| /* |
| * IDE I/O functions |
| * |
| * Basic PIO and command management functionality. |
| * |
| * This code was split off from ide.c. See ide.c for history and original |
| * copyrights. |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License as published by the |
| * Free Software Foundation; either version 2, or (at your option) any |
| * later version. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| * |
| * For the avoidance of doubt the "preferred form" of this code is one which |
| * is in an open non patent encumbered format. Where cryptographic key signing |
| * forms part of the process of creating an executable the information |
| * including keys needed to generate an equivalently functional executable |
| * are deemed to be part of the source code. |
| */ |
| |
| |
| #include <linux/module.h> |
| #include <linux/types.h> |
| #include <linux/string.h> |
| #include <linux/kernel.h> |
| #include <linux/timer.h> |
| #include <linux/mm.h> |
| #include <linux/interrupt.h> |
| #include <linux/major.h> |
| #include <linux/errno.h> |
| #include <linux/genhd.h> |
| #include <linux/blkpg.h> |
| #include <linux/slab.h> |
| #include <linux/init.h> |
| #include <linux/pci.h> |
| #include <linux/delay.h> |
| #include <linux/ide.h> |
| #include <linux/completion.h> |
| #include <linux/reboot.h> |
| #include <linux/cdrom.h> |
| #include <linux/seq_file.h> |
| #include <linux/device.h> |
| #include <linux/kmod.h> |
| #include <linux/scatterlist.h> |
| #include <linux/bitops.h> |
| |
| #include <asm/byteorder.h> |
| #include <asm/irq.h> |
| #include <asm/uaccess.h> |
| #include <asm/io.h> |
| |
| static int __ide_end_request(ide_drive_t *drive, struct request *rq, |
| int uptodate, unsigned int nr_bytes, int dequeue) |
| { |
| int ret = 1; |
| int error = 0; |
| |
| if (uptodate <= 0) |
| error = uptodate ? uptodate : -EIO; |
| |
| /* |
| * if failfast is set on a request, override number of sectors and |
| * complete the whole request right now |
| */ |
| if (blk_noretry_request(rq) && error) |
| nr_bytes = rq->hard_nr_sectors << 9; |
| |
| if (!blk_fs_request(rq) && error && !rq->errors) |
| rq->errors = -EIO; |
| |
| /* |
| * decide whether to reenable DMA -- 3 is a random magic for now, |
| * if we DMA timeout more than 3 times, just stay in PIO |
| */ |
| if ((drive->dev_flags & IDE_DFLAG_DMA_PIO_RETRY) && |
| drive->retry_pio <= 3) { |
| drive->dev_flags &= ~IDE_DFLAG_DMA_PIO_RETRY; |
| ide_dma_on(drive); |
| } |
| |
| if (!blk_end_request(rq, error, nr_bytes)) |
| ret = 0; |
| |
| if (ret == 0 && dequeue) |
| drive->hwif->rq = NULL; |
| |
| return ret; |
| } |
| |
| /** |
| * ide_end_request - complete an IDE I/O |
| * @drive: IDE device for the I/O |
| * @uptodate: |
| * @nr_sectors: number of sectors completed |
| * |
| * This is our end_request wrapper function. We complete the I/O |
| * update random number input and dequeue the request, which if |
| * it was tagged may be out of order. |
| */ |
| |
| int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors) |
| { |
| unsigned int nr_bytes = nr_sectors << 9; |
| struct request *rq = drive->hwif->rq; |
| |
| if (!nr_bytes) { |
| if (blk_pc_request(rq)) |
| nr_bytes = rq->data_len; |
| else |
| nr_bytes = rq->hard_cur_sectors << 9; |
| } |
| |
| return __ide_end_request(drive, rq, uptodate, nr_bytes, 1); |
| } |
| EXPORT_SYMBOL(ide_end_request); |
| |
| /** |
| * ide_end_dequeued_request - complete an IDE I/O |
| * @drive: IDE device for the I/O |
| * @uptodate: |
| * @nr_sectors: number of sectors completed |
| * |
| * Complete an I/O that is no longer on the request queue. This |
| * typically occurs when we pull the request and issue a REQUEST_SENSE. |
| * We must still finish the old request but we must not tamper with the |
| * queue in the meantime. |
| * |
| * NOTE: This path does not handle barrier, but barrier is not supported |
| * on ide-cd anyway. |
| */ |
| |
| int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq, |
| int uptodate, int nr_sectors) |
| { |
| BUG_ON(!blk_rq_started(rq)); |
| |
| return __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0); |
| } |
| EXPORT_SYMBOL_GPL(ide_end_dequeued_request); |
| |
| void ide_complete_cmd(ide_drive_t *drive, struct ide_cmd *cmd, u8 stat, u8 err) |
| { |
| struct ide_taskfile *tf = &cmd->tf; |
| struct request *rq = cmd->rq; |
| |
| tf->error = err; |
| tf->status = stat; |
| |
| drive->hwif->tp_ops->tf_read(drive, cmd); |
| |
| if (rq && rq->cmd_type == REQ_TYPE_ATA_TASKFILE) |
| memcpy(rq->special, cmd, sizeof(*cmd)); |
| |
| if (cmd->tf_flags & IDE_TFLAG_DYN) |
| kfree(cmd); |
| } |
| |
| void ide_complete_rq(ide_drive_t *drive, u8 err) |
| { |
| ide_hwif_t *hwif = drive->hwif; |
| struct request *rq = hwif->rq; |
| |
| hwif->rq = NULL; |
| |
| rq->errors = err; |
| |
| if (unlikely(blk_end_request(rq, (rq->errors ? -EIO : 0), |
| blk_rq_bytes(rq)))) |
| BUG(); |
| } |
| EXPORT_SYMBOL(ide_complete_rq); |
| |
| void ide_kill_rq(ide_drive_t *drive, struct request *rq) |
| { |
| u8 drv_req = blk_special_request(rq) && rq->rq_disk; |
| u8 media = drive->media; |
| |
| drive->failed_pc = NULL; |
| |
| if ((media == ide_floppy && drv_req) || media == ide_tape) |
| rq->errors = IDE_DRV_ERROR_GENERAL; |
| |
| if ((media == ide_floppy || media == ide_tape) && drv_req) |
| ide_complete_rq(drive, 0); |
| else |
| ide_end_request(drive, 0, 0); |
| } |
| |
| static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf) |
| { |
| tf->nsect = drive->sect; |
| tf->lbal = drive->sect; |
| tf->lbam = drive->cyl; |
| tf->lbah = drive->cyl >> 8; |
| tf->device = (drive->head - 1) | drive->select; |
| tf->command = ATA_CMD_INIT_DEV_PARAMS; |
| } |
| |
| static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf) |
| { |
| tf->nsect = drive->sect; |
| tf->command = ATA_CMD_RESTORE; |
| } |
| |
| static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf) |
| { |
| tf->nsect = drive->mult_req; |
| tf->command = ATA_CMD_SET_MULTI; |
| } |
| |
| static ide_startstop_t ide_disk_special(ide_drive_t *drive) |
| { |
| special_t *s = &drive->special; |
| struct ide_cmd cmd; |
| |
| memset(&cmd, 0, sizeof(cmd)); |
| cmd.protocol = ATA_PROT_NODATA; |
| |
| if (s->b.set_geometry) { |
| s->b.set_geometry = 0; |
| ide_tf_set_specify_cmd(drive, &cmd.tf); |
| } else if (s->b.recalibrate) { |
| s->b.recalibrate = 0; |
| ide_tf_set_restore_cmd(drive, &cmd.tf); |
| } else if (s->b.set_multmode) { |
| s->b.set_multmode = 0; |
| ide_tf_set_setmult_cmd(drive, &cmd.tf); |
| } else if (s->all) { |
| int special = s->all; |
| s->all = 0; |
| printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special); |
| return ide_stopped; |
| } |
| |
| cmd.tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE | |
| IDE_TFLAG_CUSTOM_HANDLER; |
| |
| do_rw_taskfile(drive, &cmd); |
| |
| return ide_started; |
| } |
| |
| /** |
| * do_special - issue some special commands |
| * @drive: drive the command is for |
| * |
| * do_special() is used to issue ATA_CMD_INIT_DEV_PARAMS, |
| * ATA_CMD_RESTORE and ATA_CMD_SET_MULTI commands to a drive. |
| * |
| * It used to do much more, but has been scaled back. |
| */ |
| |
| static ide_startstop_t do_special (ide_drive_t *drive) |
| { |
| special_t *s = &drive->special; |
| |
| #ifdef DEBUG |
| printk("%s: do_special: 0x%02x\n", drive->name, s->all); |
| #endif |
| if (drive->media == ide_disk) |
| return ide_disk_special(drive); |
| |
| s->all = 0; |
| drive->mult_req = 0; |
| return ide_stopped; |
| } |
| |
| void ide_map_sg(ide_drive_t *drive, struct request *rq) |
| { |
| ide_hwif_t *hwif = drive->hwif; |
| struct ide_cmd *cmd = &hwif->cmd; |
| struct scatterlist *sg = hwif->sg_table; |
| |
| if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) { |
| sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE); |
| cmd->sg_nents = 1; |
| } else if (!rq->bio) { |
| sg_init_one(sg, rq->data, rq->data_len); |
| cmd->sg_nents = 1; |
| } else |
| cmd->sg_nents = blk_rq_map_sg(drive->queue, rq, sg); |
| } |
| EXPORT_SYMBOL_GPL(ide_map_sg); |
| |
| void ide_init_sg_cmd(struct ide_cmd *cmd, int nsect) |
| { |
| cmd->nsect = cmd->nleft = nsect; |
| cmd->cursg_ofs = 0; |
| cmd->cursg = NULL; |
| } |
| EXPORT_SYMBOL_GPL(ide_init_sg_cmd); |
| |
| /** |
| * execute_drive_command - issue special drive command |
| * @drive: the drive to issue the command on |
| * @rq: the request structure holding the command |
| * |
| * execute_drive_cmd() issues a special drive command, usually |
| * initiated by ioctl() from the external hdparm program. The |
| * command can be a drive command, drive task or taskfile |
| * operation. Weirdly you can call it with NULL to wait for |
| * all commands to finish. Don't do this as that is due to change |
| */ |
| |
| static ide_startstop_t execute_drive_cmd (ide_drive_t *drive, |
| struct request *rq) |
| { |
| struct ide_cmd *cmd = rq->special; |
| |
| if (cmd) { |
| if (cmd->protocol == ATA_PROT_PIO) { |
| ide_init_sg_cmd(cmd, rq->nr_sectors); |
| ide_map_sg(drive, rq); |
| } |
| |
| return do_rw_taskfile(drive, cmd); |
| } |
| |
| /* |
| * NULL is actually a valid way of waiting for |
| * all current requests to be flushed from the queue. |
| */ |
| #ifdef DEBUG |
| printk("%s: DRIVE_CMD (null)\n", drive->name); |
| #endif |
| ide_complete_rq(drive, 0); |
| |
| return ide_stopped; |
| } |
| |
| static ide_startstop_t ide_special_rq(ide_drive_t *drive, struct request *rq) |
| { |
| u8 cmd = rq->cmd[0]; |
| |
| switch (cmd) { |
| case REQ_PARK_HEADS: |
| case REQ_UNPARK_HEADS: |
| return ide_do_park_unpark(drive, rq); |
| case REQ_DEVSET_EXEC: |
| return ide_do_devset(drive, rq); |
| case REQ_DRIVE_RESET: |
| return ide_do_reset(drive); |
| default: |
| blk_dump_rq_flags(rq, "ide_special_rq - bad request"); |
| ide_end_request(drive, 0, 0); |
| return ide_stopped; |
| } |
| } |
| |
| /** |
| * start_request - start of I/O and command issuing for IDE |
| * |
| * start_request() initiates handling of a new I/O request. It |
| * accepts commands and I/O (read/write) requests. |
| * |
| * FIXME: this function needs a rename |
| */ |
| |
| static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq) |
| { |
| ide_startstop_t startstop; |
| |
| BUG_ON(!blk_rq_started(rq)); |
| |
| #ifdef DEBUG |
| printk("%s: start_request: current=0x%08lx\n", |
| drive->hwif->name, (unsigned long) rq); |
| #endif |
| |
| /* bail early if we've exceeded max_failures */ |
| if (drive->max_failures && (drive->failures > drive->max_failures)) { |
| rq->cmd_flags |= REQ_FAILED; |
| goto kill_rq; |
| } |
| |
| if (blk_pm_request(rq)) |
| ide_check_pm_state(drive, rq); |
| |
| SELECT_DRIVE(drive); |
| if (ide_wait_stat(&startstop, drive, drive->ready_stat, |
| ATA_BUSY | ATA_DRQ, WAIT_READY)) { |
| printk(KERN_ERR "%s: drive not ready for command\n", drive->name); |
| return startstop; |
| } |
| if (!drive->special.all) { |
| struct ide_driver *drv; |
| |
| /* |
| * We reset the drive so we need to issue a SETFEATURES. |
| * Do it _after_ do_special() restored device parameters. |
| */ |
| if (drive->current_speed == 0xff) |
| ide_config_drive_speed(drive, drive->desired_speed); |
| |
| if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) |
| return execute_drive_cmd(drive, rq); |
| else if (blk_pm_request(rq)) { |
| struct request_pm_state *pm = rq->data; |
| #ifdef DEBUG_PM |
| printk("%s: start_power_step(step: %d)\n", |
| drive->name, pm->pm_step); |
| #endif |
| startstop = ide_start_power_step(drive, rq); |
| if (startstop == ide_stopped && |
| pm->pm_step == IDE_PM_COMPLETED) |
| ide_complete_pm_rq(drive, rq); |
| return startstop; |
| } else if (!rq->rq_disk && blk_special_request(rq)) |
| /* |
| * TODO: Once all ULDs have been modified to |
| * check for specific op codes rather than |
| * blindly accepting any special request, the |
| * check for ->rq_disk above may be replaced |
| * by a more suitable mechanism or even |
| * dropped entirely. |
| */ |
| return ide_special_rq(drive, rq); |
| |
| drv = *(struct ide_driver **)rq->rq_disk->private_data; |
| |
| return drv->do_request(drive, rq, rq->sector); |
| } |
| return do_special(drive); |
| kill_rq: |
| ide_kill_rq(drive, rq); |
| return ide_stopped; |
| } |
| |
| /** |
| * ide_stall_queue - pause an IDE device |
| * @drive: drive to stall |
| * @timeout: time to stall for (jiffies) |
| * |
| * ide_stall_queue() can be used by a drive to give excess bandwidth back |
| * to the port by sleeping for timeout jiffies. |
| */ |
| |
| void ide_stall_queue (ide_drive_t *drive, unsigned long timeout) |
| { |
| if (timeout > WAIT_WORSTCASE) |
| timeout = WAIT_WORSTCASE; |
| drive->sleep = timeout + jiffies; |
| drive->dev_flags |= IDE_DFLAG_SLEEPING; |
| } |
| EXPORT_SYMBOL(ide_stall_queue); |
| |
| static inline int ide_lock_port(ide_hwif_t *hwif) |
| { |
| if (hwif->busy) |
| return 1; |
| |
| hwif->busy = 1; |
| |
| return 0; |
| } |
| |
| static inline void ide_unlock_port(ide_hwif_t *hwif) |
| { |
| hwif->busy = 0; |
| } |
| |
| static inline int ide_lock_host(struct ide_host *host, ide_hwif_t *hwif) |
| { |
| int rc = 0; |
| |
| if (host->host_flags & IDE_HFLAG_SERIALIZE) { |
| rc = test_and_set_bit_lock(IDE_HOST_BUSY, &host->host_busy); |
| if (rc == 0) { |
| if (host->get_lock) |
| host->get_lock(ide_intr, hwif); |
| } |
| } |
| return rc; |
| } |
| |
| static inline void ide_unlock_host(struct ide_host *host) |
| { |
| if (host->host_flags & IDE_HFLAG_SERIALIZE) { |
| if (host->release_lock) |
| host->release_lock(); |
| clear_bit_unlock(IDE_HOST_BUSY, &host->host_busy); |
| } |
| } |
| |
| /* |
| * Issue a new request to a device. |
| */ |
| void do_ide_request(struct request_queue *q) |
| { |
| ide_drive_t *drive = q->queuedata; |
| ide_hwif_t *hwif = drive->hwif; |
| struct ide_host *host = hwif->host; |
| struct request *rq = NULL; |
| ide_startstop_t startstop; |
| |
| /* |
| * drive is doing pre-flush, ordered write, post-flush sequence. even |
| * though that is 3 requests, it must be seen as a single transaction. |
| * we must not preempt this drive until that is complete |
| */ |
| if (blk_queue_flushing(q)) |
| /* |
| * small race where queue could get replugged during |
| * the 3-request flush cycle, just yank the plug since |
| * we want it to finish asap |
| */ |
| blk_remove_plug(q); |
| |
| spin_unlock_irq(q->queue_lock); |
| |
| if (ide_lock_host(host, hwif)) |
| goto plug_device_2; |
| |
| spin_lock_irq(&hwif->lock); |
| |
| if (!ide_lock_port(hwif)) { |
| ide_hwif_t *prev_port; |
| repeat: |
| prev_port = hwif->host->cur_port; |
| hwif->rq = NULL; |
| |
| if (drive->dev_flags & IDE_DFLAG_SLEEPING) { |
| if (time_before(drive->sleep, jiffies)) { |
| ide_unlock_port(hwif); |
| goto plug_device; |
| } |
| } |
| |
| if ((hwif->host->host_flags & IDE_HFLAG_SERIALIZE) && |
| hwif != prev_port) { |
| /* |
| * set nIEN for previous port, drives in the |
| * quirk_list may not like intr setups/cleanups |
| */ |
| if (prev_port && prev_port->cur_dev->quirk_list == 0) |
| prev_port->tp_ops->set_irq(prev_port, 0); |
| |
| hwif->host->cur_port = hwif; |
| } |
| hwif->cur_dev = drive; |
| drive->dev_flags &= ~(IDE_DFLAG_SLEEPING | IDE_DFLAG_PARKED); |
| |
| spin_unlock_irq(&hwif->lock); |
| spin_lock_irq(q->queue_lock); |
| /* |
| * we know that the queue isn't empty, but this can happen |
| * if the q->prep_rq_fn() decides to kill a request |
| */ |
| rq = elv_next_request(drive->queue); |
| spin_unlock_irq(q->queue_lock); |
| spin_lock_irq(&hwif->lock); |
| |
| if (!rq) { |
| ide_unlock_port(hwif); |
| goto out; |
| } |
| |
| /* |
| * Sanity: don't accept a request that isn't a PM request |
| * if we are currently power managed. This is very important as |
| * blk_stop_queue() doesn't prevent the elv_next_request() |
| * above to return us whatever is in the queue. Since we call |
| * ide_do_request() ourselves, we end up taking requests while |
| * the queue is blocked... |
| * |
| * We let requests forced at head of queue with ide-preempt |
| * though. I hope that doesn't happen too much, hopefully not |
| * unless the subdriver triggers such a thing in its own PM |
| * state machine. |
| */ |
| if ((drive->dev_flags & IDE_DFLAG_BLOCKED) && |
| blk_pm_request(rq) == 0 && |
| (rq->cmd_flags & REQ_PREEMPT) == 0) { |
| /* there should be no pending command at this point */ |
| ide_unlock_port(hwif); |
| goto plug_device; |
| } |
| |
| hwif->rq = rq; |
| |
| spin_unlock_irq(&hwif->lock); |
| startstop = start_request(drive, rq); |
| spin_lock_irq(&hwif->lock); |
| |
| if (startstop == ide_stopped) |
| goto repeat; |
| } else |
| goto plug_device; |
| out: |
| spin_unlock_irq(&hwif->lock); |
| if (rq == NULL) |
| ide_unlock_host(host); |
| spin_lock_irq(q->queue_lock); |
| return; |
| |
| plug_device: |
| spin_unlock_irq(&hwif->lock); |
| ide_unlock_host(host); |
| plug_device_2: |
| spin_lock_irq(q->queue_lock); |
| |
| if (!elv_queue_empty(q)) |
| blk_plug_device(q); |
| } |
| |
| static void ide_plug_device(ide_drive_t *drive) |
| { |
| struct request_queue *q = drive->queue; |
| unsigned long flags; |
| |
| spin_lock_irqsave(q->queue_lock, flags); |
| if (!elv_queue_empty(q)) |
| blk_plug_device(q); |
| spin_unlock_irqrestore(q->queue_lock, flags); |
| } |
| |
| static int drive_is_ready(ide_drive_t *drive) |
| { |
| ide_hwif_t *hwif = drive->hwif; |
| u8 stat = 0; |
| |
| if (drive->waiting_for_dma) |
| return hwif->dma_ops->dma_test_irq(drive); |
| |
| if (hwif->io_ports.ctl_addr && |
| (hwif->host_flags & IDE_HFLAG_BROKEN_ALTSTATUS) == 0) |
| stat = hwif->tp_ops->read_altstatus(hwif); |
| else |
| /* Note: this may clear a pending IRQ!! */ |
| stat = hwif->tp_ops->read_status(hwif); |
| |
| if (stat & ATA_BUSY) |
| /* drive busy: definitely not interrupting */ |
| return 0; |
| |
| /* drive ready: *might* be interrupting */ |
| return 1; |
| } |
| |
| /** |
| * ide_timer_expiry - handle lack of an IDE interrupt |
| * @data: timer callback magic (hwif) |
| * |
| * An IDE command has timed out before the expected drive return |
| * occurred. At this point we attempt to clean up the current |
| * mess. If the current handler includes an expiry handler then |
| * we invoke the expiry handler, and providing it is happy the |
| * work is done. If that fails we apply generic recovery rules |
| * invoking the handler and checking the drive DMA status. We |
| * have an excessively incestuous relationship with the DMA |
| * logic that wants cleaning up. |
| */ |
| |
| void ide_timer_expiry (unsigned long data) |
| { |
| ide_hwif_t *hwif = (ide_hwif_t *)data; |
| ide_drive_t *uninitialized_var(drive); |
| ide_handler_t *handler; |
| unsigned long flags; |
| int wait = -1; |
| int plug_device = 0; |
| |
| spin_lock_irqsave(&hwif->lock, flags); |
| |
| handler = hwif->handler; |
| |
| if (handler == NULL || hwif->req_gen != hwif->req_gen_timer) { |
| /* |
| * Either a marginal timeout occurred |
| * (got the interrupt just as timer expired), |
| * or we were "sleeping" to give other devices a chance. |
| * Either way, we don't really want to complain about anything. |
| */ |
| } else { |
| ide_expiry_t *expiry = hwif->expiry; |
| ide_startstop_t startstop = ide_stopped; |
| |
| drive = hwif->cur_dev; |
| |
| if (expiry) { |
| wait = expiry(drive); |
| if (wait > 0) { /* continue */ |
| /* reset timer */ |
| hwif->timer.expires = jiffies + wait; |
| hwif->req_gen_timer = hwif->req_gen; |
| add_timer(&hwif->timer); |
| spin_unlock_irqrestore(&hwif->lock, flags); |
| return; |
| } |
| } |
| hwif->handler = NULL; |
| /* |
| * We need to simulate a real interrupt when invoking |
| * the handler() function, which means we need to |
| * globally mask the specific IRQ: |
| */ |
| spin_unlock(&hwif->lock); |
| /* disable_irq_nosync ?? */ |
| disable_irq(hwif->irq); |
| /* local CPU only, as if we were handling an interrupt */ |
| local_irq_disable(); |
| if (hwif->polling) { |
| startstop = handler(drive); |
| } else if (drive_is_ready(drive)) { |
| if (drive->waiting_for_dma) |
| hwif->dma_ops->dma_lost_irq(drive); |
| if (hwif->ack_intr) |
| hwif->ack_intr(hwif); |
| printk(KERN_WARNING "%s: lost interrupt\n", |
| drive->name); |
| startstop = handler(drive); |
| } else { |
| if (drive->waiting_for_dma) |
| startstop = ide_dma_timeout_retry(drive, wait); |
| else |
| startstop = ide_error(drive, "irq timeout", |
| hwif->tp_ops->read_status(hwif)); |
| } |
| spin_lock_irq(&hwif->lock); |
| enable_irq(hwif->irq); |
| if (startstop == ide_stopped) { |
| ide_unlock_port(hwif); |
| plug_device = 1; |
| } |
| } |
| spin_unlock_irqrestore(&hwif->lock, flags); |
| |
| if (plug_device) { |
| ide_unlock_host(hwif->host); |
| ide_plug_device(drive); |
| } |
| } |
| |
| /** |
| * unexpected_intr - handle an unexpected IDE interrupt |
| * @irq: interrupt line |
| * @hwif: port being processed |
| * |
| * There's nothing really useful we can do with an unexpected interrupt, |
| * other than reading the status register (to clear it), and logging it. |
| * There should be no way that an irq can happen before we're ready for it, |
| * so we needn't worry much about losing an "important" interrupt here. |
| * |
| * On laptops (and "green" PCs), an unexpected interrupt occurs whenever |
| * the drive enters "idle", "standby", or "sleep" mode, so if the status |
| * looks "good", we just ignore the interrupt completely. |
| * |
| * This routine assumes __cli() is in effect when called. |
| * |
| * If an unexpected interrupt happens on irq15 while we are handling irq14 |
| * and if the two interfaces are "serialized" (CMD640), then it looks like |
| * we could screw up by interfering with a new request being set up for |
| * irq15. |
| * |
| * In reality, this is a non-issue. The new command is not sent unless |
| * the drive is ready to accept one, in which case we know the drive is |
| * not trying to interrupt us. And ide_set_handler() is always invoked |
| * before completing the issuance of any new drive command, so we will not |
| * be accidentally invoked as a result of any valid command completion |
| * interrupt. |
| */ |
| |
| static void unexpected_intr(int irq, ide_hwif_t *hwif) |
| { |
| u8 stat = hwif->tp_ops->read_status(hwif); |
| |
| if (!OK_STAT(stat, ATA_DRDY, BAD_STAT)) { |
| /* Try to not flood the console with msgs */ |
| static unsigned long last_msgtime, count; |
| ++count; |
| |
| if (time_after(jiffies, last_msgtime + HZ)) { |
| last_msgtime = jiffies; |
| printk(KERN_ERR "%s: unexpected interrupt, " |
| "status=0x%02x, count=%ld\n", |
| hwif->name, stat, count); |
| } |
| } |
| } |
| |
| /** |
| * ide_intr - default IDE interrupt handler |
| * @irq: interrupt number |
| * @dev_id: hwif |
| * @regs: unused weirdness from the kernel irq layer |
| * |
| * This is the default IRQ handler for the IDE layer. You should |
| * not need to override it. If you do be aware it is subtle in |
| * places |
| * |
| * hwif is the interface in the group currently performing |
| * a command. hwif->cur_dev is the drive and hwif->handler is |
| * the IRQ handler to call. As we issue a command the handlers |
| * step through multiple states, reassigning the handler to the |
| * next step in the process. Unlike a smart SCSI controller IDE |
| * expects the main processor to sequence the various transfer |
| * stages. We also manage a poll timer to catch up with most |
| * timeout situations. There are still a few where the handlers |
| * don't ever decide to give up. |
| * |
| * The handler eventually returns ide_stopped to indicate the |
| * request completed. At this point we issue the next request |
| * on the port and the process begins again. |
| */ |
| |
| irqreturn_t ide_intr (int irq, void *dev_id) |
| { |
| ide_hwif_t *hwif = (ide_hwif_t *)dev_id; |
| struct ide_host *host = hwif->host; |
| ide_drive_t *uninitialized_var(drive); |
| ide_handler_t *handler; |
| unsigned long flags; |
| ide_startstop_t startstop; |
| irqreturn_t irq_ret = IRQ_NONE; |
| int plug_device = 0; |
| |
| if (host->host_flags & IDE_HFLAG_SERIALIZE) { |
| if (hwif != host->cur_port) |
| goto out_early; |
| } |
| |
| spin_lock_irqsave(&hwif->lock, flags); |
| |
| if (hwif->ack_intr && hwif->ack_intr(hwif) == 0) |
| goto out; |
| |
| handler = hwif->handler; |
| |
| if (handler == NULL || hwif->polling) { |
| /* |
| * Not expecting an interrupt from this drive. |
| * That means this could be: |
| * (1) an interrupt from another PCI device |
| * sharing the same PCI INT# as us. |
| * or (2) a drive just entered sleep or standby mode, |
| * and is interrupting to let us know. |
| * or (3) a spurious interrupt of unknown origin. |
| * |
| * For PCI, we cannot tell the difference, |
| * so in that case we just ignore it and hope it goes away. |
| */ |
| if ((host->irq_flags & IRQF_SHARED) == 0) { |
| /* |
| * Probably not a shared PCI interrupt, |
| * so we can safely try to do something about it: |
| */ |
| unexpected_intr(irq, hwif); |
| } else { |
| /* |
| * Whack the status register, just in case |
| * we have a leftover pending IRQ. |
| */ |
| (void)hwif->tp_ops->read_status(hwif); |
| } |
| goto out; |
| } |
| |
| drive = hwif->cur_dev; |
| |
| if (!drive_is_ready(drive)) |
| /* |
| * This happens regularly when we share a PCI IRQ with |
| * another device. Unfortunately, it can also happen |
| * with some buggy drives that trigger the IRQ before |
| * their status register is up to date. Hopefully we have |
| * enough advance overhead that the latter isn't a problem. |
| */ |
| goto out; |
| |
| hwif->handler = NULL; |
| hwif->req_gen++; |
| del_timer(&hwif->timer); |
| spin_unlock(&hwif->lock); |
| |
| if (hwif->port_ops && hwif->port_ops->clear_irq) |
| hwif->port_ops->clear_irq(drive); |
| |
| if (drive->dev_flags & IDE_DFLAG_UNMASK) |
| local_irq_enable_in_hardirq(); |
| |
| /* service this interrupt, may set handler for next interrupt */ |
| startstop = handler(drive); |
| |
| spin_lock_irq(&hwif->lock); |
| /* |
| * Note that handler() may have set things up for another |
| * interrupt to occur soon, but it cannot happen until |
| * we exit from this routine, because it will be the |
| * same irq as is currently being serviced here, and Linux |
| * won't allow another of the same (on any CPU) until we return. |
| */ |
| if (startstop == ide_stopped) { |
| BUG_ON(hwif->handler); |
| ide_unlock_port(hwif); |
| plug_device = 1; |
| } |
| irq_ret = IRQ_HANDLED; |
| out: |
| spin_unlock_irqrestore(&hwif->lock, flags); |
| out_early: |
| if (plug_device) { |
| ide_unlock_host(hwif->host); |
| ide_plug_device(drive); |
| } |
| |
| return irq_ret; |
| } |
| EXPORT_SYMBOL_GPL(ide_intr); |
| |
| void ide_pad_transfer(ide_drive_t *drive, int write, int len) |
| { |
| ide_hwif_t *hwif = drive->hwif; |
| u8 buf[4] = { 0 }; |
| |
| while (len > 0) { |
| if (write) |
| hwif->tp_ops->output_data(drive, NULL, buf, min(4, len)); |
| else |
| hwif->tp_ops->input_data(drive, NULL, buf, min(4, len)); |
| len -= 4; |
| } |
| } |
| EXPORT_SYMBOL_GPL(ide_pad_transfer); |