SUCCESS || status == TX_SUCCESS_RETRY);
int fail = !!(status == TX_FAIL_RETRY || status == TX_FAIL_INVALID ||
status == TX_FAIL_OTHER);
/*
* Update TX statistics.
*/
tx_status->flags = 0;
tx_status->ack_signal = 0;
tx_status->excessive_retries = (status == TX_FAIL_RETRY);
tx_status->retry_count = retry;
rt2x00dev->link.qual.tx_success += success;
rt2x00dev->link.qual.tx_failed += retry + fail;
if (!(tx_status->control.flags & IEEE80211_TXCTL_NO_ACK)) {
if (success)
tx_status->flags |= IEEE80211_TX_STATUS_ACK;
else
stats->dot11ACKFailureCount++;
}
tx_status->queue_length = entry->ring->stats.limit;
tx_status->queue_number = tx_status->control.queue;
if (tx_status->control.flags & IEEE80211_TXCTL_USE_RTS_CTS) {
if (success)
stats->dot11RTSSuccessCount++;
else
stats->dot11RTSFailureCount++;
}
/*
* Send the tx_status to mac80211 & debugfs.
* mac80211 will clean up the skb structure.
*/
get_skb_desc(entry->skb)->frame_type = DUMP_FRAME_TXDONE;
rt2x00debug_dump_frame(rt2x00dev, entry->skb);
ieee80211_tx_status_irqsafe(rt2x00dev->hw, entry->skb, tx_status);
entry->skb = NULL;
}
EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
void rt2x00lib_rxdone(struct data_entry *entry, struct sk_buff *skb,
struct rxdata_entry_desc *desc)
{
struct rt2x00_dev *rt2x00dev = entry->ring->rt2x00dev;
struct ieee80211_rx_status *rx_status = &rt2x00dev->rx_status;
struct ieee80211_hw_mode *mode;
struct ieee80211_rate *rate;
struct ieee80211_hdr *hdr;
unsigned int i;
int val = 0;
u16 fc;
/*
* Update RX statistics.
*/
mode = &rt2x00dev->hwmodes[rt2x00dev->curr_hwmode];
for (i = 0; i < mode->num_rates; i++) {
rate = &mode->rates[i];
/*
* When frame was received with an OFDM bitrate,
* the signal is the PLCP value. If it was received with
* a CCK bitrate the signal is the rate in 0.5kbit/s.
*/
if (!desc->ofdm)
val = DEVICE_GET_RATE_FIELD(rate->val, RATE);
else
val = DEVICE_GET_RATE_FIELD(rate->val, PLCP);
if (val == desc->signal) {
val = rate->val;
break;
}
}
/*
* Only update link status if this is a beacon frame carrying our bssid.
*/
hdr = (struct ieee80211_hdr*)skb->data;
fc = le16_to_cpu(hdr->frame_control);
if (is_beacon(fc) && desc->my_bss)
rt2x00lib_update_link_stats(&rt2x00dev->link, desc->rssi);
rt2x00dev->link.qual.rx_success++;
rx_status->rate = val;
rx_status->signal =
rt2x00lib_calculate_link_signal(rt2x00dev, desc->rssi);
rx_status->ssi = desc->rssi;
rx_status->flag = desc->flags;
rx_status->antenna = rt2x00dev->link.ant.active.rx;
/*
* Send frame to mac80211 & debugfs
*/
get_skb_desc(skb)->frame_type = DUMP_FRAME_RXDONE;
rt2x00debug_dump_frame(rt2x00dev, skb);
ieee80211_rx_irqsafe(rt2x00dev->hw, skb, rx_status);
}
EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
/*
* TX descriptor initializer
*/
void rt2x00lib_write_tx_desc(struct rt2x00_dev *rt2x00dev,
struct sk_buff *skb,
struct ieee80211_tx_control *control)
{
struct txdata_entry_desc desc;
struct skb_desc *skbdesc = get_skb_desc(skb);
struct ieee80211_hdr *ieee80211hdr = skbdesc->data;
int tx_rate;
int bitrate;
int length;
int duration;
int residual;
u16 frame_control;
u16 seq_ctrl;
memset(&desc, 0, sizeof(desc));
desc.cw_min = skbdesc->ring->tx_params.cw_min;
desc.cw_max = skbdesc->ring->tx_params.cw_max;
desc.aifs = skbdesc->ring->tx_params.aifs;
/*
* Identify queue
*/
if (control->queue < rt2x00dev->hw->queues)
desc.queue = control->queue;
else if (control->queue == IEEE80211_TX_QUEUE_BEACON ||
control->queue == IEEE80211_TX_QUEUE_AFTER_BEACON)
desc.queue = QUEUE_MGMT;
else
desc.queue = QUEUE_OTHER;
/*
* Read required fields from ieee80211 header.
*/
frame_control = le16_to_cpu(ieee80211hdr->frame_control);
seq_ctrl = le16_to_cpu(ieee80211hdr->seq_ctrl);
tx_rate = control->tx_rate;
/*
* Check whether this frame is to be acked
*/
if (!(control->flags & IEEE80211_TXCTL_NO_ACK))
__set_bit(ENTRY_TXD_ACK, &desc.flags);
/*
* Check if this is a RTS/CTS frame
*/
if (is_rts_frame(frame_control) || is_cts_frame(frame_control)) {
__set_bit(ENTRY_TXD_BURST, &desc.flags);
if (is_rts_frame(frame_control)) {
__set_bit(ENTRY_TXD_RTS_FRAME, &desc.flags);
__set_bit(ENTRY_TXD_ACK, &desc.flags);
} else
__clear_bit(ENTRY_TXD_ACK, &desc.flags);
if (control->rts_cts_rate)
tx_rate = control->rts_cts_rate;
}
/*
* Check for OFDM
*/
if (DEVICE_GET_RATE_FIELD(tx_rate, RATEMASK) & DEV_OFDM_RATEMASK)
__set_bit(ENTRY_TXD_OFDM_RATE, &desc.flags);
/*
* Check if more fragments are pending
*/
if (ieee80211_get_morefrag(ieee80211hdr)) {
__set_bit(ENTRY_TXD_BURST, &desc.flags);
__set_bit(ENTRY_TXD_MORE_FRAG, &desc.flags);
}
/*
* Beacons and probe responses require the tsf timestamp
* to be inserted into the frame.
*/
if (control->queue == IEEE80211_TX_QUEUE_BEACON ||
is_probe_resp(frame_control))
__set_bit(ENTRY_TXD_REQ_TIMESTAMP, &desc.flags);
/*
* Determine with what IFS priority this frame should be send.
* Set ifs to IFS_SIFS when the this is not the first fragment,
* or this fragment came after RTS/CTS.
*/
if ((seq_ctrl & IEEE80211_SCTL_FRAG) > 0 ||
test_bit(ENTRY_TXD_RTS_FRAME, &desc.flags))
desc.ifs = IFS_SIFS;
else
desc.ifs = IFS_BACKOFF;
/*
* PLCP setup
* Length calculation depends on OFDM/CCK rate.
*/
desc.signal = DEVICE_GET_RATE_FIELD(tx_rate, PLCP);
desc.service = 0x04;
length = skbdesc->data_len + FCS_LEN;
if (test_bit(ENTRY_TXD_OFDM_RATE, &desc.flags)) {
desc.length_high = (length >> 6) & 0x3f;
desc.length_low = length & 0x3f;
} else {
bitrate = DEVICE_GET_RATE_FIELD(tx_rate, RATE);
/*
* Convert length to microseconds.
*/
residual = get_duration_res(length, bitrate);
duration = get_duration(length, bitrate);
if (residual != 0) {
duration++;
/*
* Check if we need to set the Length Extension
*/
if (bitrate == 110 && residual <= 30)
desc.service |= 0x80;
}
desc.length_high = (duration >> 8) & 0xff;
desc.length_low = duration & 0xff;
/*
* When preamble is enabled we should set the
* preamble bit for the signal.
*/
if (DEVICE_GET_RATE_FIELD(tx_rate, PREAMBLE))
desc.signal |= 0x08;
}
rt2x00dev->ops->lib->write_tx_desc(rt2x00dev, skb, &desc, control);
/*
* Update ring entry.
*/
skbdesc->entry->skb = skb;
memcpy(&skbdesc->entry->tx_status.control, control, sizeof(*control));
/*
* The frame has been completely initialized and ready
* for sending to the device. The caller will push the
* frame to the device, but we are going to push the
* frame to debugfs here.
*/
skbdesc->frame_type = DUMP_FRAME_TX;
rt2x00debug_dump_frame(rt2x00dev, skb);
}
EXPORT_SYMBOL_GPL(rt2x00lib_write_tx_desc);
/*
* Driver initialization handlers.
*/
static void rt2x00lib_channel(struct ieee80211_channel *entry,
const int channel, const int tx_power,
const int value)
{
entry->chan = channel;
if (channel <= 14)
entry->freq = 2407 + (5 * channel);
else
entry->freq = 5000 + (5 * channel);
entry->val = value;
entry->flag =
IEEE80211_CHAN_W_IBSS |
IEEE80211_CHAN_W_ACTIVE_SCAN |
IEEE80211_CHAN_W_SCAN;
entry->power_level = tx_power;
entry->antenna_max = 0xff;
}
static void rt2x00lib_rate(struct ieee80211_rate *entry,
const int rate, const int mask,
const int plcp, const int flags)
{
entry->rate = rate;
entry->val =
DEVICE_SET_RATE_FIELD(rate, RATE) |
DEVICE_SET_RATE_FIELD(mask, RATEMASK) |
DEVICE_SET_RATE_FIELD(plcp, PLCP);
entry->flags = flags;
entry->val2 = entry->val;
if (entry->flags & IEEE80211_RATE_PREAMBLE2)
entry->val2 |= DEVICE_SET_RATE_FIELD(1, PREAMBLE);
entry->min_rssi_ack = 0;
entry->min_rssi_ack_delta = 0;
}
static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
struct hw_mode_spec *spec)
{
struct ieee80211_hw *hw = rt2x00dev->hw;
struct ieee80211_hw_mode *hwmodes;
struct ieee80211_channel *channels;
struct ieee80211_rate *rates;
unsigned int i;
unsigned char tx_power;
hwmodes = kzalloc(sizeof(*hwmodes) * spec->num_modes, GFP_KERNEL);
if (!hwmodes)
goto exit;
channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
if (!channels)
goto exit_free_modes;
rates = kzalloc(sizeof(*rates) * spec->num_rates, GFP_KERNEL);
if (!rates)
goto exit_free_channels;
/*
* Initialize Rate list.
*/
rt2x00lib_rate(&rates[0], 10, DEV_RATEMASK_1MB,
0x00, IEEE80211_RATE_CCK);
rt2x00lib_rate(&rates[1], 20, DEV_RATEMASK_2MB,
0x01, IEEE80211_RATE_CCK_2);
rt2x00lib_rate(&rates[2], 55, DEV_RATEMASK_5_5MB,
0x02, IEEE80211_RATE_CCK_2);
rt2x00lib_rate(&rates[3], 110, DEV_RATEMASK_11MB,
0x03, IEEE80211_RATE_CCK_2);
if (spec->num_rates > 4) {
rt2x00lib_rate(&rates[4], 60, DEV_RATEMASK_6MB,
0x0b, IEEE80211_RATE_OFDM);
rt2x00lib_rate(&rates[5], 90, DEV_RATEMASK_9MB,
0x0f, IEEE80211_RATE_OFDM);
rt2x00lib_rate(&rates[6], 120, DEV_RATEMASK_12MB,
0x0a, IEEE80211_RATE_OFDM);
rt2x00lib_rate(&rates[7], 180, DEV_RATEMASK_18MB,
0x0e, IEEE80211_RATE_OFDM);
rt2x00lib_rate(&rates[8], 240, DEV_RATEMASK_24MB,
0x09, IEEE80211_RATE_OFDM);
rt2x00lib_rate(&rates[9], 360, DEV_RATEMASK_36MB,
0x0d, IEEE80211_RATE_OFDM);
rt2x00lib_rate(&rates[10], 480, DEV_RATEMASK_48MB,
0x08, IEEE80211_RATE_OFDM);
rt2x00lib_rate(&rates[11], 540, DEV_RATEMASK_54MB,
0x0c, IEEE80211_RATE_OFDM);
}
/*
* Initialize Channel list.
*/
for (i = 0; i < spec->num_channels; i++) {
if (spec->channels[i].channel <= 14)
tx_power = spec->tx_power_bg[i];
else if (spec->tx_power_a)
tx_power = spec->tx_power_a[i];
else
tx_power = spec->tx_power_default;
rt2x00lib_channel(&channels[i],
spec->channels[i].channel, tx_power, i);
}
/*
* Intitialize 802.11b
* Rates: CCK.
* Channels: OFDM.
*/
if (spec->num_modes > HWMODE_B) {
hwmodes[HWMODE_B].mode = MODE_IEEE80211B;
hwmodes[HWMODE_B].num_channels = 14;
hwmodes[HWMODE_B].num_rates = 4;
hwmodes[HWMODE_B].channels = channels;
hwmodes[HWMODE_B].rates = rates;
}
/*
* Intitialize 802.11g
* Rates: CCK, OFDM.
* Channels: OFDM.
*/
if (spec->num_modes > HWMODE_G) {
hwmodes[HWMODE_G].mode = MODE_IEEE80211G;
hwmodes[HWMODE_G].num_channels = 14;
hwmodes[HWMODE_G].num_rates = spec->num_rates;
hwmodes[HWMODE_G].channels = channels;
hwmodes[HWMODE_G].rates = rates;
}
/*
* Intitialize 802.11a
* Rates: OFDM.
* Channels: OFDM, UNII, HiperLAN2.
*/
if (spec->num_modes > HWMODE_A) {
hwmodes[HWMODE_A].mode = MODE_IEEE80211A;
hwmodes[HWMODE_A].num_channels = spec->num_channels - 14;
hwmodes[HWMODE_A].num_rates = spec->num_rates - 4;
hwmodes[HWMODE_A].channels = &channels[14];
hwmodes[HWMODE_A].rates = &rates[4];
}
if (spec->num_modes > HWMODE_G &&
ieee80211_register_hwmode(hw, &hwmodes[HWMODE_G]))
goto exit_free_rates;
if (spec->num_modes > HWMODE_B &&
ieee80211_register_hwmode(hw, &hwmodes[HWMODE_B]))
goto exit_free_rates;
if (spec->num_modes > HWMODE_A &&
ieee80211_register_hwmode(hw, &hwmodes[HWMODE_A]))
goto exit_free_rates;
rt2x00dev->hwmodes = hwmodes;
return 0;
exit_free_rates:
kfree(rates);
exit_free_channels:
kfree(channels);
exit_free_modes:
kfree(hwmodes);
exit:
ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
return -ENOMEM;
}
static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
{
if (test_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags))
ieee80211_unregister_hw(rt2x00dev->hw);
if (likely(rt2x00dev->hwmodes)) {
kfree(rt2x00dev->hwmodes->channels);
kfree(rt2x00dev->hwmodes->rates);
kfree(rt2x00dev->hwmodes);
rt2x00dev->hwmodes = NULL;
}
}
static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
{
struct hw_mode_spec *spec = &rt2x00dev->spec;
int status;
/*
* Initialize HW modes.
*/
status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
if (status)
return status;
/*
* Register HW.
*/
status = ieee80211_register_hw(rt2x00dev->hw);
if (status) {
rt2x00lib_remove_hw(rt2x00dev);
return status;
}
__set_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags);
return 0;
}
/*
* Initialization/uninitialization handlers.
*/
static int rt2x00lib_alloc_entries(struct data_ring *ring,
const u16 max_entries, const u16 data_size,
const u16 desc_size)
{
struct data_entry *entry;
unsigned int i;
ring->stats.limit = max_entries;
ring->data_size = data_size;
ring->desc_size = desc_size;
/*
* Allocate all ring entries.
*/
entry = kzalloc(ring->stats.limit * sizeof(*entry), GFP_KERNEL);
if (!entry)
return -ENOMEM;
for (i = 0; i < ring->stats.limit; i++) {
entry[i].flags = 0;
entry[i].ring = ring;
entry[i].skb = NULL;
entry[i].entry_idx = i;
}
ring->entry = entry;
return 0;
}
static int rt2x00lib_alloc_ring_entries(struct rt2x00_dev *rt2x00dev)
{
struct data_ring *ring;
/*
* Allocate the RX ring.
*/
if (rt2x00lib_alloc_entries(rt2x00dev->rx, RX_ENTRIES, DATA_FRAME_SIZE,
rt2x00dev->ops->rxd_size))
return -ENOMEM;
/*
* First allocate the TX rings.
*/
txring_for_each(rt2x00dev, ring) {
if (rt2x00lib_alloc_entries(ring, TX_ENTRIES, DATA_FRAME_SIZE,
rt2x00dev->ops->txd_size))
return -ENOMEM;
}
if (!test_bit(DRIVER_REQUIRE_BEACON_RING, &rt2x00dev->flags))
return 0;
/*
* Allocate the BEACON ring.
*/
if (rt2x00lib_alloc_entries(&rt2x00dev->bcn[0], BEACON_ENTRIES,
MGMT_FRAME_SIZE, rt2x00dev->ops->txd_size))
return -ENOMEM;
/*
* Allocate the Atim ring.
*/
if (rt2x00lib_alloc_entries(&rt2x00dev->bcn[1], ATIM_ENTRIES,
DATA_FRAME_SIZE, rt2x00dev->ops->txd_size))
return -ENOMEM;
return 0;
}
static void rt2x00lib_free_ring_entries(struct rt2x00_dev *rt2x00dev)
{
struct data_ring *ring;
ring_for_each(rt2x00dev, ring) {
kfree(ring->entry);
ring->entry = NULL;
}
}
static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
{
if (!__test_and_clear_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
return;
/*
* Unregister extra components.
*/
rt2x00rfkill_unregister(rt2x00dev);
/*
* Allow the HW to uninitialize.
*/
rt2x00dev->ops->lib->uninitialize(rt2x00dev);
/*
* Free allocated ring entries.
*/
rt2x00lib_free_ring_entries(rt2x00dev);
}
static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
{
int status;
if (test_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
return 0;
/*
* Allocate all ring entries.
*/
status = rt2x00lib_alloc_ring_entries(rt2x00dev);
if (status) {
ERROR(rt2x00dev, "Ring entries allocation failed.\n");
return status;
}
/*
* Initialize the device.
*/
status = rt2x00dev->ops->lib->initialize(rt2x00dev);
if (status)
goto exit;
__set_bit(DEVICE_INITIALIZED, &rt2x00dev->flags);
/*
* Register the extra components.
*/
rt2x00rfkill_register(rt2x00dev);
return 0;
exit:
rt2x00lib_free_ring_entries(rt2x00dev);
return status;
}
int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
{
int retval;
if (test_bit(DEVICE_STARTED, &rt2x00dev->flags))
return 0;
/*
* If this is the first interface which is added,
* we should load the firmware now.
*/
if (test_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags)) {
retval = rt2x00lib_load_firmware(rt2x00dev);
if (retval)
return retval;
}
/*
* Initialize the device.
*/
retval = rt2x00lib_initialize(rt2x00dev);
if (retval)
return retval;
/*
* Enable radio.
*/
retval = rt2x00lib_enable_radio(rt2x00dev);
if (retval) {
rt2x00lib_uninitialize(rt2x00dev);
return retval;
}
__set_bit(DEVICE_STARTED, &rt2x00dev->flags);
return 0;
}
void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
{
if (!test_bit(DEVICE_STARTED, &rt2x00dev->flags))
return;
/*
* Perhaps we can add something smarter here,
* but for now just disabling the radio should do.
*/
rt2x00lib_disable_radio(rt2x00dev);
__clear_bit(DEVICE_STARTED, &rt2x00dev->flags);
}
/*
* driver allocation handlers.
*/
static int rt2x00lib_alloc_rings(struct rt2x00_dev *rt2x00dev)
{
struct data_ring *ring;
unsigned int index;
/*
* We need the following rings:
* RX: 1
* TX: hw->queues
* Beacon: 1 (if required)
* Atim: 1 (if required)
*/
rt2x00dev->data_rings = 1 + rt2x00dev->hw->queues +
(2 * test_bit(DRIVER_REQUIRE_BEACON_RING, &rt2x00dev->flags));
ring = kzalloc(rt2x00dev->data_rings * sizeof(*ring), GFP_KERNEL);
if (!ring) {
ERROR(rt2x00dev, "Ring allocation failed.\n");
return -ENOMEM;
}
/*
* Initialize pointers
*/
rt2x00dev->rx = ring;
rt2x00dev->tx = &rt2x00dev->rx[1];
if (test_bit(DRIVER_REQUIRE_BEACON_RING, &rt2x00dev->flags))
rt2x00dev->bcn = &rt2x00dev->tx[rt2x00dev->hw->queues];
/*
* Initialize ring parameters.
* RX: queue_idx = 0
* TX: queue_idx = IEEE80211_TX_QUEUE_DATA0 + index
* TX: cw_min: 2^5 = 32.
* TX: cw_max: 2^10 = 1024.
*/
rt2x00dev->rx->rt2x00dev = rt2x00dev;
rt2x00dev->rx->queue_idx = 0;
index = IEEE80211_TX_QUEUE_DATA0;
txring_for_each(rt2x00dev, ring) {
ring->rt2x00dev = rt2x00dev;
ring->queue_idx = index++;
ring->tx_params.aifs = 2;
ring->tx_params.cw_min = 5;
ring->tx_params.cw_max = 10;
}
return 0;
}
static void rt2x00lib_free_rings(struct rt2x00_dev *rt2x00dev)
{
kfree(rt2x00dev->rx);
rt2x00dev->rx = NULL;
rt2x00dev->tx = NULL;
rt2x00dev->bcn = NULL;
}
int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
{
int retval = -ENOMEM;
/*
* Let the driver probe the device to detect the capabilities.
*/
retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
if (retval) {
ERROR(rt2x00dev, "Failed to allocate device.\n");
goto exit;
}
/*
* Initialize configuration work.
*/
INIT_WORK(&rt2x00dev->beacon_work, rt2x00lib_beacondone_scheduled);
INIT_WORK(&rt2x00dev->filter_work, rt2x00lib_packetfilter_scheduled);
INIT_WORK(&rt2x00dev->config_work, rt2x00lib_configuration_scheduled);
INIT_DELAYED_WORK(&rt2x00dev->link.work, rt2x00lib_link_tuner);
/*
* Reset current working type.
*/
rt2x00dev->interface.type = IEEE80211_IF_TYPE_INVALID;
/*
* Allocate ring array.
*/
retval = rt2x00lib_alloc_rings(rt2x00dev);
if (retval)
goto exit;
/*
* Initialize ieee80211 structure.
*/
retval = rt2x00lib_probe_hw(rt2x00dev);
if (retval) {
ERROR(rt2x00dev, "Failed to initialize hw.\n");
goto exit;
}
/*
* Register extra components.
*/
rt2x00rfkill_allocate(rt2x00dev);
rt2x00debug_register(rt2x00dev);
__set_bit(DEVICE_PRESENT, &rt2x00dev->flags);
return 0;
exit:
rt2x00lib_remove_dev(rt2x00dev);
return retval;
}
EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
{
__clear_bit(DEVICE_PRESENT, &rt2x00dev->flags);
/*
* Disable radio.
*/
rt2x00lib_disable_radio(rt2x00dev);
/*
* Uninitialize device.
*/
rt2x00lib_uninitialize(rt2x00dev);
/*
* Free extra components
*/
rt2x00debug_deregister(rt2x00dev);
rt2x00rfkill_free(rt2x00dev);
/*
* Free ieee80211_hw memory.
*/
rt2x00lib_remove_hw(rt2x00dev);
/*
* Free firmware image.
*/
rt2x00lib_free_firmware(rt2x00dev);
/*
* Free ring structures.
*/
rt2x00lib_free_rings(rt2x00dev);
}
EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
/*
* Device state handlers
*/
#ifdef CONFIG_PM
int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
{
int retval;
NOTICE(rt2x00dev, "Going to sleep.\n");
__clear_bit(DEVICE_PRESENT, &rt2x00dev->flags);
/*
* Only continue if mac80211 has open interfaces.
*/
if (!test_bit(DEVICE_STARTED, &rt2x00dev->flags))
goto exit;
__set_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags);
/*
* Disable radio.
*/
rt2x00lib_stop(rt2x00dev);
rt2x00lib_uninitialize(rt2x00dev);
/*
* Suspend/disable extra components.
*/
rt2x00rfkill_suspend(rt2x00dev);
rt2x00debug_deregister(rt2x00dev);
exit:
/*
* Set device mode to sleep for power management.
*/
retval = rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP);
if (retval)
return retval;
return 0;
}
EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
{
struct interface *intf = &rt2x00dev->interface;
int retval;
NOTICE(rt2x00dev, "Waking up.\n");
/*
* Restore/enable extra components.
*/
rt2x00debug_register(rt2x00dev);
rt2x00rfkill_resume(rt2x00dev);
/*
* Only continue if mac80211 had open interfaces.
*/
if (!__test_and_clear_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags))
return 0;
/*
* Reinitialize device and all active interfaces.
*/
retval = rt2x00lib_start(rt2x00dev);
if (retval)
goto exit;
/*
* Reconfigure device.
*/
rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf, 1);
if (!rt2x00dev->hw->conf.radio_enabled)
rt2x00lib_disable_radio(rt2x00dev);
rt2x00lib_config_mac_addr(rt2x00dev, intf->mac);
rt2x00lib_config_bssid(rt2x00dev, intf->bssid);
rt2x00lib_config_type(rt2x00dev, intf->type);
/*
* We are ready again to receive requests from mac80211.
*/
__set_bit(DEVICE_PRESENT, &rt2x00dev->flags);
/*
* It is possible that during that mac80211 has attempted
* to send frames while we were suspending or resuming.
* In that case we have disabled the TX queue and should
* now enable it again
*/
ieee80211_start_queues(rt2x00dev->hw);
/*
* When in Master or Ad-hoc mode,
* restart Beacon transmitting by faking a beacondone event.
*/
if (intf->type == IEEE80211_IF_TYPE_AP ||
intf->type == IEEE80211_IF_TYPE_IBSS)
rt2x00lib_beacondone(rt2x00dev);
return 0;
exit:
rt2x00lib_disable_radio(rt2x00dev);
rt2x00lib_uninitialize(rt2x00dev);
rt2x00debug_deregister(rt2x00dev);
return retval;
}
EXPORT_SYMBOL_GPL(rt2x00lib_resume);
#endif /* CONFIG_PM */
/*
* rt2x00lib module information.
*/
MODULE_AUTHOR(DRV_PROJECT);
MODULE_VERSION(DRV_VERSION);
MODULE_DESCRIPTION("rt2x00 library");
MODULE_LICENSE("GPL");