| /* |
| * Procedures for creating, accessing and interpreting the device tree. |
| * |
| * Paul Mackerras August 1996. |
| * Copyright (C) 1996-2005 Paul Mackerras. |
| * |
| * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner. |
| * {engebret|bergner}@us.ibm.com |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| */ |
| |
| #undef DEBUG |
| |
| #include <stdarg.h> |
| #include <linux/kernel.h> |
| #include <linux/string.h> |
| #include <linux/init.h> |
| #include <linux/threads.h> |
| #include <linux/spinlock.h> |
| #include <linux/types.h> |
| #include <linux/pci.h> |
| #include <linux/stringify.h> |
| #include <linux/delay.h> |
| #include <linux/initrd.h> |
| #include <linux/bitops.h> |
| #include <linux/export.h> |
| #include <linux/kexec.h> |
| #include <linux/irq.h> |
| #include <linux/memblock.h> |
| #include <linux/of.h> |
| #include <linux/of_fdt.h> |
| #include <linux/libfdt.h> |
| |
| #include <asm/prom.h> |
| #include <asm/rtas.h> |
| #include <asm/page.h> |
| #include <asm/processor.h> |
| #include <asm/irq.h> |
| #include <asm/io.h> |
| #include <asm/kdump.h> |
| #include <asm/smp.h> |
| #include <asm/mmu.h> |
| #include <asm/paca.h> |
| #include <asm/pgtable.h> |
| #include <asm/pci.h> |
| #include <asm/iommu.h> |
| #include <asm/btext.h> |
| #include <asm/sections.h> |
| #include <asm/machdep.h> |
| #include <asm/pci-bridge.h> |
| #include <asm/kexec.h> |
| #include <asm/opal.h> |
| #include <asm/fadump.h> |
| #include <asm/debug.h> |
| |
| #include <mm/mmu_decl.h> |
| |
| #ifdef DEBUG |
| #define DBG(fmt...) printk(KERN_ERR fmt) |
| #else |
| #define DBG(fmt...) |
| #endif |
| |
| #ifdef CONFIG_PPC64 |
| int __initdata iommu_is_off; |
| int __initdata iommu_force_on; |
| unsigned long tce_alloc_start, tce_alloc_end; |
| u64 ppc64_rma_size; |
| #endif |
| static phys_addr_t first_memblock_size; |
| static int __initdata boot_cpu_count; |
| |
| static int __init early_parse_mem(char *p) |
| { |
| if (!p) |
| return 1; |
| |
| memory_limit = PAGE_ALIGN(memparse(p, &p)); |
| DBG("memory limit = 0x%llx\n", memory_limit); |
| |
| return 0; |
| } |
| early_param("mem", early_parse_mem); |
| |
| /* |
| * overlaps_initrd - check for overlap with page aligned extension of |
| * initrd. |
| */ |
| static inline int overlaps_initrd(unsigned long start, unsigned long size) |
| { |
| #ifdef CONFIG_BLK_DEV_INITRD |
| if (!initrd_start) |
| return 0; |
| |
| return (start + size) > _ALIGN_DOWN(initrd_start, PAGE_SIZE) && |
| start <= _ALIGN_UP(initrd_end, PAGE_SIZE); |
| #else |
| return 0; |
| #endif |
| } |
| |
| /** |
| * move_device_tree - move tree to an unused area, if needed. |
| * |
| * The device tree may be allocated beyond our memory limit, or inside the |
| * crash kernel region for kdump, or within the page aligned range of initrd. |
| * If so, move it out of the way. |
| */ |
| static void __init move_device_tree(void) |
| { |
| unsigned long start, size; |
| void *p; |
| |
| DBG("-> move_device_tree\n"); |
| |
| start = __pa(initial_boot_params); |
| size = fdt_totalsize(initial_boot_params); |
| |
| if ((memory_limit && (start + size) > PHYSICAL_START + memory_limit) || |
| overlaps_crashkernel(start, size) || |
| overlaps_initrd(start, size)) { |
| p = __va(memblock_alloc(size, PAGE_SIZE)); |
| memcpy(p, initial_boot_params, size); |
| initial_boot_params = p; |
| DBG("Moved device tree to 0x%p\n", p); |
| } |
| |
| DBG("<- move_device_tree\n"); |
| } |
| |
| /* |
| * ibm,pa-features is a per-cpu property that contains a string of |
| * attribute descriptors, each of which has a 2 byte header plus up |
| * to 254 bytes worth of processor attribute bits. First header |
| * byte specifies the number of bytes following the header. |
| * Second header byte is an "attribute-specifier" type, of which |
| * zero is the only currently-defined value. |
| * Implementation: Pass in the byte and bit offset for the feature |
| * that we are interested in. The function will return -1 if the |
| * pa-features property is missing, or a 1/0 to indicate if the feature |
| * is supported/not supported. Note that the bit numbers are |
| * big-endian to match the definition in PAPR. |
| */ |
| static struct ibm_pa_feature { |
| unsigned long cpu_features; /* CPU_FTR_xxx bit */ |
| unsigned long mmu_features; /* MMU_FTR_xxx bit */ |
| unsigned int cpu_user_ftrs; /* PPC_FEATURE_xxx bit */ |
| unsigned char pabyte; /* byte number in ibm,pa-features */ |
| unsigned char pabit; /* bit number (big-endian) */ |
| unsigned char invert; /* if 1, pa bit set => clear feature */ |
| } ibm_pa_features[] __initdata = { |
| {0, 0, PPC_FEATURE_HAS_MMU, 0, 0, 0}, |
| {0, 0, PPC_FEATURE_HAS_FPU, 0, 1, 0}, |
| {CPU_FTR_CTRL, 0, 0, 0, 3, 0}, |
| {CPU_FTR_NOEXECUTE, 0, 0, 0, 6, 0}, |
| {CPU_FTR_NODSISRALIGN, 0, 0, 1, 1, 1}, |
| {0, MMU_FTR_CI_LARGE_PAGE, 0, 1, 2, 0}, |
| {CPU_FTR_REAL_LE, PPC_FEATURE_TRUE_LE, 5, 0, 0}, |
| }; |
| |
| static void __init scan_features(unsigned long node, const unsigned char *ftrs, |
| unsigned long tablelen, |
| struct ibm_pa_feature *fp, |
| unsigned long ft_size) |
| { |
| unsigned long i, len, bit; |
| |
| /* find descriptor with type == 0 */ |
| for (;;) { |
| if (tablelen < 3) |
| return; |
| len = 2 + ftrs[0]; |
| if (tablelen < len) |
| return; /* descriptor 0 not found */ |
| if (ftrs[1] == 0) |
| break; |
| tablelen -= len; |
| ftrs += len; |
| } |
| |
| /* loop over bits we know about */ |
| for (i = 0; i < ft_size; ++i, ++fp) { |
| if (fp->pabyte >= ftrs[0]) |
| continue; |
| bit = (ftrs[2 + fp->pabyte] >> (7 - fp->pabit)) & 1; |
| if (bit ^ fp->invert) { |
| cur_cpu_spec->cpu_features |= fp->cpu_features; |
| cur_cpu_spec->cpu_user_features |= fp->cpu_user_ftrs; |
| cur_cpu_spec->mmu_features |= fp->mmu_features; |
| } else { |
| cur_cpu_spec->cpu_features &= ~fp->cpu_features; |
| cur_cpu_spec->cpu_user_features &= ~fp->cpu_user_ftrs; |
| cur_cpu_spec->mmu_features &= ~fp->mmu_features; |
| } |
| } |
| } |
| |
| static void __init check_cpu_pa_features(unsigned long node) |
| { |
| const unsigned char *pa_ftrs; |
| int tablelen; |
| |
| pa_ftrs = of_get_flat_dt_prop(node, "ibm,pa-features", &tablelen); |
| if (pa_ftrs == NULL) |
| return; |
| |
| scan_features(node, pa_ftrs, tablelen, |
| ibm_pa_features, ARRAY_SIZE(ibm_pa_features)); |
| } |
| |
| #ifdef CONFIG_PPC_STD_MMU_64 |
| static void __init check_cpu_slb_size(unsigned long node) |
| { |
| const __be32 *slb_size_ptr; |
| |
| slb_size_ptr = of_get_flat_dt_prop(node, "slb-size", NULL); |
| if (slb_size_ptr != NULL) { |
| mmu_slb_size = be32_to_cpup(slb_size_ptr); |
| return; |
| } |
| slb_size_ptr = of_get_flat_dt_prop(node, "ibm,slb-size", NULL); |
| if (slb_size_ptr != NULL) { |
| mmu_slb_size = be32_to_cpup(slb_size_ptr); |
| } |
| } |
| #else |
| #define check_cpu_slb_size(node) do { } while(0) |
| #endif |
| |
| static struct feature_property { |
| const char *name; |
| u32 min_value; |
| unsigned long cpu_feature; |
| unsigned long cpu_user_ftr; |
| } feature_properties[] __initdata = { |
| #ifdef CONFIG_ALTIVEC |
| {"altivec", 0, CPU_FTR_ALTIVEC, PPC_FEATURE_HAS_ALTIVEC}, |
| {"ibm,vmx", 1, CPU_FTR_ALTIVEC, PPC_FEATURE_HAS_ALTIVEC}, |
| #endif /* CONFIG_ALTIVEC */ |
| #ifdef CONFIG_VSX |
| /* Yes, this _really_ is ibm,vmx == 2 to enable VSX */ |
| {"ibm,vmx", 2, CPU_FTR_VSX, PPC_FEATURE_HAS_VSX}, |
| #endif /* CONFIG_VSX */ |
| #ifdef CONFIG_PPC64 |
| {"ibm,dfp", 1, 0, PPC_FEATURE_HAS_DFP}, |
| {"ibm,purr", 1, CPU_FTR_PURR, 0}, |
| {"ibm,spurr", 1, CPU_FTR_SPURR, 0}, |
| #endif /* CONFIG_PPC64 */ |
| }; |
| |
| #if defined(CONFIG_44x) && defined(CONFIG_PPC_FPU) |
| static inline void identical_pvr_fixup(unsigned long node) |
| { |
| unsigned int pvr; |
| const char *model = of_get_flat_dt_prop(node, "model", NULL); |
| |
| /* |
| * Since 440GR(x)/440EP(x) processors have the same pvr, |
| * we check the node path and set bit 28 in the cur_cpu_spec |
| * pvr for EP(x) processor version. This bit is always 0 in |
| * the "real" pvr. Then we call identify_cpu again with |
| * the new logical pvr to enable FPU support. |
| */ |
| if (model && strstr(model, "440EP")) { |
| pvr = cur_cpu_spec->pvr_value | 0x8; |
| identify_cpu(0, pvr); |
| DBG("Using logical pvr %x for %s\n", pvr, model); |
| } |
| } |
| #else |
| #define identical_pvr_fixup(node) do { } while(0) |
| #endif |
| |
| static void __init check_cpu_feature_properties(unsigned long node) |
| { |
| unsigned long i; |
| struct feature_property *fp = feature_properties; |
| const __be32 *prop; |
| |
| for (i = 0; i < ARRAY_SIZE(feature_properties); ++i, ++fp) { |
| prop = of_get_flat_dt_prop(node, fp->name, NULL); |
| if (prop && be32_to_cpup(prop) >= fp->min_value) { |
| cur_cpu_spec->cpu_features |= fp->cpu_feature; |
| cur_cpu_spec->cpu_user_features |= fp->cpu_user_ftr; |
| } |
| } |
| } |
| |
| static int __init early_init_dt_scan_cpus(unsigned long node, |
| const char *uname, int depth, |
| void *data) |
| { |
| const char *type = of_get_flat_dt_prop(node, "device_type", NULL); |
| const __be32 *prop; |
| const __be32 *intserv; |
| int i, nthreads; |
| int len; |
| int found = -1; |
| int found_thread = 0; |
| |
| /* We are scanning "cpu" nodes only */ |
| if (type == NULL || strcmp(type, "cpu") != 0) |
| return 0; |
| |
| /* Get physical cpuid */ |
| intserv = of_get_flat_dt_prop(node, "ibm,ppc-interrupt-server#s", &len); |
| if (!intserv) |
| intserv = of_get_flat_dt_prop(node, "reg", &len); |
| |
| nthreads = len / sizeof(int); |
| |
| /* |
| * Now see if any of these threads match our boot cpu. |
| * NOTE: This must match the parsing done in smp_setup_cpu_maps. |
| */ |
| for (i = 0; i < nthreads; i++) { |
| /* |
| * version 2 of the kexec param format adds the phys cpuid of |
| * booted proc. |
| */ |
| if (fdt_version(initial_boot_params) >= 2) { |
| if (be32_to_cpu(intserv[i]) == |
| fdt_boot_cpuid_phys(initial_boot_params)) { |
| found = boot_cpu_count; |
| found_thread = i; |
| } |
| } else { |
| /* |
| * Check if it's the boot-cpu, set it's hw index now, |
| * unfortunately this format did not support booting |
| * off secondary threads. |
| */ |
| if (of_get_flat_dt_prop(node, |
| "linux,boot-cpu", NULL) != NULL) |
| found = boot_cpu_count; |
| } |
| #ifdef CONFIG_SMP |
| /* logical cpu id is always 0 on UP kernels */ |
| boot_cpu_count++; |
| #endif |
| } |
| |
| /* Not the boot CPU */ |
| if (found < 0) |
| return 0; |
| |
| DBG("boot cpu: logical %d physical %d\n", found, |
| be32_to_cpu(intserv[found_thread])); |
| boot_cpuid = found; |
| set_hard_smp_processor_id(found, be32_to_cpu(intserv[found_thread])); |
| |
| /* |
| * PAPR defines "logical" PVR values for cpus that |
| * meet various levels of the architecture: |
| * 0x0f000001 Architecture version 2.04 |
| * 0x0f000002 Architecture version 2.05 |
| * If the cpu-version property in the cpu node contains |
| * such a value, we call identify_cpu again with the |
| * logical PVR value in order to use the cpu feature |
| * bits appropriate for the architecture level. |
| * |
| * A POWER6 partition in "POWER6 architected" mode |
| * uses the 0x0f000002 PVR value; in POWER5+ mode |
| * it uses 0x0f000001. |
| */ |
| prop = of_get_flat_dt_prop(node, "cpu-version", NULL); |
| if (prop && (be32_to_cpup(prop) & 0xff000000) == 0x0f000000) |
| identify_cpu(0, be32_to_cpup(prop)); |
| |
| identical_pvr_fixup(node); |
| |
| check_cpu_feature_properties(node); |
| check_cpu_pa_features(node); |
| check_cpu_slb_size(node); |
| |
| #ifdef CONFIG_PPC64 |
| if (nthreads > 1) |
| cur_cpu_spec->cpu_features |= CPU_FTR_SMT; |
| else |
| cur_cpu_spec->cpu_features &= ~CPU_FTR_SMT; |
| #endif |
| return 0; |
| } |
| |
| int __init early_init_dt_scan_chosen_ppc(unsigned long node, const char *uname, |
| int depth, void *data) |
| { |
| const unsigned long *lprop; /* All these set by kernel, so no need to convert endian */ |
| |
| /* Use common scan routine to determine if this is the chosen node */ |
| if (early_init_dt_scan_chosen(node, uname, depth, data) == 0) |
| return 0; |
| |
| #ifdef CONFIG_PPC64 |
| /* check if iommu is forced on or off */ |
| if (of_get_flat_dt_prop(node, "linux,iommu-off", NULL) != NULL) |
| iommu_is_off = 1; |
| if (of_get_flat_dt_prop(node, "linux,iommu-force-on", NULL) != NULL) |
| iommu_force_on = 1; |
| #endif |
| |
| /* mem=x on the command line is the preferred mechanism */ |
| lprop = of_get_flat_dt_prop(node, "linux,memory-limit", NULL); |
| if (lprop) |
| memory_limit = *lprop; |
| |
| #ifdef CONFIG_PPC64 |
| lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-start", NULL); |
| if (lprop) |
| tce_alloc_start = *lprop; |
| lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-end", NULL); |
| if (lprop) |
| tce_alloc_end = *lprop; |
| #endif |
| |
| #ifdef CONFIG_KEXEC |
| lprop = of_get_flat_dt_prop(node, "linux,crashkernel-base", NULL); |
| if (lprop) |
| crashk_res.start = *lprop; |
| |
| lprop = of_get_flat_dt_prop(node, "linux,crashkernel-size", NULL); |
| if (lprop) |
| crashk_res.end = crashk_res.start + *lprop - 1; |
| #endif |
| |
| /* break now */ |
| return 1; |
| } |
| |
| #ifdef CONFIG_PPC_PSERIES |
| /* |
| * Interpret the ibm,dynamic-memory property in the |
| * /ibm,dynamic-reconfiguration-memory node. |
| * This contains a list of memory blocks along with NUMA affinity |
| * information. |
| */ |
| static int __init early_init_dt_scan_drconf_memory(unsigned long node) |
| { |
| const __be32 *dm, *ls, *usm; |
| int l; |
| unsigned long n, flags; |
| u64 base, size, memblock_size; |
| unsigned int is_kexec_kdump = 0, rngs; |
| |
| ls = of_get_flat_dt_prop(node, "ibm,lmb-size", &l); |
| if (ls == NULL || l < dt_root_size_cells * sizeof(__be32)) |
| return 0; |
| memblock_size = dt_mem_next_cell(dt_root_size_cells, &ls); |
| |
| dm = of_get_flat_dt_prop(node, "ibm,dynamic-memory", &l); |
| if (dm == NULL || l < sizeof(__be32)) |
| return 0; |
| |
| n = of_read_number(dm++, 1); /* number of entries */ |
| if (l < (n * (dt_root_addr_cells + 4) + 1) * sizeof(__be32)) |
| return 0; |
| |
| /* check if this is a kexec/kdump kernel. */ |
| usm = of_get_flat_dt_prop(node, "linux,drconf-usable-memory", |
| &l); |
| if (usm != NULL) |
| is_kexec_kdump = 1; |
| |
| for (; n != 0; --n) { |
| base = dt_mem_next_cell(dt_root_addr_cells, &dm); |
| flags = of_read_number(&dm[3], 1); |
| /* skip DRC index, pad, assoc. list index, flags */ |
| dm += 4; |
| /* skip this block if the reserved bit is set in flags (0x80) |
| or if the block is not assigned to this partition (0x8) */ |
| if ((flags & 0x80) || !(flags & 0x8)) |
| continue; |
| size = memblock_size; |
| rngs = 1; |
| if (is_kexec_kdump) { |
| /* |
| * For each memblock in ibm,dynamic-memory, a corresponding |
| * entry in linux,drconf-usable-memory property contains |
| * a counter 'p' followed by 'p' (base, size) duple. |
| * Now read the counter from |
| * linux,drconf-usable-memory property |
| */ |
| rngs = dt_mem_next_cell(dt_root_size_cells, &usm); |
| if (!rngs) /* there are no (base, size) duple */ |
| continue; |
| } |
| do { |
| if (is_kexec_kdump) { |
| base = dt_mem_next_cell(dt_root_addr_cells, |
| &usm); |
| size = dt_mem_next_cell(dt_root_size_cells, |
| &usm); |
| } |
| if (iommu_is_off) { |
| if (base >= 0x80000000ul) |
| continue; |
| if ((base + size) > 0x80000000ul) |
| size = 0x80000000ul - base; |
| } |
| memblock_add(base, size); |
| } while (--rngs); |
| } |
| memblock_dump_all(); |
| return 0; |
| } |
| #else |
| #define early_init_dt_scan_drconf_memory(node) 0 |
| #endif /* CONFIG_PPC_PSERIES */ |
| |
| static int __init early_init_dt_scan_memory_ppc(unsigned long node, |
| const char *uname, |
| int depth, void *data) |
| { |
| if (depth == 1 && |
| strcmp(uname, "ibm,dynamic-reconfiguration-memory") == 0) |
| return early_init_dt_scan_drconf_memory(node); |
| |
| return early_init_dt_scan_memory(node, uname, depth, data); |
| } |
| |
| /* |
| * For a relocatable kernel, we need to get the memstart_addr first, |
| * then use it to calculate the virtual kernel start address. This has |
| * to happen at a very early stage (before machine_init). In this case, |
| * we just want to get the memstart_address and would not like to mess the |
| * memblock at this stage. So introduce a variable to skip the memblock_add() |
| * for this reason. |
| */ |
| #ifdef CONFIG_RELOCATABLE |
| static int add_mem_to_memblock = 1; |
| #else |
| #define add_mem_to_memblock 1 |
| #endif |
| |
| void __init early_init_dt_add_memory_arch(u64 base, u64 size) |
| { |
| #ifdef CONFIG_PPC64 |
| if (iommu_is_off) { |
| if (base >= 0x80000000ul) |
| return; |
| if ((base + size) > 0x80000000ul) |
| size = 0x80000000ul - base; |
| } |
| #endif |
| /* Keep track of the beginning of memory -and- the size of |
| * the very first block in the device-tree as it represents |
| * the RMA on ppc64 server |
| */ |
| if (base < memstart_addr) { |
| memstart_addr = base; |
| first_memblock_size = size; |
| } |
| |
| /* Add the chunk to the MEMBLOCK list */ |
| if (add_mem_to_memblock) |
| memblock_add(base, size); |
| } |
| |
| static void __init early_reserve_mem_dt(void) |
| { |
| unsigned long i, dt_root; |
| int len; |
| const __be32 *prop; |
| |
| early_init_fdt_scan_reserved_mem(); |
| |
| dt_root = of_get_flat_dt_root(); |
| |
| prop = of_get_flat_dt_prop(dt_root, "reserved-ranges", &len); |
| |
| if (!prop) |
| return; |
| |
| DBG("Found new-style reserved-ranges\n"); |
| |
| /* Each reserved range is an (address,size) pair, 2 cells each, |
| * totalling 4 cells per range. */ |
| for (i = 0; i < len / (sizeof(*prop) * 4); i++) { |
| u64 base, size; |
| |
| base = of_read_number(prop + (i * 4) + 0, 2); |
| size = of_read_number(prop + (i * 4) + 2, 2); |
| |
| if (size) { |
| DBG("reserving: %llx -> %llx\n", base, size); |
| memblock_reserve(base, size); |
| } |
| } |
| } |
| |
| static void __init early_reserve_mem(void) |
| { |
| __be64 *reserve_map; |
| |
| reserve_map = (__be64 *)(((unsigned long)initial_boot_params) + |
| fdt_off_mem_rsvmap(initial_boot_params)); |
| |
| /* Look for the new "reserved-regions" property in the DT */ |
| early_reserve_mem_dt(); |
| |
| #ifdef CONFIG_BLK_DEV_INITRD |
| /* Then reserve the initrd, if any */ |
| if (initrd_start && (initrd_end > initrd_start)) { |
| memblock_reserve(_ALIGN_DOWN(__pa(initrd_start), PAGE_SIZE), |
| _ALIGN_UP(initrd_end, PAGE_SIZE) - |
| _ALIGN_DOWN(initrd_start, PAGE_SIZE)); |
| } |
| #endif /* CONFIG_BLK_DEV_INITRD */ |
| |
| #ifdef CONFIG_PPC32 |
| /* |
| * Handle the case where we might be booting from an old kexec |
| * image that setup the mem_rsvmap as pairs of 32-bit values |
| */ |
| if (be64_to_cpup(reserve_map) > 0xffffffffull) { |
| u32 base_32, size_32; |
| __be32 *reserve_map_32 = (__be32 *)reserve_map; |
| |
| DBG("Found old 32-bit reserve map\n"); |
| |
| while (1) { |
| base_32 = be32_to_cpup(reserve_map_32++); |
| size_32 = be32_to_cpup(reserve_map_32++); |
| if (size_32 == 0) |
| break; |
| DBG("reserving: %x -> %x\n", base_32, size_32); |
| memblock_reserve(base_32, size_32); |
| } |
| return; |
| } |
| #endif |
| } |
| |
| void __init early_init_devtree(void *params) |
| { |
| phys_addr_t limit; |
| |
| DBG(" -> early_init_devtree(%p)\n", params); |
| |
| /* Setup flat device-tree pointer */ |
| initial_boot_params = params; |
| |
| #ifdef CONFIG_PPC_RTAS |
| /* Some machines might need RTAS info for debugging, grab it now. */ |
| of_scan_flat_dt(early_init_dt_scan_rtas, NULL); |
| #endif |
| |
| #ifdef CONFIG_PPC_POWERNV |
| /* Some machines might need OPAL info for debugging, grab it now. */ |
| of_scan_flat_dt(early_init_dt_scan_opal, NULL); |
| #endif |
| |
| #ifdef CONFIG_FA_DUMP |
| /* scan tree to see if dump is active during last boot */ |
| of_scan_flat_dt(early_init_dt_scan_fw_dump, NULL); |
| #endif |
| |
| /* Retrieve various informations from the /chosen node of the |
| * device-tree, including the platform type, initrd location and |
| * size, TCE reserve, and more ... |
| */ |
| of_scan_flat_dt(early_init_dt_scan_chosen_ppc, cmd_line); |
| |
| /* Scan memory nodes and rebuild MEMBLOCKs */ |
| of_scan_flat_dt(early_init_dt_scan_root, NULL); |
| of_scan_flat_dt(early_init_dt_scan_memory_ppc, NULL); |
| |
| /* Save command line for /proc/cmdline and then parse parameters */ |
| strlcpy(boot_command_line, cmd_line, COMMAND_LINE_SIZE); |
| parse_early_param(); |
| |
| /* make sure we've parsed cmdline for mem= before this */ |
| if (memory_limit) |
| first_memblock_size = min_t(u64, first_memblock_size, memory_limit); |
| setup_initial_memory_limit(memstart_addr, first_memblock_size); |
| /* Reserve MEMBLOCK regions used by kernel, initrd, dt, etc... */ |
| memblock_reserve(PHYSICAL_START, __pa(klimit) - PHYSICAL_START); |
| /* If relocatable, reserve first 32k for interrupt vectors etc. */ |
| if (PHYSICAL_START > MEMORY_START) |
| memblock_reserve(MEMORY_START, 0x8000); |
| reserve_kdump_trampoline(); |
| #ifdef CONFIG_FA_DUMP |
| /* |
| * If we fail to reserve memory for firmware-assisted dump then |
| * fallback to kexec based kdump. |
| */ |
| if (fadump_reserve_mem() == 0) |
| #endif |
| reserve_crashkernel(); |
| early_reserve_mem(); |
| |
| /* |
| * Ensure that total memory size is page-aligned, because otherwise |
| * mark_bootmem() gets upset. |
| */ |
| limit = ALIGN(memory_limit ?: memblock_phys_mem_size(), PAGE_SIZE); |
| memblock_enforce_memory_limit(limit); |
| |
| memblock_allow_resize(); |
| memblock_dump_all(); |
| |
| DBG("Phys. mem: %llx\n", memblock_phys_mem_size()); |
| |
| /* We may need to relocate the flat tree, do it now. |
| * FIXME .. and the initrd too? */ |
| move_device_tree(); |
| |
| allocate_pacas(); |
| |
| DBG("Scanning CPUs ...\n"); |
| |
| /* Retrieve CPU related informations from the flat tree |
| * (altivec support, boot CPU ID, ...) |
| */ |
| of_scan_flat_dt(early_init_dt_scan_cpus, NULL); |
| if (boot_cpuid < 0) { |
| printk("Failed to indentify boot CPU !\n"); |
| BUG(); |
| } |
| |
| #if defined(CONFIG_SMP) && defined(CONFIG_PPC64) |
| /* We'll later wait for secondaries to check in; there are |
| * NCPUS-1 non-boot CPUs :-) |
| */ |
| spinning_secondaries = boot_cpu_count - 1; |
| #endif |
| |
| #ifdef CONFIG_PPC_POWERNV |
| /* Scan and build the list of machine check recoverable ranges */ |
| of_scan_flat_dt(early_init_dt_scan_recoverable_ranges, NULL); |
| #endif |
| |
| DBG(" <- early_init_devtree()\n"); |
| } |
| |
| #ifdef CONFIG_RELOCATABLE |
| /* |
| * This function run before early_init_devtree, so we have to init |
| * initial_boot_params. |
| */ |
| void __init early_get_first_memblock_info(void *params, phys_addr_t *size) |
| { |
| /* Setup flat device-tree pointer */ |
| initial_boot_params = params; |
| |
| /* |
| * Scan the memory nodes and set add_mem_to_memblock to 0 to avoid |
| * mess the memblock. |
| */ |
| add_mem_to_memblock = 0; |
| of_scan_flat_dt(early_init_dt_scan_root, NULL); |
| of_scan_flat_dt(early_init_dt_scan_memory_ppc, NULL); |
| add_mem_to_memblock = 1; |
| |
| if (size) |
| *size = first_memblock_size; |
| } |
| #endif |
| |
| /******* |
| * |
| * New implementation of the OF "find" APIs, return a refcounted |
| * object, call of_node_put() when done. The device tree and list |
| * are protected by a rw_lock. |
| * |
| * Note that property management will need some locking as well, |
| * this isn't dealt with yet. |
| * |
| *******/ |
| |
| /** |
| * of_get_ibm_chip_id - Returns the IBM "chip-id" of a device |
| * @np: device node of the device |
| * |
| * This looks for a property "ibm,chip-id" in the node or any |
| * of its parents and returns its content, or -1 if it cannot |
| * be found. |
| */ |
| int of_get_ibm_chip_id(struct device_node *np) |
| { |
| of_node_get(np); |
| while(np) { |
| struct device_node *old = np; |
| const __be32 *prop; |
| |
| prop = of_get_property(np, "ibm,chip-id", NULL); |
| if (prop) { |
| of_node_put(np); |
| return be32_to_cpup(prop); |
| } |
| np = of_get_parent(np); |
| of_node_put(old); |
| } |
| return -1; |
| } |
| |
| /** |
| * cpu_to_chip_id - Return the cpus chip-id |
| * @cpu: The logical cpu number. |
| * |
| * Return the value of the ibm,chip-id property corresponding to the given |
| * logical cpu number. If the chip-id can not be found, returns -1. |
| */ |
| int cpu_to_chip_id(int cpu) |
| { |
| struct device_node *np; |
| |
| np = of_get_cpu_node(cpu, NULL); |
| if (!np) |
| return -1; |
| |
| of_node_put(np); |
| return of_get_ibm_chip_id(np); |
| } |
| EXPORT_SYMBOL(cpu_to_chip_id); |
| |
| bool arch_match_cpu_phys_id(int cpu, u64 phys_id) |
| { |
| return (int)phys_id == get_hard_smp_processor_id(cpu); |
| } |