| /* CPU control. |
| * (C) 2001, 2002, 2003, 2004 Rusty Russell |
| * |
| * This code is licenced under the GPL. |
| */ |
| #include <linux/proc_fs.h> |
| #include <linux/smp.h> |
| #include <linux/init.h> |
| #include <linux/notifier.h> |
| #include <linux/sched.h> |
| #include <linux/unistd.h> |
| #include <linux/cpu.h> |
| #include <linux/oom.h> |
| #include <linux/rcupdate.h> |
| #include <linux/export.h> |
| #include <linux/bug.h> |
| #include <linux/kthread.h> |
| #include <linux/stop_machine.h> |
| #include <linux/mutex.h> |
| #include <linux/gfp.h> |
| #include <linux/suspend.h> |
| |
| #include "smpboot.h" |
| |
| #ifdef CONFIG_SMP |
| /* Serializes the updates to cpu_online_mask, cpu_present_mask */ |
| static DEFINE_MUTEX(cpu_add_remove_lock); |
| |
| /* |
| * The following two API's must be used when attempting |
| * to serialize the updates to cpu_online_mask, cpu_present_mask. |
| */ |
| void cpu_maps_update_begin(void) |
| { |
| mutex_lock(&cpu_add_remove_lock); |
| } |
| |
| void cpu_maps_update_done(void) |
| { |
| mutex_unlock(&cpu_add_remove_lock); |
| } |
| |
| static RAW_NOTIFIER_HEAD(cpu_chain); |
| |
| /* If set, cpu_up and cpu_down will return -EBUSY and do nothing. |
| * Should always be manipulated under cpu_add_remove_lock |
| */ |
| static int cpu_hotplug_disabled; |
| |
| #ifdef CONFIG_HOTPLUG_CPU |
| |
| static struct { |
| struct task_struct *active_writer; |
| struct mutex lock; /* Synchronizes accesses to refcount, */ |
| /* |
| * Also blocks the new readers during |
| * an ongoing cpu hotplug operation. |
| */ |
| int refcount; |
| } cpu_hotplug = { |
| .active_writer = NULL, |
| .lock = __MUTEX_INITIALIZER(cpu_hotplug.lock), |
| .refcount = 0, |
| }; |
| |
| void get_online_cpus(void) |
| { |
| might_sleep(); |
| if (cpu_hotplug.active_writer == current) |
| return; |
| mutex_lock(&cpu_hotplug.lock); |
| cpu_hotplug.refcount++; |
| mutex_unlock(&cpu_hotplug.lock); |
| |
| } |
| EXPORT_SYMBOL_GPL(get_online_cpus); |
| |
| void put_online_cpus(void) |
| { |
| if (cpu_hotplug.active_writer == current) |
| return; |
| mutex_lock(&cpu_hotplug.lock); |
| |
| if (WARN_ON(!cpu_hotplug.refcount)) |
| cpu_hotplug.refcount++; /* try to fix things up */ |
| |
| if (!--cpu_hotplug.refcount && unlikely(cpu_hotplug.active_writer)) |
| wake_up_process(cpu_hotplug.active_writer); |
| mutex_unlock(&cpu_hotplug.lock); |
| |
| } |
| EXPORT_SYMBOL_GPL(put_online_cpus); |
| |
| /* |
| * This ensures that the hotplug operation can begin only when the |
| * refcount goes to zero. |
| * |
| * Note that during a cpu-hotplug operation, the new readers, if any, |
| * will be blocked by the cpu_hotplug.lock |
| * |
| * Since cpu_hotplug_begin() is always called after invoking |
| * cpu_maps_update_begin(), we can be sure that only one writer is active. |
| * |
| * Note that theoretically, there is a possibility of a livelock: |
| * - Refcount goes to zero, last reader wakes up the sleeping |
| * writer. |
| * - Last reader unlocks the cpu_hotplug.lock. |
| * - A new reader arrives at this moment, bumps up the refcount. |
| * - The writer acquires the cpu_hotplug.lock finds the refcount |
| * non zero and goes to sleep again. |
| * |
| * However, this is very difficult to achieve in practice since |
| * get_online_cpus() not an api which is called all that often. |
| * |
| */ |
| void cpu_hotplug_begin(void) |
| { |
| cpu_hotplug.active_writer = current; |
| |
| for (;;) { |
| mutex_lock(&cpu_hotplug.lock); |
| if (likely(!cpu_hotplug.refcount)) |
| break; |
| __set_current_state(TASK_UNINTERRUPTIBLE); |
| mutex_unlock(&cpu_hotplug.lock); |
| schedule(); |
| } |
| } |
| |
| void cpu_hotplug_done(void) |
| { |
| cpu_hotplug.active_writer = NULL; |
| mutex_unlock(&cpu_hotplug.lock); |
| } |
| |
| /* |
| * Wait for currently running CPU hotplug operations to complete (if any) and |
| * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects |
| * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the |
| * hotplug path before performing hotplug operations. So acquiring that lock |
| * guarantees mutual exclusion from any currently running hotplug operations. |
| */ |
| void cpu_hotplug_disable(void) |
| { |
| cpu_maps_update_begin(); |
| cpu_hotplug_disabled = 1; |
| cpu_maps_update_done(); |
| } |
| |
| void cpu_hotplug_enable(void) |
| { |
| cpu_maps_update_begin(); |
| cpu_hotplug_disabled = 0; |
| cpu_maps_update_done(); |
| } |
| |
| #endif /* CONFIG_HOTPLUG_CPU */ |
| |
| /* Need to know about CPUs going up/down? */ |
| int __ref register_cpu_notifier(struct notifier_block *nb) |
| { |
| int ret; |
| cpu_maps_update_begin(); |
| ret = raw_notifier_chain_register(&cpu_chain, nb); |
| cpu_maps_update_done(); |
| return ret; |
| } |
| |
| static int __cpu_notify(unsigned long val, void *v, int nr_to_call, |
| int *nr_calls) |
| { |
| int ret; |
| |
| ret = __raw_notifier_call_chain(&cpu_chain, val, v, nr_to_call, |
| nr_calls); |
| |
| return notifier_to_errno(ret); |
| } |
| |
| static int cpu_notify(unsigned long val, void *v) |
| { |
| return __cpu_notify(val, v, -1, NULL); |
| } |
| |
| #ifdef CONFIG_HOTPLUG_CPU |
| |
| static void cpu_notify_nofail(unsigned long val, void *v) |
| { |
| BUG_ON(cpu_notify(val, v)); |
| } |
| EXPORT_SYMBOL(register_cpu_notifier); |
| |
| void __ref unregister_cpu_notifier(struct notifier_block *nb) |
| { |
| cpu_maps_update_begin(); |
| raw_notifier_chain_unregister(&cpu_chain, nb); |
| cpu_maps_update_done(); |
| } |
| EXPORT_SYMBOL(unregister_cpu_notifier); |
| |
| /** |
| * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU |
| * @cpu: a CPU id |
| * |
| * This function walks all processes, finds a valid mm struct for each one and |
| * then clears a corresponding bit in mm's cpumask. While this all sounds |
| * trivial, there are various non-obvious corner cases, which this function |
| * tries to solve in a safe manner. |
| * |
| * Also note that the function uses a somewhat relaxed locking scheme, so it may |
| * be called only for an already offlined CPU. |
| */ |
| void clear_tasks_mm_cpumask(int cpu) |
| { |
| struct task_struct *p; |
| |
| /* |
| * This function is called after the cpu is taken down and marked |
| * offline, so its not like new tasks will ever get this cpu set in |
| * their mm mask. -- Peter Zijlstra |
| * Thus, we may use rcu_read_lock() here, instead of grabbing |
| * full-fledged tasklist_lock. |
| */ |
| WARN_ON(cpu_online(cpu)); |
| rcu_read_lock(); |
| for_each_process(p) { |
| struct task_struct *t; |
| |
| /* |
| * Main thread might exit, but other threads may still have |
| * a valid mm. Find one. |
| */ |
| t = find_lock_task_mm(p); |
| if (!t) |
| continue; |
| cpumask_clear_cpu(cpu, mm_cpumask(t->mm)); |
| task_unlock(t); |
| } |
| rcu_read_unlock(); |
| } |
| |
| static inline void check_for_tasks(int cpu) |
| { |
| struct task_struct *p; |
| cputime_t utime, stime; |
| |
| write_lock_irq(&tasklist_lock); |
| for_each_process(p) { |
| task_cputime(p, &utime, &stime); |
| if (task_cpu(p) == cpu && p->state == TASK_RUNNING && |
| (utime || stime)) |
| printk(KERN_WARNING "Task %s (pid = %d) is on cpu %d " |
| "(state = %ld, flags = %x)\n", |
| p->comm, task_pid_nr(p), cpu, |
| p->state, p->flags); |
| } |
| write_unlock_irq(&tasklist_lock); |
| } |
| |
| struct take_cpu_down_param { |
| unsigned long mod; |
| void *hcpu; |
| }; |
| |
| /* Take this CPU down. */ |
| static int __ref take_cpu_down(void *_param) |
| { |
| struct take_cpu_down_param *param = _param; |
| int err; |
| |
| /* Ensure this CPU doesn't handle any more interrupts. */ |
| err = __cpu_disable(); |
| if (err < 0) |
| return err; |
| |
| cpu_notify(CPU_DYING | param->mod, param->hcpu); |
| /* Park the stopper thread */ |
| kthread_park(current); |
| return 0; |
| } |
| |
| /* Requires cpu_add_remove_lock to be held */ |
| static int __ref _cpu_down(unsigned int cpu, int tasks_frozen) |
| { |
| int err, nr_calls = 0; |
| void *hcpu = (void *)(long)cpu; |
| unsigned long mod = tasks_frozen ? CPU_TASKS_FROZEN : 0; |
| struct take_cpu_down_param tcd_param = { |
| .mod = mod, |
| .hcpu = hcpu, |
| }; |
| |
| if (num_online_cpus() == 1) |
| return -EBUSY; |
| |
| if (!cpu_online(cpu)) |
| return -EINVAL; |
| |
| cpu_hotplug_begin(); |
| |
| err = __cpu_notify(CPU_DOWN_PREPARE | mod, hcpu, -1, &nr_calls); |
| if (err) { |
| nr_calls--; |
| __cpu_notify(CPU_DOWN_FAILED | mod, hcpu, nr_calls, NULL); |
| printk("%s: attempt to take down CPU %u failed\n", |
| __func__, cpu); |
| goto out_release; |
| } |
| |
| /* |
| * By now we've cleared cpu_active_mask, wait for all preempt-disabled |
| * and RCU users of this state to go away such that all new such users |
| * will observe it. |
| * |
| * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might |
| * not imply sync_sched(), so explicitly call both. |
| * |
| * Do sync before park smpboot threads to take care the rcu boost case. |
| */ |
| #ifdef CONFIG_PREEMPT |
| synchronize_sched(); |
| #endif |
| synchronize_rcu(); |
| |
| smpboot_park_threads(cpu); |
| |
| /* |
| * So now all preempt/rcu users must observe !cpu_active(). |
| */ |
| |
| err = __stop_machine(take_cpu_down, &tcd_param, cpumask_of(cpu)); |
| if (err) { |
| /* CPU didn't die: tell everyone. Can't complain. */ |
| smpboot_unpark_threads(cpu); |
| cpu_notify_nofail(CPU_DOWN_FAILED | mod, hcpu); |
| goto out_release; |
| } |
| BUG_ON(cpu_online(cpu)); |
| |
| /* |
| * The migration_call() CPU_DYING callback will have removed all |
| * runnable tasks from the cpu, there's only the idle task left now |
| * that the migration thread is done doing the stop_machine thing. |
| * |
| * Wait for the stop thread to go away. |
| */ |
| while (!idle_cpu(cpu)) |
| cpu_relax(); |
| |
| /* This actually kills the CPU. */ |
| __cpu_die(cpu); |
| |
| /* CPU is completely dead: tell everyone. Too late to complain. */ |
| cpu_notify_nofail(CPU_DEAD | mod, hcpu); |
| |
| check_for_tasks(cpu); |
| |
| out_release: |
| cpu_hotplug_done(); |
| if (!err) |
| cpu_notify_nofail(CPU_POST_DEAD | mod, hcpu); |
| return err; |
| } |
| |
| int __ref cpu_down(unsigned int cpu) |
| { |
| int err; |
| |
| cpu_maps_update_begin(); |
| |
| if (cpu_hotplug_disabled) { |
| err = -EBUSY; |
| goto out; |
| } |
| |
| err = _cpu_down(cpu, 0); |
| |
| out: |
| cpu_maps_update_done(); |
| return err; |
| } |
| EXPORT_SYMBOL(cpu_down); |
| #endif /*CONFIG_HOTPLUG_CPU*/ |
| |
| /* Requires cpu_add_remove_lock to be held */ |
| static int _cpu_up(unsigned int cpu, int tasks_frozen) |
| { |
| int ret, nr_calls = 0; |
| void *hcpu = (void *)(long)cpu; |
| unsigned long mod = tasks_frozen ? CPU_TASKS_FROZEN : 0; |
| struct task_struct *idle; |
| |
| cpu_hotplug_begin(); |
| |
| if (cpu_online(cpu) || !cpu_present(cpu)) { |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| idle = idle_thread_get(cpu); |
| if (IS_ERR(idle)) { |
| ret = PTR_ERR(idle); |
| goto out; |
| } |
| |
| ret = smpboot_create_threads(cpu); |
| if (ret) |
| goto out; |
| |
| ret = __cpu_notify(CPU_UP_PREPARE | mod, hcpu, -1, &nr_calls); |
| if (ret) { |
| nr_calls--; |
| printk(KERN_WARNING "%s: attempt to bring up CPU %u failed\n", |
| __func__, cpu); |
| goto out_notify; |
| } |
| |
| /* Arch-specific enabling code. */ |
| ret = __cpu_up(cpu, idle); |
| if (ret != 0) |
| goto out_notify; |
| BUG_ON(!cpu_online(cpu)); |
| |
| /* Wake the per cpu threads */ |
| smpboot_unpark_threads(cpu); |
| |
| /* Now call notifier in preparation. */ |
| cpu_notify(CPU_ONLINE | mod, hcpu); |
| |
| out_notify: |
| if (ret != 0) |
| __cpu_notify(CPU_UP_CANCELED | mod, hcpu, nr_calls, NULL); |
| out: |
| cpu_hotplug_done(); |
| |
| return ret; |
| } |
| |
| int cpu_up(unsigned int cpu) |
| { |
| int err = 0; |
| |
| #ifdef CONFIG_MEMORY_HOTPLUG |
| int nid; |
| pg_data_t *pgdat; |
| #endif |
| |
| if (!cpu_possible(cpu)) { |
| printk(KERN_ERR "can't online cpu %d because it is not " |
| "configured as may-hotadd at boot time\n", cpu); |
| #if defined(CONFIG_IA64) |
| printk(KERN_ERR "please check additional_cpus= boot " |
| "parameter\n"); |
| #endif |
| return -EINVAL; |
| } |
| |
| #ifdef CONFIG_MEMORY_HOTPLUG |
| nid = cpu_to_node(cpu); |
| if (!node_online(nid)) { |
| err = mem_online_node(nid); |
| if (err) |
| return err; |
| } |
| |
| pgdat = NODE_DATA(nid); |
| if (!pgdat) { |
| printk(KERN_ERR |
| "Can't online cpu %d due to NULL pgdat\n", cpu); |
| return -ENOMEM; |
| } |
| |
| if (pgdat->node_zonelists->_zonerefs->zone == NULL) { |
| mutex_lock(&zonelists_mutex); |
| build_all_zonelists(NULL, NULL); |
| mutex_unlock(&zonelists_mutex); |
| } |
| #endif |
| |
| cpu_maps_update_begin(); |
| |
| if (cpu_hotplug_disabled) { |
| err = -EBUSY; |
| goto out; |
| } |
| |
| err = _cpu_up(cpu, 0); |
| |
| out: |
| cpu_maps_update_done(); |
| return err; |
| } |
| EXPORT_SYMBOL_GPL(cpu_up); |
| |
| #ifdef CONFIG_PM_SLEEP_SMP |
| static cpumask_var_t frozen_cpus; |
| |
| int disable_nonboot_cpus(void) |
| { |
| int cpu, first_cpu, error = 0; |
| |
| cpu_maps_update_begin(); |
| first_cpu = cpumask_first(cpu_online_mask); |
| /* |
| * We take down all of the non-boot CPUs in one shot to avoid races |
| * with the userspace trying to use the CPU hotplug at the same time |
| */ |
| cpumask_clear(frozen_cpus); |
| |
| printk("Disabling non-boot CPUs ...\n"); |
| for_each_online_cpu(cpu) { |
| if (cpu == first_cpu) |
| continue; |
| error = _cpu_down(cpu, 1); |
| if (!error) |
| cpumask_set_cpu(cpu, frozen_cpus); |
| else { |
| printk(KERN_ERR "Error taking CPU%d down: %d\n", |
| cpu, error); |
| break; |
| } |
| } |
| |
| if (!error) { |
| BUG_ON(num_online_cpus() > 1); |
| /* Make sure the CPUs won't be enabled by someone else */ |
| cpu_hotplug_disabled = 1; |
| } else { |
| printk(KERN_ERR "Non-boot CPUs are not disabled\n"); |
| } |
| cpu_maps_update_done(); |
| return error; |
| } |
| |
| void __weak arch_enable_nonboot_cpus_begin(void) |
| { |
| } |
| |
| void __weak arch_enable_nonboot_cpus_end(void) |
| { |
| } |
| |
| void __ref enable_nonboot_cpus(void) |
| { |
| int cpu, error; |
| |
| /* Allow everyone to use the CPU hotplug again */ |
| cpu_maps_update_begin(); |
| cpu_hotplug_disabled = 0; |
| if (cpumask_empty(frozen_cpus)) |
| goto out; |
| |
| printk(KERN_INFO "Enabling non-boot CPUs ...\n"); |
| |
| arch_enable_nonboot_cpus_begin(); |
| |
| for_each_cpu(cpu, frozen_cpus) { |
| error = _cpu_up(cpu, 1); |
| if (!error) { |
| printk(KERN_INFO "CPU%d is up\n", cpu); |
| continue; |
| } |
| printk(KERN_WARNING "Error taking CPU%d up: %d\n", cpu, error); |
| } |
| |
| arch_enable_nonboot_cpus_end(); |
| |
| cpumask_clear(frozen_cpus); |
| out: |
| cpu_maps_update_done(); |
| } |
| |
| static int __init alloc_frozen_cpus(void) |
| { |
| if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO)) |
| return -ENOMEM; |
| return 0; |
| } |
| core_initcall(alloc_frozen_cpus); |
| |
| /* |
| * When callbacks for CPU hotplug notifications are being executed, we must |
| * ensure that the state of the system with respect to the tasks being frozen |
| * or not, as reported by the notification, remains unchanged *throughout the |
| * duration* of the execution of the callbacks. |
| * Hence we need to prevent the freezer from racing with regular CPU hotplug. |
| * |
| * This synchronization is implemented by mutually excluding regular CPU |
| * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/ |
| * Hibernate notifications. |
| */ |
| static int |
| cpu_hotplug_pm_callback(struct notifier_block *nb, |
| unsigned long action, void *ptr) |
| { |
| switch (action) { |
| |
| case PM_SUSPEND_PREPARE: |
| case PM_HIBERNATION_PREPARE: |
| cpu_hotplug_disable(); |
| break; |
| |
| case PM_POST_SUSPEND: |
| case PM_POST_HIBERNATION: |
| cpu_hotplug_enable(); |
| break; |
| |
| default: |
| return NOTIFY_DONE; |
| } |
| |
| return NOTIFY_OK; |
| } |
| |
| |
| static int __init cpu_hotplug_pm_sync_init(void) |
| { |
| /* |
| * cpu_hotplug_pm_callback has higher priority than x86 |
| * bsp_pm_callback which depends on cpu_hotplug_pm_callback |
| * to disable cpu hotplug to avoid cpu hotplug race. |
| */ |
| pm_notifier(cpu_hotplug_pm_callback, 0); |
| return 0; |
| } |
| core_initcall(cpu_hotplug_pm_sync_init); |
| |
| #endif /* CONFIG_PM_SLEEP_SMP */ |
| |
| /** |
| * notify_cpu_starting(cpu) - call the CPU_STARTING notifiers |
| * @cpu: cpu that just started |
| * |
| * This function calls the cpu_chain notifiers with CPU_STARTING. |
| * It must be called by the arch code on the new cpu, before the new cpu |
| * enables interrupts and before the "boot" cpu returns from __cpu_up(). |
| */ |
| void notify_cpu_starting(unsigned int cpu) |
| { |
| unsigned long val = CPU_STARTING; |
| |
| #ifdef CONFIG_PM_SLEEP_SMP |
| if (frozen_cpus != NULL && cpumask_test_cpu(cpu, frozen_cpus)) |
| val = CPU_STARTING_FROZEN; |
| #endif /* CONFIG_PM_SLEEP_SMP */ |
| cpu_notify(val, (void *)(long)cpu); |
| } |
| |
| #endif /* CONFIG_SMP */ |
| |
| /* |
| * cpu_bit_bitmap[] is a special, "compressed" data structure that |
| * represents all NR_CPUS bits binary values of 1<<nr. |
| * |
| * It is used by cpumask_of() to get a constant address to a CPU |
| * mask value that has a single bit set only. |
| */ |
| |
| /* cpu_bit_bitmap[0] is empty - so we can back into it */ |
| #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x)) |
| #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1) |
| #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2) |
| #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4) |
| |
| const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = { |
| |
| MASK_DECLARE_8(0), MASK_DECLARE_8(8), |
| MASK_DECLARE_8(16), MASK_DECLARE_8(24), |
| #if BITS_PER_LONG > 32 |
| MASK_DECLARE_8(32), MASK_DECLARE_8(40), |
| MASK_DECLARE_8(48), MASK_DECLARE_8(56), |
| #endif |
| }; |
| EXPORT_SYMBOL_GPL(cpu_bit_bitmap); |
| |
| const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL; |
| EXPORT_SYMBOL(cpu_all_bits); |
| |
| #ifdef CONFIG_INIT_ALL_POSSIBLE |
| static DECLARE_BITMAP(cpu_possible_bits, CONFIG_NR_CPUS) __read_mostly |
| = CPU_BITS_ALL; |
| #else |
| static DECLARE_BITMAP(cpu_possible_bits, CONFIG_NR_CPUS) __read_mostly; |
| #endif |
| const struct cpumask *const cpu_possible_mask = to_cpumask(cpu_possible_bits); |
| EXPORT_SYMBOL(cpu_possible_mask); |
| |
| static DECLARE_BITMAP(cpu_online_bits, CONFIG_NR_CPUS) __read_mostly; |
| const struct cpumask *const cpu_online_mask = to_cpumask(cpu_online_bits); |
| EXPORT_SYMBOL(cpu_online_mask); |
| |
| static DECLARE_BITMAP(cpu_present_bits, CONFIG_NR_CPUS) __read_mostly; |
| const struct cpumask *const cpu_present_mask = to_cpumask(cpu_present_bits); |
| EXPORT_SYMBOL(cpu_present_mask); |
| |
| static DECLARE_BITMAP(cpu_active_bits, CONFIG_NR_CPUS) __read_mostly; |
| const struct cpumask *const cpu_active_mask = to_cpumask(cpu_active_bits); |
| EXPORT_SYMBOL(cpu_active_mask); |
| |
| void set_cpu_possible(unsigned int cpu, bool possible) |
| { |
| if (possible) |
| cpumask_set_cpu(cpu, to_cpumask(cpu_possible_bits)); |
| else |
| cpumask_clear_cpu(cpu, to_cpumask(cpu_possible_bits)); |
| } |
| |
| void set_cpu_present(unsigned int cpu, bool present) |
| { |
| if (present) |
| cpumask_set_cpu(cpu, to_cpumask(cpu_present_bits)); |
| else |
| cpumask_clear_cpu(cpu, to_cpumask(cpu_present_bits)); |
| } |
| |
| void set_cpu_online(unsigned int cpu, bool online) |
| { |
| if (online) |
| cpumask_set_cpu(cpu, to_cpumask(cpu_online_bits)); |
| else |
| cpumask_clear_cpu(cpu, to_cpumask(cpu_online_bits)); |
| } |
| |
| void set_cpu_active(unsigned int cpu, bool active) |
| { |
| if (active) |
| cpumask_set_cpu(cpu, to_cpumask(cpu_active_bits)); |
| else |
| cpumask_clear_cpu(cpu, to_cpumask(cpu_active_bits)); |
| } |
| |
| void init_cpu_present(const struct cpumask *src) |
| { |
| cpumask_copy(to_cpumask(cpu_present_bits), src); |
| } |
| |
| void init_cpu_possible(const struct cpumask *src) |
| { |
| cpumask_copy(to_cpumask(cpu_possible_bits), src); |
| } |
| |
| void init_cpu_online(const struct cpumask *src) |
| { |
| cpumask_copy(to_cpumask(cpu_online_bits), src); |
| } |