| /* |
| * arch/mips/kernel/gdb-stub.c |
| * |
| * Originally written by Glenn Engel, Lake Stevens Instrument Division |
| * |
| * Contributed by HP Systems |
| * |
| * Modified for SPARC by Stu Grossman, Cygnus Support. |
| * |
| * Modified for Linux/MIPS (and MIPS in general) by Andreas Busse |
| * Send complaints, suggestions etc. to <andy@waldorf-gmbh.de> |
| * |
| * Copyright (C) 1995 Andreas Busse |
| * |
| * Copyright (C) 2003 MontaVista Software Inc. |
| * Author: Jun Sun, jsun@mvista.com or jsun@junsun.net |
| */ |
| |
| /* |
| * To enable debugger support, two things need to happen. One, a |
| * call to set_debug_traps() is necessary in order to allow any breakpoints |
| * or error conditions to be properly intercepted and reported to gdb. |
| * Two, a breakpoint needs to be generated to begin communication. This |
| * is most easily accomplished by a call to breakpoint(). Breakpoint() |
| * simulates a breakpoint by executing a BREAK instruction. |
| * |
| * |
| * The following gdb commands are supported: |
| * |
| * command function Return value |
| * |
| * g return the value of the CPU registers hex data or ENN |
| * G set the value of the CPU registers OK or ENN |
| * |
| * mAA..AA,LLLL Read LLLL bytes at address AA..AA hex data or ENN |
| * MAA..AA,LLLL: Write LLLL bytes at address AA.AA OK or ENN |
| * |
| * c Resume at current address SNN ( signal NN) |
| * cAA..AA Continue at address AA..AA SNN |
| * |
| * s Step one instruction SNN |
| * sAA..AA Step one instruction from AA..AA SNN |
| * |
| * k kill |
| * |
| * ? What was the last sigval ? SNN (signal NN) |
| * |
| * bBB..BB Set baud rate to BB..BB OK or BNN, then sets |
| * baud rate |
| * |
| * All commands and responses are sent with a packet which includes a |
| * checksum. A packet consists of |
| * |
| * $<packet info>#<checksum>. |
| * |
| * where |
| * <packet info> :: <characters representing the command or response> |
| * <checksum> :: < two hex digits computed as modulo 256 sum of <packetinfo>> |
| * |
| * When a packet is received, it is first acknowledged with either '+' or '-'. |
| * '+' indicates a successful transfer. '-' indicates a failed transfer. |
| * |
| * Example: |
| * |
| * Host: Reply: |
| * $m0,10#2a +$00010203040506070809101112131415#42 |
| * |
| * |
| * ============== |
| * MORE EXAMPLES: |
| * ============== |
| * |
| * For reference -- the following are the steps that one |
| * company took (RidgeRun Inc) to get remote gdb debugging |
| * going. In this scenario the host machine was a PC and the |
| * target platform was a Galileo EVB64120A MIPS evaluation |
| * board. |
| * |
| * Step 1: |
| * First download gdb-5.0.tar.gz from the internet. |
| * and then build/install the package. |
| * |
| * Example: |
| * $ tar zxf gdb-5.0.tar.gz |
| * $ cd gdb-5.0 |
| * $ ./configure --target=mips-linux-elf |
| * $ make |
| * $ install |
| * $ which mips-linux-elf-gdb |
| * /usr/local/bin/mips-linux-elf-gdb |
| * |
| * Step 2: |
| * Configure linux for remote debugging and build it. |
| * |
| * Example: |
| * $ cd ~/linux |
| * $ make menuconfig <go to "Kernel Hacking" and turn on remote debugging> |
| * $ make |
| * |
| * Step 3: |
| * Download the kernel to the remote target and start |
| * the kernel running. It will promptly halt and wait |
| * for the host gdb session to connect. It does this |
| * since the "Kernel Hacking" option has defined |
| * CONFIG_KGDB which in turn enables your calls |
| * to: |
| * set_debug_traps(); |
| * breakpoint(); |
| * |
| * Step 4: |
| * Start the gdb session on the host. |
| * |
| * Example: |
| * $ mips-linux-elf-gdb vmlinux |
| * (gdb) set remotebaud 115200 |
| * (gdb) target remote /dev/ttyS1 |
| * ...at this point you are connected to |
| * the remote target and can use gdb |
| * in the normal fasion. Setting |
| * breakpoints, single stepping, |
| * printing variables, etc. |
| */ |
| #include <linux/string.h> |
| #include <linux/kernel.h> |
| #include <linux/signal.h> |
| #include <linux/sched.h> |
| #include <linux/mm.h> |
| #include <linux/console.h> |
| #include <linux/init.h> |
| #include <linux/smp.h> |
| #include <linux/spinlock.h> |
| #include <linux/slab.h> |
| #include <linux/reboot.h> |
| |
| #include <asm/asm.h> |
| #include <asm/cacheflush.h> |
| #include <asm/mipsregs.h> |
| #include <asm/pgtable.h> |
| #include <asm/system.h> |
| #include <asm/gdb-stub.h> |
| #include <asm/inst.h> |
| #include <asm/smp.h> |
| |
| /* |
| * external low-level support routines |
| */ |
| |
| extern int putDebugChar(char c); /* write a single character */ |
| extern char getDebugChar(void); /* read and return a single char */ |
| extern void trap_low(void); |
| |
| /* |
| * breakpoint and test functions |
| */ |
| extern void breakpoint(void); |
| extern void breakinst(void); |
| extern void async_breakpoint(void); |
| extern void async_breakinst(void); |
| extern void adel(void); |
| |
| /* |
| * local prototypes |
| */ |
| |
| static void getpacket(char *buffer); |
| static void putpacket(char *buffer); |
| static int computeSignal(int tt); |
| static int hex(unsigned char ch); |
| static int hexToInt(char **ptr, int *intValue); |
| static int hexToLong(char **ptr, long *longValue); |
| static unsigned char *mem2hex(char *mem, char *buf, int count, int may_fault); |
| void handle_exception(struct gdb_regs *regs); |
| |
| int kgdb_enabled; |
| |
| /* |
| * spin locks for smp case |
| */ |
| static DEFINE_SPINLOCK(kgdb_lock); |
| static raw_spinlock_t kgdb_cpulock[NR_CPUS] = { |
| [0 ... NR_CPUS-1] = __RAW_SPIN_LOCK_UNLOCKED, |
| }; |
| |
| /* |
| * BUFMAX defines the maximum number of characters in inbound/outbound buffers |
| * at least NUMREGBYTES*2 are needed for register packets |
| */ |
| #define BUFMAX 2048 |
| |
| static char input_buffer[BUFMAX]; |
| static char output_buffer[BUFMAX]; |
| static int initialized; /* !0 means we've been initialized */ |
| static int kgdb_started; |
| static const char hexchars[]="0123456789abcdef"; |
| |
| /* Used to prevent crashes in memory access. Note that they'll crash anyway if |
| we haven't set up fault handlers yet... */ |
| int kgdb_read_byte(unsigned char *address, unsigned char *dest); |
| int kgdb_write_byte(unsigned char val, unsigned char *dest); |
| |
| /* |
| * Convert ch from a hex digit to an int |
| */ |
| static int hex(unsigned char ch) |
| { |
| if (ch >= 'a' && ch <= 'f') |
| return ch-'a'+10; |
| if (ch >= '0' && ch <= '9') |
| return ch-'0'; |
| if (ch >= 'A' && ch <= 'F') |
| return ch-'A'+10; |
| return -1; |
| } |
| |
| /* |
| * scan for the sequence $<data>#<checksum> |
| */ |
| static void getpacket(char *buffer) |
| { |
| unsigned char checksum; |
| unsigned char xmitcsum; |
| int i; |
| int count; |
| unsigned char ch; |
| |
| do { |
| /* |
| * wait around for the start character, |
| * ignore all other characters |
| */ |
| while ((ch = (getDebugChar() & 0x7f)) != '$') ; |
| |
| checksum = 0; |
| xmitcsum = -1; |
| count = 0; |
| |
| /* |
| * now, read until a # or end of buffer is found |
| */ |
| while (count < BUFMAX) { |
| ch = getDebugChar(); |
| if (ch == '#') |
| break; |
| checksum = checksum + ch; |
| buffer[count] = ch; |
| count = count + 1; |
| } |
| |
| if (count >= BUFMAX) |
| continue; |
| |
| buffer[count] = 0; |
| |
| if (ch == '#') { |
| xmitcsum = hex(getDebugChar() & 0x7f) << 4; |
| xmitcsum |= hex(getDebugChar() & 0x7f); |
| |
| if (checksum != xmitcsum) |
| putDebugChar('-'); /* failed checksum */ |
| else { |
| putDebugChar('+'); /* successful transfer */ |
| |
| /* |
| * if a sequence char is present, |
| * reply the sequence ID |
| */ |
| if (buffer[2] == ':') { |
| putDebugChar(buffer[0]); |
| putDebugChar(buffer[1]); |
| |
| /* |
| * remove sequence chars from buffer |
| */ |
| count = strlen(buffer); |
| for (i=3; i <= count; i++) |
| buffer[i-3] = buffer[i]; |
| } |
| } |
| } |
| } |
| while (checksum != xmitcsum); |
| } |
| |
| /* |
| * send the packet in buffer. |
| */ |
| static void putpacket(char *buffer) |
| { |
| unsigned char checksum; |
| int count; |
| unsigned char ch; |
| |
| /* |
| * $<packet info>#<checksum>. |
| */ |
| |
| do { |
| putDebugChar('$'); |
| checksum = 0; |
| count = 0; |
| |
| while ((ch = buffer[count]) != 0) { |
| if (!(putDebugChar(ch))) |
| return; |
| checksum += ch; |
| count += 1; |
| } |
| |
| putDebugChar('#'); |
| putDebugChar(hexchars[checksum >> 4]); |
| putDebugChar(hexchars[checksum & 0xf]); |
| |
| } |
| while ((getDebugChar() & 0x7f) != '+'); |
| } |
| |
| |
| /* |
| * Convert the memory pointed to by mem into hex, placing result in buf. |
| * Return a pointer to the last char put in buf (null), in case of mem fault, |
| * return 0. |
| * may_fault is non-zero if we are reading from arbitrary memory, but is currently |
| * not used. |
| */ |
| static unsigned char *mem2hex(char *mem, char *buf, int count, int may_fault) |
| { |
| unsigned char ch; |
| |
| while (count-- > 0) { |
| if (kgdb_read_byte(mem++, &ch) != 0) |
| return 0; |
| *buf++ = hexchars[ch >> 4]; |
| *buf++ = hexchars[ch & 0xf]; |
| } |
| |
| *buf = 0; |
| |
| return buf; |
| } |
| |
| /* |
| * convert the hex array pointed to by buf into binary to be placed in mem |
| * return a pointer to the character AFTER the last byte written |
| * may_fault is non-zero if we are reading from arbitrary memory, but is currently |
| * not used. |
| */ |
| static char *hex2mem(char *buf, char *mem, int count, int binary, int may_fault) |
| { |
| int i; |
| unsigned char ch; |
| |
| for (i=0; i<count; i++) |
| { |
| if (binary) { |
| ch = *buf++; |
| if (ch == 0x7d) |
| ch = 0x20 ^ *buf++; |
| } |
| else { |
| ch = hex(*buf++) << 4; |
| ch |= hex(*buf++); |
| } |
| if (kgdb_write_byte(ch, mem++) != 0) |
| return 0; |
| } |
| |
| return mem; |
| } |
| |
| /* |
| * This table contains the mapping between SPARC hardware trap types, and |
| * signals, which are primarily what GDB understands. It also indicates |
| * which hardware traps we need to commandeer when initializing the stub. |
| */ |
| static struct hard_trap_info { |
| unsigned char tt; /* Trap type code for MIPS R3xxx and R4xxx */ |
| unsigned char signo; /* Signal that we map this trap into */ |
| } hard_trap_info[] = { |
| { 6, SIGBUS }, /* instruction bus error */ |
| { 7, SIGBUS }, /* data bus error */ |
| { 9, SIGTRAP }, /* break */ |
| { 10, SIGILL }, /* reserved instruction */ |
| /* { 11, SIGILL }, */ /* CPU unusable */ |
| { 12, SIGFPE }, /* overflow */ |
| { 13, SIGTRAP }, /* trap */ |
| { 14, SIGSEGV }, /* virtual instruction cache coherency */ |
| { 15, SIGFPE }, /* floating point exception */ |
| { 23, SIGSEGV }, /* watch */ |
| { 31, SIGSEGV }, /* virtual data cache coherency */ |
| { 0, 0} /* Must be last */ |
| }; |
| |
| /* Save the normal trap handlers for user-mode traps. */ |
| void *saved_vectors[32]; |
| |
| /* |
| * Set up exception handlers for tracing and breakpoints |
| */ |
| void set_debug_traps(void) |
| { |
| struct hard_trap_info *ht; |
| unsigned long flags; |
| unsigned char c; |
| |
| local_irq_save(flags); |
| for (ht = hard_trap_info; ht->tt && ht->signo; ht++) |
| saved_vectors[ht->tt] = set_except_vector(ht->tt, trap_low); |
| |
| putDebugChar('+'); /* 'hello world' */ |
| /* |
| * In case GDB is started before us, ack any packets |
| * (presumably "$?#xx") sitting there. |
| */ |
| while((c = getDebugChar()) != '$'); |
| while((c = getDebugChar()) != '#'); |
| c = getDebugChar(); /* eat first csum byte */ |
| c = getDebugChar(); /* eat second csum byte */ |
| putDebugChar('+'); /* ack it */ |
| |
| initialized = 1; |
| local_irq_restore(flags); |
| } |
| |
| void restore_debug_traps(void) |
| { |
| struct hard_trap_info *ht; |
| unsigned long flags; |
| |
| local_irq_save(flags); |
| for (ht = hard_trap_info; ht->tt && ht->signo; ht++) |
| set_except_vector(ht->tt, saved_vectors[ht->tt]); |
| local_irq_restore(flags); |
| } |
| |
| /* |
| * Convert the MIPS hardware trap type code to a Unix signal number. |
| */ |
| static int computeSignal(int tt) |
| { |
| struct hard_trap_info *ht; |
| |
| for (ht = hard_trap_info; ht->tt && ht->signo; ht++) |
| if (ht->tt == tt) |
| return ht->signo; |
| |
| return SIGHUP; /* default for things we don't know about */ |
| } |
| |
| /* |
| * While we find nice hex chars, build an int. |
| * Return number of chars processed. |
| */ |
| static int hexToInt(char **ptr, int *intValue) |
| { |
| int numChars = 0; |
| int hexValue; |
| |
| *intValue = 0; |
| |
| while (**ptr) { |
| hexValue = hex(**ptr); |
| if (hexValue < 0) |
| break; |
| |
| *intValue = (*intValue << 4) | hexValue; |
| numChars ++; |
| |
| (*ptr)++; |
| } |
| |
| return (numChars); |
| } |
| |
| static int hexToLong(char **ptr, long *longValue) |
| { |
| int numChars = 0; |
| int hexValue; |
| |
| *longValue = 0; |
| |
| while (**ptr) { |
| hexValue = hex(**ptr); |
| if (hexValue < 0) |
| break; |
| |
| *longValue = (*longValue << 4) | hexValue; |
| numChars ++; |
| |
| (*ptr)++; |
| } |
| |
| return numChars; |
| } |
| |
| |
| #if 0 |
| /* |
| * Print registers (on target console) |
| * Used only to debug the stub... |
| */ |
| void show_gdbregs(struct gdb_regs * regs) |
| { |
| /* |
| * Saved main processor registers |
| */ |
| printk("$0 : %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n", |
| regs->reg0, regs->reg1, regs->reg2, regs->reg3, |
| regs->reg4, regs->reg5, regs->reg6, regs->reg7); |
| printk("$8 : %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n", |
| regs->reg8, regs->reg9, regs->reg10, regs->reg11, |
| regs->reg12, regs->reg13, regs->reg14, regs->reg15); |
| printk("$16: %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n", |
| regs->reg16, regs->reg17, regs->reg18, regs->reg19, |
| regs->reg20, regs->reg21, regs->reg22, regs->reg23); |
| printk("$24: %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n", |
| regs->reg24, regs->reg25, regs->reg26, regs->reg27, |
| regs->reg28, regs->reg29, regs->reg30, regs->reg31); |
| |
| /* |
| * Saved cp0 registers |
| */ |
| printk("epc : %08lx\nStatus: %08lx\nCause : %08lx\n", |
| regs->cp0_epc, regs->cp0_status, regs->cp0_cause); |
| } |
| #endif /* dead code */ |
| |
| /* |
| * We single-step by setting breakpoints. When an exception |
| * is handled, we need to restore the instructions hoisted |
| * when the breakpoints were set. |
| * |
| * This is where we save the original instructions. |
| */ |
| static struct gdb_bp_save { |
| unsigned long addr; |
| unsigned int val; |
| } step_bp[2]; |
| |
| #define BP 0x0000000d /* break opcode */ |
| |
| /* |
| * Set breakpoint instructions for single stepping. |
| */ |
| static void single_step(struct gdb_regs *regs) |
| { |
| union mips_instruction insn; |
| unsigned long targ; |
| int is_branch, is_cond, i; |
| |
| targ = regs->cp0_epc; |
| insn.word = *(unsigned int *)targ; |
| is_branch = is_cond = 0; |
| |
| switch (insn.i_format.opcode) { |
| /* |
| * jr and jalr are in r_format format. |
| */ |
| case spec_op: |
| switch (insn.r_format.func) { |
| case jalr_op: |
| case jr_op: |
| targ = *(®s->reg0 + insn.r_format.rs); |
| is_branch = 1; |
| break; |
| } |
| break; |
| |
| /* |
| * This group contains: |
| * bltz_op, bgez_op, bltzl_op, bgezl_op, |
| * bltzal_op, bgezal_op, bltzall_op, bgezall_op. |
| */ |
| case bcond_op: |
| is_branch = is_cond = 1; |
| targ += 4 + (insn.i_format.simmediate << 2); |
| break; |
| |
| /* |
| * These are unconditional and in j_format. |
| */ |
| case jal_op: |
| case j_op: |
| is_branch = 1; |
| targ += 4; |
| targ >>= 28; |
| targ <<= 28; |
| targ |= (insn.j_format.target << 2); |
| break; |
| |
| /* |
| * These are conditional. |
| */ |
| case beq_op: |
| case beql_op: |
| case bne_op: |
| case bnel_op: |
| case blez_op: |
| case blezl_op: |
| case bgtz_op: |
| case bgtzl_op: |
| case cop0_op: |
| case cop1_op: |
| case cop2_op: |
| case cop1x_op: |
| is_branch = is_cond = 1; |
| targ += 4 + (insn.i_format.simmediate << 2); |
| break; |
| } |
| |
| if (is_branch) { |
| i = 0; |
| if (is_cond && targ != (regs->cp0_epc + 8)) { |
| step_bp[i].addr = regs->cp0_epc + 8; |
| step_bp[i++].val = *(unsigned *)(regs->cp0_epc + 8); |
| *(unsigned *)(regs->cp0_epc + 8) = BP; |
| } |
| step_bp[i].addr = targ; |
| step_bp[i].val = *(unsigned *)targ; |
| *(unsigned *)targ = BP; |
| } else { |
| step_bp[0].addr = regs->cp0_epc + 4; |
| step_bp[0].val = *(unsigned *)(regs->cp0_epc + 4); |
| *(unsigned *)(regs->cp0_epc + 4) = BP; |
| } |
| } |
| |
| /* |
| * If asynchronously interrupted by gdb, then we need to set a breakpoint |
| * at the interrupted instruction so that we wind up stopped with a |
| * reasonable stack frame. |
| */ |
| static struct gdb_bp_save async_bp; |
| |
| /* |
| * Swap the interrupted EPC with our asynchronous breakpoint routine. |
| * This is safer than stuffing the breakpoint in-place, since no cache |
| * flushes (or resulting smp_call_functions) are required. The |
| * assumption is that only one CPU will be handling asynchronous bp's, |
| * and only one can be active at a time. |
| */ |
| extern spinlock_t smp_call_lock; |
| |
| void set_async_breakpoint(unsigned long *epc) |
| { |
| /* skip breaking into userland */ |
| if ((*epc & 0x80000000) == 0) |
| return; |
| |
| #ifdef CONFIG_SMP |
| /* avoid deadlock if someone is make IPC */ |
| if (spin_is_locked(&smp_call_lock)) |
| return; |
| #endif |
| |
| async_bp.addr = *epc; |
| *epc = (unsigned long)async_breakpoint; |
| } |
| |
| static void kgdb_wait(void *arg) |
| { |
| unsigned flags; |
| int cpu = smp_processor_id(); |
| |
| local_irq_save(flags); |
| |
| __raw_spin_lock(&kgdb_cpulock[cpu]); |
| __raw_spin_unlock(&kgdb_cpulock[cpu]); |
| |
| local_irq_restore(flags); |
| } |
| |
| /* |
| * GDB stub needs to call kgdb_wait on all processor with interrupts |
| * disabled, so it uses it's own special variant. |
| */ |
| static int kgdb_smp_call_kgdb_wait(void) |
| { |
| #ifdef CONFIG_SMP |
| struct call_data_struct data; |
| int i, cpus = num_online_cpus() - 1; |
| int cpu = smp_processor_id(); |
| |
| /* |
| * Can die spectacularly if this CPU isn't yet marked online |
| */ |
| BUG_ON(!cpu_online(cpu)); |
| |
| if (!cpus) |
| return 0; |
| |
| if (spin_is_locked(&smp_call_lock)) { |
| /* |
| * Some other processor is trying to make us do something |
| * but we're not going to respond... give up |
| */ |
| return -1; |
| } |
| |
| /* |
| * We will continue here, accepting the fact that |
| * the kernel may deadlock if another CPU attempts |
| * to call smp_call_function now... |
| */ |
| |
| data.func = kgdb_wait; |
| data.info = NULL; |
| atomic_set(&data.started, 0); |
| data.wait = 0; |
| |
| spin_lock(&smp_call_lock); |
| call_data = &data; |
| mb(); |
| |
| /* Send a message to all other CPUs and wait for them to respond */ |
| for (i = 0; i < NR_CPUS; i++) |
| if (cpu_online(i) && i != cpu) |
| core_send_ipi(i, SMP_CALL_FUNCTION); |
| |
| /* Wait for response */ |
| /* FIXME: lock-up detection, backtrace on lock-up */ |
| while (atomic_read(&data.started) != cpus) |
| barrier(); |
| |
| call_data = NULL; |
| spin_unlock(&smp_call_lock); |
| #endif |
| |
| return 0; |
| } |
| |
| /* |
| * This function does all command processing for interfacing to gdb. It |
| * returns 1 if you should skip the instruction at the trap address, 0 |
| * otherwise. |
| */ |
| void handle_exception (struct gdb_regs *regs) |
| { |
| int trap; /* Trap type */ |
| int sigval; |
| long addr; |
| int length; |
| char *ptr; |
| unsigned long *stack; |
| int i; |
| int bflag = 0; |
| |
| kgdb_started = 1; |
| |
| /* |
| * acquire the big kgdb spinlock |
| */ |
| if (!spin_trylock(&kgdb_lock)) { |
| /* |
| * some other CPU has the lock, we should go back to |
| * receive the gdb_wait IPC |
| */ |
| return; |
| } |
| |
| /* |
| * If we're in async_breakpoint(), restore the real EPC from |
| * the breakpoint. |
| */ |
| if (regs->cp0_epc == (unsigned long)async_breakinst) { |
| regs->cp0_epc = async_bp.addr; |
| async_bp.addr = 0; |
| } |
| |
| /* |
| * acquire the CPU spinlocks |
| */ |
| for (i = num_online_cpus()-1; i >= 0; i--) |
| if (__raw_spin_trylock(&kgdb_cpulock[i]) == 0) |
| panic("kgdb: couldn't get cpulock %d\n", i); |
| |
| /* |
| * force other cpus to enter kgdb |
| */ |
| kgdb_smp_call_kgdb_wait(); |
| |
| /* |
| * If we're in breakpoint() increment the PC |
| */ |
| trap = (regs->cp0_cause & 0x7c) >> 2; |
| if (trap == 9 && regs->cp0_epc == (unsigned long)breakinst) |
| regs->cp0_epc += 4; |
| |
| /* |
| * If we were single_stepping, restore the opcodes hoisted |
| * for the breakpoint[s]. |
| */ |
| if (step_bp[0].addr) { |
| *(unsigned *)step_bp[0].addr = step_bp[0].val; |
| step_bp[0].addr = 0; |
| |
| if (step_bp[1].addr) { |
| *(unsigned *)step_bp[1].addr = step_bp[1].val; |
| step_bp[1].addr = 0; |
| } |
| } |
| |
| stack = (long *)regs->reg29; /* stack ptr */ |
| sigval = computeSignal(trap); |
| |
| /* |
| * reply to host that an exception has occurred |
| */ |
| ptr = output_buffer; |
| |
| /* |
| * Send trap type (converted to signal) |
| */ |
| *ptr++ = 'T'; |
| *ptr++ = hexchars[sigval >> 4]; |
| *ptr++ = hexchars[sigval & 0xf]; |
| |
| /* |
| * Send Error PC |
| */ |
| *ptr++ = hexchars[REG_EPC >> 4]; |
| *ptr++ = hexchars[REG_EPC & 0xf]; |
| *ptr++ = ':'; |
| ptr = mem2hex((char *)®s->cp0_epc, ptr, sizeof(long), 0); |
| *ptr++ = ';'; |
| |
| /* |
| * Send frame pointer |
| */ |
| *ptr++ = hexchars[REG_FP >> 4]; |
| *ptr++ = hexchars[REG_FP & 0xf]; |
| *ptr++ = ':'; |
| ptr = mem2hex((char *)®s->reg30, ptr, sizeof(long), 0); |
| *ptr++ = ';'; |
| |
| /* |
| * Send stack pointer |
| */ |
| *ptr++ = hexchars[REG_SP >> 4]; |
| *ptr++ = hexchars[REG_SP & 0xf]; |
| *ptr++ = ':'; |
| ptr = mem2hex((char *)®s->reg29, ptr, sizeof(long), 0); |
| *ptr++ = ';'; |
| |
| *ptr++ = 0; |
| putpacket(output_buffer); /* send it off... */ |
| |
| /* |
| * Wait for input from remote GDB |
| */ |
| while (1) { |
| output_buffer[0] = 0; |
| getpacket(input_buffer); |
| |
| switch (input_buffer[0]) |
| { |
| case '?': |
| output_buffer[0] = 'S'; |
| output_buffer[1] = hexchars[sigval >> 4]; |
| output_buffer[2] = hexchars[sigval & 0xf]; |
| output_buffer[3] = 0; |
| break; |
| |
| /* |
| * Detach debugger; let CPU run |
| */ |
| case 'D': |
| putpacket(output_buffer); |
| goto finish_kgdb; |
| break; |
| |
| case 'd': |
| /* toggle debug flag */ |
| break; |
| |
| /* |
| * Return the value of the CPU registers |
| */ |
| case 'g': |
| ptr = output_buffer; |
| ptr = mem2hex((char *)®s->reg0, ptr, 32*sizeof(long), 0); /* r0...r31 */ |
| ptr = mem2hex((char *)®s->cp0_status, ptr, 6*sizeof(long), 0); /* cp0 */ |
| ptr = mem2hex((char *)®s->fpr0, ptr, 32*sizeof(long), 0); /* f0...31 */ |
| ptr = mem2hex((char *)®s->cp1_fsr, ptr, 2*sizeof(long), 0); /* cp1 */ |
| ptr = mem2hex((char *)®s->frame_ptr, ptr, 2*sizeof(long), 0); /* frp */ |
| ptr = mem2hex((char *)®s->cp0_index, ptr, 16*sizeof(long), 0); /* cp0 */ |
| break; |
| |
| /* |
| * set the value of the CPU registers - return OK |
| */ |
| case 'G': |
| { |
| ptr = &input_buffer[1]; |
| hex2mem(ptr, (char *)®s->reg0, 32*sizeof(long), 0, 0); |
| ptr += 32*(2*sizeof(long)); |
| hex2mem(ptr, (char *)®s->cp0_status, 6*sizeof(long), 0, 0); |
| ptr += 6*(2*sizeof(long)); |
| hex2mem(ptr, (char *)®s->fpr0, 32*sizeof(long), 0, 0); |
| ptr += 32*(2*sizeof(long)); |
| hex2mem(ptr, (char *)®s->cp1_fsr, 2*sizeof(long), 0, 0); |
| ptr += 2*(2*sizeof(long)); |
| hex2mem(ptr, (char *)®s->frame_ptr, 2*sizeof(long), 0, 0); |
| ptr += 2*(2*sizeof(long)); |
| hex2mem(ptr, (char *)®s->cp0_index, 16*sizeof(long), 0, 0); |
| strcpy(output_buffer,"OK"); |
| } |
| break; |
| |
| /* |
| * mAA..AA,LLLL Read LLLL bytes at address AA..AA |
| */ |
| case 'm': |
| ptr = &input_buffer[1]; |
| |
| if (hexToLong(&ptr, &addr) |
| && *ptr++ == ',' |
| && hexToInt(&ptr, &length)) { |
| if (mem2hex((char *)addr, output_buffer, length, 1)) |
| break; |
| strcpy (output_buffer, "E03"); |
| } else |
| strcpy(output_buffer,"E01"); |
| break; |
| |
| /* |
| * XAA..AA,LLLL: Write LLLL escaped binary bytes at address AA.AA |
| */ |
| case 'X': |
| bflag = 1; |
| /* fall through */ |
| |
| /* |
| * MAA..AA,LLLL: Write LLLL bytes at address AA.AA return OK |
| */ |
| case 'M': |
| ptr = &input_buffer[1]; |
| |
| if (hexToLong(&ptr, &addr) |
| && *ptr++ == ',' |
| && hexToInt(&ptr, &length) |
| && *ptr++ == ':') { |
| if (hex2mem(ptr, (char *)addr, length, bflag, 1)) |
| strcpy(output_buffer, "OK"); |
| else |
| strcpy(output_buffer, "E03"); |
| } |
| else |
| strcpy(output_buffer, "E02"); |
| break; |
| |
| /* |
| * cAA..AA Continue at address AA..AA(optional) |
| */ |
| case 'c': |
| /* try to read optional parameter, pc unchanged if no parm */ |
| |
| ptr = &input_buffer[1]; |
| if (hexToLong(&ptr, &addr)) |
| regs->cp0_epc = addr; |
| |
| goto exit_kgdb_exception; |
| break; |
| |
| /* |
| * kill the program; let us try to restart the machine |
| * Reset the whole machine. |
| */ |
| case 'k': |
| case 'r': |
| machine_restart("kgdb restarts machine"); |
| break; |
| |
| /* |
| * Step to next instruction |
| */ |
| case 's': |
| /* |
| * There is no single step insn in the MIPS ISA, so we |
| * use breakpoints and continue, instead. |
| */ |
| single_step(regs); |
| goto exit_kgdb_exception; |
| /* NOTREACHED */ |
| break; |
| |
| /* |
| * Set baud rate (bBB) |
| * FIXME: Needs to be written |
| */ |
| case 'b': |
| { |
| #if 0 |
| int baudrate; |
| extern void set_timer_3(); |
| |
| ptr = &input_buffer[1]; |
| if (!hexToInt(&ptr, &baudrate)) |
| { |
| strcpy(output_buffer,"B01"); |
| break; |
| } |
| |
| /* Convert baud rate to uart clock divider */ |
| |
| switch (baudrate) |
| { |
| case 38400: |
| baudrate = 16; |
| break; |
| case 19200: |
| baudrate = 33; |
| break; |
| case 9600: |
| baudrate = 65; |
| break; |
| default: |
| baudrate = 0; |
| strcpy(output_buffer,"B02"); |
| goto x1; |
| } |
| |
| if (baudrate) { |
| putpacket("OK"); /* Ack before changing speed */ |
| set_timer_3(baudrate); /* Set it */ |
| } |
| #endif |
| } |
| break; |
| |
| } /* switch */ |
| |
| /* |
| * reply to the request |
| */ |
| |
| putpacket(output_buffer); |
| |
| } /* while */ |
| |
| return; |
| |
| finish_kgdb: |
| restore_debug_traps(); |
| |
| exit_kgdb_exception: |
| /* release locks so other CPUs can go */ |
| for (i = num_online_cpus()-1; i >= 0; i--) |
| __raw_spin_unlock(&kgdb_cpulock[i]); |
| spin_unlock(&kgdb_lock); |
| |
| __flush_cache_all(); |
| return; |
| } |
| |
| /* |
| * This function will generate a breakpoint exception. It is used at the |
| * beginning of a program to sync up with a debugger and can be used |
| * otherwise as a quick means to stop program execution and "break" into |
| * the debugger. |
| */ |
| void breakpoint(void) |
| { |
| if (!initialized) |
| return; |
| |
| __asm__ __volatile__( |
| ".globl breakinst\n\t" |
| ".set\tnoreorder\n\t" |
| "nop\n" |
| "breakinst:\tbreak\n\t" |
| "nop\n\t" |
| ".set\treorder" |
| ); |
| } |
| |
| /* Nothing but the break; don't pollute any registers */ |
| void async_breakpoint(void) |
| { |
| __asm__ __volatile__( |
| ".globl async_breakinst\n\t" |
| ".set\tnoreorder\n\t" |
| "nop\n" |
| "async_breakinst:\tbreak\n\t" |
| "nop\n\t" |
| ".set\treorder" |
| ); |
| } |
| |
| void adel(void) |
| { |
| __asm__ __volatile__( |
| ".globl\tadel\n\t" |
| "lui\t$8,0x8000\n\t" |
| "lw\t$9,1($8)\n\t" |
| ); |
| } |
| |
| /* |
| * malloc is needed by gdb client in "call func()", even a private one |
| * will make gdb happy |
| */ |
| static void * __attribute_used__ malloc(size_t size) |
| { |
| return kmalloc(size, GFP_ATOMIC); |
| } |
| |
| static void __attribute_used__ free (void *where) |
| { |
| kfree(where); |
| } |
| |
| #ifdef CONFIG_GDB_CONSOLE |
| |
| void gdb_putsn(const char *str, int l) |
| { |
| char outbuf[18]; |
| |
| if (!kgdb_started) |
| return; |
| |
| outbuf[0]='O'; |
| |
| while(l) { |
| int i = (l>8)?8:l; |
| mem2hex((char *)str, &outbuf[1], i, 0); |
| outbuf[(i*2)+1]=0; |
| putpacket(outbuf); |
| str += i; |
| l -= i; |
| } |
| } |
| |
| static void gdb_console_write(struct console *con, const char *s, unsigned n) |
| { |
| gdb_putsn(s, n); |
| } |
| |
| static struct console gdb_console = { |
| .name = "gdb", |
| .write = gdb_console_write, |
| .flags = CON_PRINTBUFFER, |
| .index = -1 |
| }; |
| |
| static int __init register_gdb_console(void) |
| { |
| register_console(&gdb_console); |
| |
| return 0; |
| } |
| |
| console_initcall(register_gdb_console); |
| |
| #endif |