| /******************************************************************************* |
| |
| Copyright(c) 2006 Tundra Semiconductor Corporation. |
| |
| This program is free software; you can redistribute it and/or modify it |
| under the terms of the GNU General Public License as published by the Free |
| Software Foundation; either version 2 of the License, or (at your option) |
| any later version. |
| |
| This program is distributed in the hope that it will be useful, but WITHOUT |
| ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| more details. |
| |
| You should have received a copy of the GNU General Public License along with |
| this program; if not, write to the Free Software Foundation, Inc., 59 |
| Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
| |
| *******************************************************************************/ |
| |
| /* This driver is based on the driver code originally developed |
| * for the Intel IOC80314 (ForestLake) Gigabit Ethernet by |
| * scott.wood@timesys.com * Copyright (C) 2003 TimeSys Corporation |
| * |
| * Currently changes from original version are: |
| * - porting to Tsi108-based platform and kernel 2.6 (kong.lai@tundra.com) |
| * - modifications to handle two ports independently and support for |
| * additional PHY devices (alexandre.bounine@tundra.com) |
| * - Get hardware information from platform device. (tie-fei.zang@freescale.com) |
| * |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/types.h> |
| #include <linux/init.h> |
| #include <linux/net.h> |
| #include <linux/netdevice.h> |
| #include <linux/etherdevice.h> |
| #include <linux/ethtool.h> |
| #include <linux/skbuff.h> |
| #include <linux/slab.h> |
| #include <linux/spinlock.h> |
| #include <linux/delay.h> |
| #include <linux/crc32.h> |
| #include <linux/mii.h> |
| #include <linux/device.h> |
| #include <linux/pci.h> |
| #include <linux/rtnetlink.h> |
| #include <linux/timer.h> |
| #include <linux/platform_device.h> |
| |
| #include <asm/system.h> |
| #include <asm/io.h> |
| #include <asm/tsi108.h> |
| |
| #include "tsi108_eth.h" |
| |
| #define MII_READ_DELAY 10000 /* max link wait time in msec */ |
| |
| #define TSI108_RXRING_LEN 256 |
| |
| /* NOTE: The driver currently does not support receiving packets |
| * larger than the buffer size, so don't decrease this (unless you |
| * want to add such support). |
| */ |
| #define TSI108_RXBUF_SIZE 1536 |
| |
| #define TSI108_TXRING_LEN 256 |
| |
| #define TSI108_TX_INT_FREQ 64 |
| |
| /* Check the phy status every half a second. */ |
| #define CHECK_PHY_INTERVAL (HZ/2) |
| |
| static int tsi108_init_one(struct platform_device *pdev); |
| static int tsi108_ether_remove(struct platform_device *pdev); |
| |
| struct tsi108_prv_data { |
| void __iomem *regs; /* Base of normal regs */ |
| void __iomem *phyregs; /* Base of register bank used for PHY access */ |
| |
| struct net_device *dev; |
| struct napi_struct napi; |
| |
| unsigned int phy; /* Index of PHY for this interface */ |
| unsigned int irq_num; |
| unsigned int id; |
| unsigned int phy_type; |
| |
| struct timer_list timer;/* Timer that triggers the check phy function */ |
| unsigned int rxtail; /* Next entry in rxring to read */ |
| unsigned int rxhead; /* Next entry in rxring to give a new buffer */ |
| unsigned int rxfree; /* Number of free, allocated RX buffers */ |
| |
| unsigned int rxpending; /* Non-zero if there are still descriptors |
| * to be processed from a previous descriptor |
| * interrupt condition that has been cleared */ |
| |
| unsigned int txtail; /* Next TX descriptor to check status on */ |
| unsigned int txhead; /* Next TX descriptor to use */ |
| |
| /* Number of free TX descriptors. This could be calculated from |
| * rxhead and rxtail if one descriptor were left unused to disambiguate |
| * full and empty conditions, but it's simpler to just keep track |
| * explicitly. */ |
| |
| unsigned int txfree; |
| |
| unsigned int phy_ok; /* The PHY is currently powered on. */ |
| |
| /* PHY status (duplex is 1 for half, 2 for full, |
| * so that the default 0 indicates that neither has |
| * yet been configured). */ |
| |
| unsigned int link_up; |
| unsigned int speed; |
| unsigned int duplex; |
| |
| tx_desc *txring; |
| rx_desc *rxring; |
| struct sk_buff *txskbs[TSI108_TXRING_LEN]; |
| struct sk_buff *rxskbs[TSI108_RXRING_LEN]; |
| |
| dma_addr_t txdma, rxdma; |
| |
| /* txlock nests in misclock and phy_lock */ |
| |
| spinlock_t txlock, misclock; |
| |
| /* stats is used to hold the upper bits of each hardware counter, |
| * and tmpstats is used to hold the full values for returning |
| * to the caller of get_stats(). They must be separate in case |
| * an overflow interrupt occurs before the stats are consumed. |
| */ |
| |
| struct net_device_stats stats; |
| struct net_device_stats tmpstats; |
| |
| /* These stats are kept separate in hardware, thus require individual |
| * fields for handling carry. They are combined in get_stats. |
| */ |
| |
| unsigned long rx_fcs; /* Add to rx_frame_errors */ |
| unsigned long rx_short_fcs; /* Add to rx_frame_errors */ |
| unsigned long rx_long_fcs; /* Add to rx_frame_errors */ |
| unsigned long rx_underruns; /* Add to rx_length_errors */ |
| unsigned long rx_overruns; /* Add to rx_length_errors */ |
| |
| unsigned long tx_coll_abort; /* Add to tx_aborted_errors/collisions */ |
| unsigned long tx_pause_drop; /* Add to tx_aborted_errors */ |
| |
| unsigned long mc_hash[16]; |
| u32 msg_enable; /* debug message level */ |
| struct mii_if_info mii_if; |
| unsigned int init_media; |
| }; |
| |
| /* Structure for a device driver */ |
| |
| static struct platform_driver tsi_eth_driver = { |
| .probe = tsi108_init_one, |
| .remove = tsi108_ether_remove, |
| .driver = { |
| .name = "tsi-ethernet", |
| .owner = THIS_MODULE, |
| }, |
| }; |
| |
| static void tsi108_timed_checker(unsigned long dev_ptr); |
| |
| static void dump_eth_one(struct net_device *dev) |
| { |
| struct tsi108_prv_data *data = netdev_priv(dev); |
| |
| printk("Dumping %s...\n", dev->name); |
| printk("intstat %x intmask %x phy_ok %d" |
| " link %d speed %d duplex %d\n", |
| TSI_READ(TSI108_EC_INTSTAT), |
| TSI_READ(TSI108_EC_INTMASK), data->phy_ok, |
| data->link_up, data->speed, data->duplex); |
| |
| printk("TX: head %d, tail %d, free %d, stat %x, estat %x, err %x\n", |
| data->txhead, data->txtail, data->txfree, |
| TSI_READ(TSI108_EC_TXSTAT), |
| TSI_READ(TSI108_EC_TXESTAT), |
| TSI_READ(TSI108_EC_TXERR)); |
| |
| printk("RX: head %d, tail %d, free %d, stat %x," |
| " estat %x, err %x, pending %d\n\n", |
| data->rxhead, data->rxtail, data->rxfree, |
| TSI_READ(TSI108_EC_RXSTAT), |
| TSI_READ(TSI108_EC_RXESTAT), |
| TSI_READ(TSI108_EC_RXERR), data->rxpending); |
| } |
| |
| /* Synchronization is needed between the thread and up/down events. |
| * Note that the PHY is accessed through the same registers for both |
| * interfaces, so this can't be made interface-specific. |
| */ |
| |
| static DEFINE_SPINLOCK(phy_lock); |
| |
| static int tsi108_read_mii(struct tsi108_prv_data *data, int reg) |
| { |
| unsigned i; |
| |
| TSI_WRITE_PHY(TSI108_MAC_MII_ADDR, |
| (data->phy << TSI108_MAC_MII_ADDR_PHY) | |
| (reg << TSI108_MAC_MII_ADDR_REG)); |
| TSI_WRITE_PHY(TSI108_MAC_MII_CMD, 0); |
| TSI_WRITE_PHY(TSI108_MAC_MII_CMD, TSI108_MAC_MII_CMD_READ); |
| for (i = 0; i < 100; i++) { |
| if (!(TSI_READ_PHY(TSI108_MAC_MII_IND) & |
| (TSI108_MAC_MII_IND_NOTVALID | TSI108_MAC_MII_IND_BUSY))) |
| break; |
| udelay(10); |
| } |
| |
| if (i == 100) |
| return 0xffff; |
| else |
| return (TSI_READ_PHY(TSI108_MAC_MII_DATAIN)); |
| } |
| |
| static void tsi108_write_mii(struct tsi108_prv_data *data, |
| int reg, u16 val) |
| { |
| unsigned i = 100; |
| TSI_WRITE_PHY(TSI108_MAC_MII_ADDR, |
| (data->phy << TSI108_MAC_MII_ADDR_PHY) | |
| (reg << TSI108_MAC_MII_ADDR_REG)); |
| TSI_WRITE_PHY(TSI108_MAC_MII_DATAOUT, val); |
| while (i--) { |
| if(!(TSI_READ_PHY(TSI108_MAC_MII_IND) & |
| TSI108_MAC_MII_IND_BUSY)) |
| break; |
| udelay(10); |
| } |
| } |
| |
| static int tsi108_mdio_read(struct net_device *dev, int addr, int reg) |
| { |
| struct tsi108_prv_data *data = netdev_priv(dev); |
| return tsi108_read_mii(data, reg); |
| } |
| |
| static void tsi108_mdio_write(struct net_device *dev, int addr, int reg, int val) |
| { |
| struct tsi108_prv_data *data = netdev_priv(dev); |
| tsi108_write_mii(data, reg, val); |
| } |
| |
| static inline void tsi108_write_tbi(struct tsi108_prv_data *data, |
| int reg, u16 val) |
| { |
| unsigned i = 1000; |
| TSI_WRITE(TSI108_MAC_MII_ADDR, |
| (0x1e << TSI108_MAC_MII_ADDR_PHY) |
| | (reg << TSI108_MAC_MII_ADDR_REG)); |
| TSI_WRITE(TSI108_MAC_MII_DATAOUT, val); |
| while(i--) { |
| if(!(TSI_READ(TSI108_MAC_MII_IND) & TSI108_MAC_MII_IND_BUSY)) |
| return; |
| udelay(10); |
| } |
| printk(KERN_ERR "%s function time out \n", __func__); |
| } |
| |
| static int mii_speed(struct mii_if_info *mii) |
| { |
| int advert, lpa, val, media; |
| int lpa2 = 0; |
| int speed; |
| |
| if (!mii_link_ok(mii)) |
| return 0; |
| |
| val = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_BMSR); |
| if ((val & BMSR_ANEGCOMPLETE) == 0) |
| return 0; |
| |
| advert = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_ADVERTISE); |
| lpa = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_LPA); |
| media = mii_nway_result(advert & lpa); |
| |
| if (mii->supports_gmii) |
| lpa2 = mii->mdio_read(mii->dev, mii->phy_id, MII_STAT1000); |
| |
| speed = lpa2 & (LPA_1000FULL | LPA_1000HALF) ? 1000 : |
| (media & (ADVERTISE_100FULL | ADVERTISE_100HALF) ? 100 : 10); |
| return speed; |
| } |
| |
| static void tsi108_check_phy(struct net_device *dev) |
| { |
| struct tsi108_prv_data *data = netdev_priv(dev); |
| u32 mac_cfg2_reg, portctrl_reg; |
| u32 duplex; |
| u32 speed; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&phy_lock, flags); |
| |
| if (!data->phy_ok) |
| goto out; |
| |
| duplex = mii_check_media(&data->mii_if, netif_msg_link(data), data->init_media); |
| data->init_media = 0; |
| |
| if (netif_carrier_ok(dev)) { |
| |
| speed = mii_speed(&data->mii_if); |
| |
| if ((speed != data->speed) || duplex) { |
| |
| mac_cfg2_reg = TSI_READ(TSI108_MAC_CFG2); |
| portctrl_reg = TSI_READ(TSI108_EC_PORTCTRL); |
| |
| mac_cfg2_reg &= ~TSI108_MAC_CFG2_IFACE_MASK; |
| |
| if (speed == 1000) { |
| mac_cfg2_reg |= TSI108_MAC_CFG2_GIG; |
| portctrl_reg &= ~TSI108_EC_PORTCTRL_NOGIG; |
| } else { |
| mac_cfg2_reg |= TSI108_MAC_CFG2_NOGIG; |
| portctrl_reg |= TSI108_EC_PORTCTRL_NOGIG; |
| } |
| |
| data->speed = speed; |
| |
| if (data->mii_if.full_duplex) { |
| mac_cfg2_reg |= TSI108_MAC_CFG2_FULLDUPLEX; |
| portctrl_reg &= ~TSI108_EC_PORTCTRL_HALFDUPLEX; |
| data->duplex = 2; |
| } else { |
| mac_cfg2_reg &= ~TSI108_MAC_CFG2_FULLDUPLEX; |
| portctrl_reg |= TSI108_EC_PORTCTRL_HALFDUPLEX; |
| data->duplex = 1; |
| } |
| |
| TSI_WRITE(TSI108_MAC_CFG2, mac_cfg2_reg); |
| TSI_WRITE(TSI108_EC_PORTCTRL, portctrl_reg); |
| } |
| |
| if (data->link_up == 0) { |
| /* The manual says it can take 3-4 usecs for the speed change |
| * to take effect. |
| */ |
| udelay(5); |
| |
| spin_lock(&data->txlock); |
| if (is_valid_ether_addr(dev->dev_addr) && data->txfree) |
| netif_wake_queue(dev); |
| |
| data->link_up = 1; |
| spin_unlock(&data->txlock); |
| } |
| } else { |
| if (data->link_up == 1) { |
| netif_stop_queue(dev); |
| data->link_up = 0; |
| printk(KERN_NOTICE "%s : link is down\n", dev->name); |
| } |
| |
| goto out; |
| } |
| |
| |
| out: |
| spin_unlock_irqrestore(&phy_lock, flags); |
| } |
| |
| static inline void |
| tsi108_stat_carry_one(int carry, int carry_bit, int carry_shift, |
| unsigned long *upper) |
| { |
| if (carry & carry_bit) |
| *upper += carry_shift; |
| } |
| |
| static void tsi108_stat_carry(struct net_device *dev) |
| { |
| struct tsi108_prv_data *data = netdev_priv(dev); |
| u32 carry1, carry2; |
| |
| spin_lock_irq(&data->misclock); |
| |
| carry1 = TSI_READ(TSI108_STAT_CARRY1); |
| carry2 = TSI_READ(TSI108_STAT_CARRY2); |
| |
| TSI_WRITE(TSI108_STAT_CARRY1, carry1); |
| TSI_WRITE(TSI108_STAT_CARRY2, carry2); |
| |
| tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXBYTES, |
| TSI108_STAT_RXBYTES_CARRY, &data->stats.rx_bytes); |
| |
| tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXPKTS, |
| TSI108_STAT_RXPKTS_CARRY, |
| &data->stats.rx_packets); |
| |
| tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXFCS, |
| TSI108_STAT_RXFCS_CARRY, &data->rx_fcs); |
| |
| tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXMCAST, |
| TSI108_STAT_RXMCAST_CARRY, |
| &data->stats.multicast); |
| |
| tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXALIGN, |
| TSI108_STAT_RXALIGN_CARRY, |
| &data->stats.rx_frame_errors); |
| |
| tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXLENGTH, |
| TSI108_STAT_RXLENGTH_CARRY, |
| &data->stats.rx_length_errors); |
| |
| tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXRUNT, |
| TSI108_STAT_RXRUNT_CARRY, &data->rx_underruns); |
| |
| tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXJUMBO, |
| TSI108_STAT_RXJUMBO_CARRY, &data->rx_overruns); |
| |
| tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXFRAG, |
| TSI108_STAT_RXFRAG_CARRY, &data->rx_short_fcs); |
| |
| tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXJABBER, |
| TSI108_STAT_RXJABBER_CARRY, &data->rx_long_fcs); |
| |
| tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXDROP, |
| TSI108_STAT_RXDROP_CARRY, |
| &data->stats.rx_missed_errors); |
| |
| tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXBYTES, |
| TSI108_STAT_TXBYTES_CARRY, &data->stats.tx_bytes); |
| |
| tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXPKTS, |
| TSI108_STAT_TXPKTS_CARRY, |
| &data->stats.tx_packets); |
| |
| tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXEXDEF, |
| TSI108_STAT_TXEXDEF_CARRY, |
| &data->stats.tx_aborted_errors); |
| |
| tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXEXCOL, |
| TSI108_STAT_TXEXCOL_CARRY, &data->tx_coll_abort); |
| |
| tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXTCOL, |
| TSI108_STAT_TXTCOL_CARRY, |
| &data->stats.collisions); |
| |
| tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXPAUSE, |
| TSI108_STAT_TXPAUSEDROP_CARRY, |
| &data->tx_pause_drop); |
| |
| spin_unlock_irq(&data->misclock); |
| } |
| |
| /* Read a stat counter atomically with respect to carries. |
| * data->misclock must be held. |
| */ |
| static inline unsigned long |
| tsi108_read_stat(struct tsi108_prv_data * data, int reg, int carry_bit, |
| int carry_shift, unsigned long *upper) |
| { |
| int carryreg; |
| unsigned long val; |
| |
| if (reg < 0xb0) |
| carryreg = TSI108_STAT_CARRY1; |
| else |
| carryreg = TSI108_STAT_CARRY2; |
| |
| again: |
| val = TSI_READ(reg) | *upper; |
| |
| /* Check to see if it overflowed, but the interrupt hasn't |
| * been serviced yet. If so, handle the carry here, and |
| * try again. |
| */ |
| |
| if (unlikely(TSI_READ(carryreg) & carry_bit)) { |
| *upper += carry_shift; |
| TSI_WRITE(carryreg, carry_bit); |
| goto again; |
| } |
| |
| return val; |
| } |
| |
| static struct net_device_stats *tsi108_get_stats(struct net_device *dev) |
| { |
| unsigned long excol; |
| |
| struct tsi108_prv_data *data = netdev_priv(dev); |
| spin_lock_irq(&data->misclock); |
| |
| data->tmpstats.rx_packets = |
| tsi108_read_stat(data, TSI108_STAT_RXPKTS, |
| TSI108_STAT_CARRY1_RXPKTS, |
| TSI108_STAT_RXPKTS_CARRY, &data->stats.rx_packets); |
| |
| data->tmpstats.tx_packets = |
| tsi108_read_stat(data, TSI108_STAT_TXPKTS, |
| TSI108_STAT_CARRY2_TXPKTS, |
| TSI108_STAT_TXPKTS_CARRY, &data->stats.tx_packets); |
| |
| data->tmpstats.rx_bytes = |
| tsi108_read_stat(data, TSI108_STAT_RXBYTES, |
| TSI108_STAT_CARRY1_RXBYTES, |
| TSI108_STAT_RXBYTES_CARRY, &data->stats.rx_bytes); |
| |
| data->tmpstats.tx_bytes = |
| tsi108_read_stat(data, TSI108_STAT_TXBYTES, |
| TSI108_STAT_CARRY2_TXBYTES, |
| TSI108_STAT_TXBYTES_CARRY, &data->stats.tx_bytes); |
| |
| data->tmpstats.multicast = |
| tsi108_read_stat(data, TSI108_STAT_RXMCAST, |
| TSI108_STAT_CARRY1_RXMCAST, |
| TSI108_STAT_RXMCAST_CARRY, &data->stats.multicast); |
| |
| excol = tsi108_read_stat(data, TSI108_STAT_TXEXCOL, |
| TSI108_STAT_CARRY2_TXEXCOL, |
| TSI108_STAT_TXEXCOL_CARRY, |
| &data->tx_coll_abort); |
| |
| data->tmpstats.collisions = |
| tsi108_read_stat(data, TSI108_STAT_TXTCOL, |
| TSI108_STAT_CARRY2_TXTCOL, |
| TSI108_STAT_TXTCOL_CARRY, &data->stats.collisions); |
| |
| data->tmpstats.collisions += excol; |
| |
| data->tmpstats.rx_length_errors = |
| tsi108_read_stat(data, TSI108_STAT_RXLENGTH, |
| TSI108_STAT_CARRY1_RXLENGTH, |
| TSI108_STAT_RXLENGTH_CARRY, |
| &data->stats.rx_length_errors); |
| |
| data->tmpstats.rx_length_errors += |
| tsi108_read_stat(data, TSI108_STAT_RXRUNT, |
| TSI108_STAT_CARRY1_RXRUNT, |
| TSI108_STAT_RXRUNT_CARRY, &data->rx_underruns); |
| |
| data->tmpstats.rx_length_errors += |
| tsi108_read_stat(data, TSI108_STAT_RXJUMBO, |
| TSI108_STAT_CARRY1_RXJUMBO, |
| TSI108_STAT_RXJUMBO_CARRY, &data->rx_overruns); |
| |
| data->tmpstats.rx_frame_errors = |
| tsi108_read_stat(data, TSI108_STAT_RXALIGN, |
| TSI108_STAT_CARRY1_RXALIGN, |
| TSI108_STAT_RXALIGN_CARRY, |
| &data->stats.rx_frame_errors); |
| |
| data->tmpstats.rx_frame_errors += |
| tsi108_read_stat(data, TSI108_STAT_RXFCS, |
| TSI108_STAT_CARRY1_RXFCS, TSI108_STAT_RXFCS_CARRY, |
| &data->rx_fcs); |
| |
| data->tmpstats.rx_frame_errors += |
| tsi108_read_stat(data, TSI108_STAT_RXFRAG, |
| TSI108_STAT_CARRY1_RXFRAG, |
| TSI108_STAT_RXFRAG_CARRY, &data->rx_short_fcs); |
| |
| data->tmpstats.rx_missed_errors = |
| tsi108_read_stat(data, TSI108_STAT_RXDROP, |
| TSI108_STAT_CARRY1_RXDROP, |
| TSI108_STAT_RXDROP_CARRY, |
| &data->stats.rx_missed_errors); |
| |
| /* These three are maintained by software. */ |
| data->tmpstats.rx_fifo_errors = data->stats.rx_fifo_errors; |
| data->tmpstats.rx_crc_errors = data->stats.rx_crc_errors; |
| |
| data->tmpstats.tx_aborted_errors = |
| tsi108_read_stat(data, TSI108_STAT_TXEXDEF, |
| TSI108_STAT_CARRY2_TXEXDEF, |
| TSI108_STAT_TXEXDEF_CARRY, |
| &data->stats.tx_aborted_errors); |
| |
| data->tmpstats.tx_aborted_errors += |
| tsi108_read_stat(data, TSI108_STAT_TXPAUSEDROP, |
| TSI108_STAT_CARRY2_TXPAUSE, |
| TSI108_STAT_TXPAUSEDROP_CARRY, |
| &data->tx_pause_drop); |
| |
| data->tmpstats.tx_aborted_errors += excol; |
| |
| data->tmpstats.tx_errors = data->tmpstats.tx_aborted_errors; |
| data->tmpstats.rx_errors = data->tmpstats.rx_length_errors + |
| data->tmpstats.rx_crc_errors + |
| data->tmpstats.rx_frame_errors + |
| data->tmpstats.rx_fifo_errors + data->tmpstats.rx_missed_errors; |
| |
| spin_unlock_irq(&data->misclock); |
| return &data->tmpstats; |
| } |
| |
| static void tsi108_restart_rx(struct tsi108_prv_data * data, struct net_device *dev) |
| { |
| TSI_WRITE(TSI108_EC_RXQ_PTRHIGH, |
| TSI108_EC_RXQ_PTRHIGH_VALID); |
| |
| TSI_WRITE(TSI108_EC_RXCTRL, TSI108_EC_RXCTRL_GO |
| | TSI108_EC_RXCTRL_QUEUE0); |
| } |
| |
| static void tsi108_restart_tx(struct tsi108_prv_data * data) |
| { |
| TSI_WRITE(TSI108_EC_TXQ_PTRHIGH, |
| TSI108_EC_TXQ_PTRHIGH_VALID); |
| |
| TSI_WRITE(TSI108_EC_TXCTRL, TSI108_EC_TXCTRL_IDLEINT | |
| TSI108_EC_TXCTRL_GO | TSI108_EC_TXCTRL_QUEUE0); |
| } |
| |
| /* txlock must be held by caller, with IRQs disabled, and |
| * with permission to re-enable them when the lock is dropped. |
| */ |
| static void tsi108_complete_tx(struct net_device *dev) |
| { |
| struct tsi108_prv_data *data = netdev_priv(dev); |
| int tx; |
| struct sk_buff *skb; |
| int release = 0; |
| |
| while (!data->txfree || data->txhead != data->txtail) { |
| tx = data->txtail; |
| |
| if (data->txring[tx].misc & TSI108_TX_OWN) |
| break; |
| |
| skb = data->txskbs[tx]; |
| |
| if (!(data->txring[tx].misc & TSI108_TX_OK)) |
| printk("%s: bad tx packet, misc %x\n", |
| dev->name, data->txring[tx].misc); |
| |
| data->txtail = (data->txtail + 1) % TSI108_TXRING_LEN; |
| data->txfree++; |
| |
| if (data->txring[tx].misc & TSI108_TX_EOF) { |
| dev_kfree_skb_any(skb); |
| release++; |
| } |
| } |
| |
| if (release) { |
| if (is_valid_ether_addr(dev->dev_addr) && data->link_up) |
| netif_wake_queue(dev); |
| } |
| } |
| |
| static int tsi108_send_packet(struct sk_buff * skb, struct net_device *dev) |
| { |
| struct tsi108_prv_data *data = netdev_priv(dev); |
| int frags = skb_shinfo(skb)->nr_frags + 1; |
| int i; |
| |
| if (!data->phy_ok && net_ratelimit()) |
| printk(KERN_ERR "%s: Transmit while PHY is down!\n", dev->name); |
| |
| if (!data->link_up) { |
| printk(KERN_ERR "%s: Transmit while link is down!\n", |
| dev->name); |
| netif_stop_queue(dev); |
| return NETDEV_TX_BUSY; |
| } |
| |
| if (data->txfree < MAX_SKB_FRAGS + 1) { |
| netif_stop_queue(dev); |
| |
| if (net_ratelimit()) |
| printk(KERN_ERR "%s: Transmit with full tx ring!\n", |
| dev->name); |
| return NETDEV_TX_BUSY; |
| } |
| |
| if (data->txfree - frags < MAX_SKB_FRAGS + 1) { |
| netif_stop_queue(dev); |
| } |
| |
| spin_lock_irq(&data->txlock); |
| |
| for (i = 0; i < frags; i++) { |
| int misc = 0; |
| int tx = data->txhead; |
| |
| /* This is done to mark every TSI108_TX_INT_FREQ tx buffers with |
| * the interrupt bit. TX descriptor-complete interrupts are |
| * enabled when the queue fills up, and masked when there is |
| * still free space. This way, when saturating the outbound |
| * link, the tx interrupts are kept to a reasonable level. |
| * When the queue is not full, reclamation of skbs still occurs |
| * as new packets are transmitted, or on a queue-empty |
| * interrupt. |
| */ |
| |
| if ((tx % TSI108_TX_INT_FREQ == 0) && |
| ((TSI108_TXRING_LEN - data->txfree) >= TSI108_TX_INT_FREQ)) |
| misc = TSI108_TX_INT; |
| |
| data->txskbs[tx] = skb; |
| |
| if (i == 0) { |
| data->txring[tx].buf0 = dma_map_single(NULL, skb->data, |
| skb->len - skb->data_len, DMA_TO_DEVICE); |
| data->txring[tx].len = skb->len - skb->data_len; |
| misc |= TSI108_TX_SOF; |
| } else { |
| skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1]; |
| |
| data->txring[tx].buf0 = |
| dma_map_page(NULL, frag->page, frag->page_offset, |
| frag->size, DMA_TO_DEVICE); |
| data->txring[tx].len = frag->size; |
| } |
| |
| if (i == frags - 1) |
| misc |= TSI108_TX_EOF; |
| |
| if (netif_msg_pktdata(data)) { |
| int i; |
| printk("%s: Tx Frame contents (%d)\n", dev->name, |
| skb->len); |
| for (i = 0; i < skb->len; i++) |
| printk(" %2.2x", skb->data[i]); |
| printk(".\n"); |
| } |
| data->txring[tx].misc = misc | TSI108_TX_OWN; |
| |
| data->txhead = (data->txhead + 1) % TSI108_TXRING_LEN; |
| data->txfree--; |
| } |
| |
| tsi108_complete_tx(dev); |
| |
| /* This must be done after the check for completed tx descriptors, |
| * so that the tail pointer is correct. |
| */ |
| |
| if (!(TSI_READ(TSI108_EC_TXSTAT) & TSI108_EC_TXSTAT_QUEUE0)) |
| tsi108_restart_tx(data); |
| |
| spin_unlock_irq(&data->txlock); |
| return NETDEV_TX_OK; |
| } |
| |
| static int tsi108_complete_rx(struct net_device *dev, int budget) |
| { |
| struct tsi108_prv_data *data = netdev_priv(dev); |
| int done = 0; |
| |
| while (data->rxfree && done != budget) { |
| int rx = data->rxtail; |
| struct sk_buff *skb; |
| |
| if (data->rxring[rx].misc & TSI108_RX_OWN) |
| break; |
| |
| skb = data->rxskbs[rx]; |
| data->rxtail = (data->rxtail + 1) % TSI108_RXRING_LEN; |
| data->rxfree--; |
| done++; |
| |
| if (data->rxring[rx].misc & TSI108_RX_BAD) { |
| spin_lock_irq(&data->misclock); |
| |
| if (data->rxring[rx].misc & TSI108_RX_CRC) |
| data->stats.rx_crc_errors++; |
| if (data->rxring[rx].misc & TSI108_RX_OVER) |
| data->stats.rx_fifo_errors++; |
| |
| spin_unlock_irq(&data->misclock); |
| |
| dev_kfree_skb_any(skb); |
| continue; |
| } |
| if (netif_msg_pktdata(data)) { |
| int i; |
| printk("%s: Rx Frame contents (%d)\n", |
| dev->name, data->rxring[rx].len); |
| for (i = 0; i < data->rxring[rx].len; i++) |
| printk(" %2.2x", skb->data[i]); |
| printk(".\n"); |
| } |
| |
| skb_put(skb, data->rxring[rx].len); |
| skb->protocol = eth_type_trans(skb, dev); |
| netif_receive_skb(skb); |
| } |
| |
| return done; |
| } |
| |
| static int tsi108_refill_rx(struct net_device *dev, int budget) |
| { |
| struct tsi108_prv_data *data = netdev_priv(dev); |
| int done = 0; |
| |
| while (data->rxfree != TSI108_RXRING_LEN && done != budget) { |
| int rx = data->rxhead; |
| struct sk_buff *skb; |
| |
| data->rxskbs[rx] = skb = netdev_alloc_skb(dev, |
| TSI108_RXBUF_SIZE + 2); |
| if (!skb) |
| break; |
| |
| skb_reserve(skb, 2); /* Align the data on a 4-byte boundary. */ |
| |
| data->rxring[rx].buf0 = dma_map_single(NULL, skb->data, |
| TSI108_RX_SKB_SIZE, |
| DMA_FROM_DEVICE); |
| |
| /* Sometimes the hardware sets blen to zero after packet |
| * reception, even though the manual says that it's only ever |
| * modified by the driver. |
| */ |
| |
| data->rxring[rx].blen = TSI108_RX_SKB_SIZE; |
| data->rxring[rx].misc = TSI108_RX_OWN | TSI108_RX_INT; |
| |
| data->rxhead = (data->rxhead + 1) % TSI108_RXRING_LEN; |
| data->rxfree++; |
| done++; |
| } |
| |
| if (done != 0 && !(TSI_READ(TSI108_EC_RXSTAT) & |
| TSI108_EC_RXSTAT_QUEUE0)) |
| tsi108_restart_rx(data, dev); |
| |
| return done; |
| } |
| |
| static int tsi108_poll(struct napi_struct *napi, int budget) |
| { |
| struct tsi108_prv_data *data = container_of(napi, struct tsi108_prv_data, napi); |
| struct net_device *dev = data->dev; |
| u32 estat = TSI_READ(TSI108_EC_RXESTAT); |
| u32 intstat = TSI_READ(TSI108_EC_INTSTAT); |
| int num_received = 0, num_filled = 0; |
| |
| intstat &= TSI108_INT_RXQUEUE0 | TSI108_INT_RXTHRESH | |
| TSI108_INT_RXOVERRUN | TSI108_INT_RXERROR | TSI108_INT_RXWAIT; |
| |
| TSI_WRITE(TSI108_EC_RXESTAT, estat); |
| TSI_WRITE(TSI108_EC_INTSTAT, intstat); |
| |
| if (data->rxpending || (estat & TSI108_EC_RXESTAT_Q0_DESCINT)) |
| num_received = tsi108_complete_rx(dev, budget); |
| |
| /* This should normally fill no more slots than the number of |
| * packets received in tsi108_complete_rx(). The exception |
| * is when we previously ran out of memory for RX SKBs. In that |
| * case, it's helpful to obey the budget, not only so that the |
| * CPU isn't hogged, but so that memory (which may still be low) |
| * is not hogged by one device. |
| * |
| * A work unit is considered to be two SKBs to allow us to catch |
| * up when the ring has shrunk due to out-of-memory but we're |
| * still removing the full budget's worth of packets each time. |
| */ |
| |
| if (data->rxfree < TSI108_RXRING_LEN) |
| num_filled = tsi108_refill_rx(dev, budget * 2); |
| |
| if (intstat & TSI108_INT_RXERROR) { |
| u32 err = TSI_READ(TSI108_EC_RXERR); |
| TSI_WRITE(TSI108_EC_RXERR, err); |
| |
| if (err) { |
| if (net_ratelimit()) |
| printk(KERN_DEBUG "%s: RX error %x\n", |
| dev->name, err); |
| |
| if (!(TSI_READ(TSI108_EC_RXSTAT) & |
| TSI108_EC_RXSTAT_QUEUE0)) |
| tsi108_restart_rx(data, dev); |
| } |
| } |
| |
| if (intstat & TSI108_INT_RXOVERRUN) { |
| spin_lock_irq(&data->misclock); |
| data->stats.rx_fifo_errors++; |
| spin_unlock_irq(&data->misclock); |
| } |
| |
| if (num_received < budget) { |
| data->rxpending = 0; |
| napi_complete(napi); |
| |
| TSI_WRITE(TSI108_EC_INTMASK, |
| TSI_READ(TSI108_EC_INTMASK) |
| & ~(TSI108_INT_RXQUEUE0 |
| | TSI108_INT_RXTHRESH | |
| TSI108_INT_RXOVERRUN | |
| TSI108_INT_RXERROR | |
| TSI108_INT_RXWAIT)); |
| } else { |
| data->rxpending = 1; |
| } |
| |
| return num_received; |
| } |
| |
| static void tsi108_rx_int(struct net_device *dev) |
| { |
| struct tsi108_prv_data *data = netdev_priv(dev); |
| |
| /* A race could cause dev to already be scheduled, so it's not an |
| * error if that happens (and interrupts shouldn't be re-masked, |
| * because that can cause harmful races, if poll has already |
| * unmasked them but not cleared LINK_STATE_SCHED). |
| * |
| * This can happen if this code races with tsi108_poll(), which masks |
| * the interrupts after tsi108_irq_one() read the mask, but before |
| * napi_schedule is called. It could also happen due to calls |
| * from tsi108_check_rxring(). |
| */ |
| |
| if (napi_schedule_prep(&data->napi)) { |
| /* Mask, rather than ack, the receive interrupts. The ack |
| * will happen in tsi108_poll(). |
| */ |
| |
| TSI_WRITE(TSI108_EC_INTMASK, |
| TSI_READ(TSI108_EC_INTMASK) | |
| TSI108_INT_RXQUEUE0 |
| | TSI108_INT_RXTHRESH | |
| TSI108_INT_RXOVERRUN | TSI108_INT_RXERROR | |
| TSI108_INT_RXWAIT); |
| __napi_schedule(&data->napi); |
| } else { |
| if (!netif_running(dev)) { |
| /* This can happen if an interrupt occurs while the |
| * interface is being brought down, as the START |
| * bit is cleared before the stop function is called. |
| * |
| * In this case, the interrupts must be masked, or |
| * they will continue indefinitely. |
| * |
| * There's a race here if the interface is brought down |
| * and then up in rapid succession, as the device could |
| * be made running after the above check and before |
| * the masking below. This will only happen if the IRQ |
| * thread has a lower priority than the task brining |
| * up the interface. Fixing this race would likely |
| * require changes in generic code. |
| */ |
| |
| TSI_WRITE(TSI108_EC_INTMASK, |
| TSI_READ |
| (TSI108_EC_INTMASK) | |
| TSI108_INT_RXQUEUE0 | |
| TSI108_INT_RXTHRESH | |
| TSI108_INT_RXOVERRUN | |
| TSI108_INT_RXERROR | |
| TSI108_INT_RXWAIT); |
| } |
| } |
| } |
| |
| /* If the RX ring has run out of memory, try periodically |
| * to allocate some more, as otherwise poll would never |
| * get called (apart from the initial end-of-queue condition). |
| * |
| * This is called once per second (by default) from the thread. |
| */ |
| |
| static void tsi108_check_rxring(struct net_device *dev) |
| { |
| struct tsi108_prv_data *data = netdev_priv(dev); |
| |
| /* A poll is scheduled, as opposed to caling tsi108_refill_rx |
| * directly, so as to keep the receive path single-threaded |
| * (and thus not needing a lock). |
| */ |
| |
| if (netif_running(dev) && data->rxfree < TSI108_RXRING_LEN / 4) |
| tsi108_rx_int(dev); |
| } |
| |
| static void tsi108_tx_int(struct net_device *dev) |
| { |
| struct tsi108_prv_data *data = netdev_priv(dev); |
| u32 estat = TSI_READ(TSI108_EC_TXESTAT); |
| |
| TSI_WRITE(TSI108_EC_TXESTAT, estat); |
| TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_TXQUEUE0 | |
| TSI108_INT_TXIDLE | TSI108_INT_TXERROR); |
| if (estat & TSI108_EC_TXESTAT_Q0_ERR) { |
| u32 err = TSI_READ(TSI108_EC_TXERR); |
| TSI_WRITE(TSI108_EC_TXERR, err); |
| |
| if (err && net_ratelimit()) |
| printk(KERN_ERR "%s: TX error %x\n", dev->name, err); |
| } |
| |
| if (estat & (TSI108_EC_TXESTAT_Q0_DESCINT | TSI108_EC_TXESTAT_Q0_EOQ)) { |
| spin_lock(&data->txlock); |
| tsi108_complete_tx(dev); |
| spin_unlock(&data->txlock); |
| } |
| } |
| |
| |
| static irqreturn_t tsi108_irq(int irq, void *dev_id) |
| { |
| struct net_device *dev = dev_id; |
| struct tsi108_prv_data *data = netdev_priv(dev); |
| u32 stat = TSI_READ(TSI108_EC_INTSTAT); |
| |
| if (!(stat & TSI108_INT_ANY)) |
| return IRQ_NONE; /* Not our interrupt */ |
| |
| stat &= ~TSI_READ(TSI108_EC_INTMASK); |
| |
| if (stat & (TSI108_INT_TXQUEUE0 | TSI108_INT_TXIDLE | |
| TSI108_INT_TXERROR)) |
| tsi108_tx_int(dev); |
| if (stat & (TSI108_INT_RXQUEUE0 | TSI108_INT_RXTHRESH | |
| TSI108_INT_RXWAIT | TSI108_INT_RXOVERRUN | |
| TSI108_INT_RXERROR)) |
| tsi108_rx_int(dev); |
| |
| if (stat & TSI108_INT_SFN) { |
| if (net_ratelimit()) |
| printk(KERN_DEBUG "%s: SFN error\n", dev->name); |
| TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_SFN); |
| } |
| |
| if (stat & TSI108_INT_STATCARRY) { |
| tsi108_stat_carry(dev); |
| TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_STATCARRY); |
| } |
| |
| return IRQ_HANDLED; |
| } |
| |
| static void tsi108_stop_ethernet(struct net_device *dev) |
| { |
| struct tsi108_prv_data *data = netdev_priv(dev); |
| int i = 1000; |
| /* Disable all TX and RX queues ... */ |
| TSI_WRITE(TSI108_EC_TXCTRL, 0); |
| TSI_WRITE(TSI108_EC_RXCTRL, 0); |
| |
| /* ...and wait for them to become idle */ |
| while(i--) { |
| if(!(TSI_READ(TSI108_EC_TXSTAT) & TSI108_EC_TXSTAT_ACTIVE)) |
| break; |
| udelay(10); |
| } |
| i = 1000; |
| while(i--){ |
| if(!(TSI_READ(TSI108_EC_RXSTAT) & TSI108_EC_RXSTAT_ACTIVE)) |
| return; |
| udelay(10); |
| } |
| printk(KERN_ERR "%s function time out \n", __func__); |
| } |
| |
| static void tsi108_reset_ether(struct tsi108_prv_data * data) |
| { |
| TSI_WRITE(TSI108_MAC_CFG1, TSI108_MAC_CFG1_SOFTRST); |
| udelay(100); |
| TSI_WRITE(TSI108_MAC_CFG1, 0); |
| |
| TSI_WRITE(TSI108_EC_PORTCTRL, TSI108_EC_PORTCTRL_STATRST); |
| udelay(100); |
| TSI_WRITE(TSI108_EC_PORTCTRL, |
| TSI_READ(TSI108_EC_PORTCTRL) & |
| ~TSI108_EC_PORTCTRL_STATRST); |
| |
| TSI_WRITE(TSI108_EC_TXCFG, TSI108_EC_TXCFG_RST); |
| udelay(100); |
| TSI_WRITE(TSI108_EC_TXCFG, |
| TSI_READ(TSI108_EC_TXCFG) & |
| ~TSI108_EC_TXCFG_RST); |
| |
| TSI_WRITE(TSI108_EC_RXCFG, TSI108_EC_RXCFG_RST); |
| udelay(100); |
| TSI_WRITE(TSI108_EC_RXCFG, |
| TSI_READ(TSI108_EC_RXCFG) & |
| ~TSI108_EC_RXCFG_RST); |
| |
| TSI_WRITE(TSI108_MAC_MII_MGMT_CFG, |
| TSI_READ(TSI108_MAC_MII_MGMT_CFG) | |
| TSI108_MAC_MII_MGMT_RST); |
| udelay(100); |
| TSI_WRITE(TSI108_MAC_MII_MGMT_CFG, |
| (TSI_READ(TSI108_MAC_MII_MGMT_CFG) & |
| ~(TSI108_MAC_MII_MGMT_RST | |
| TSI108_MAC_MII_MGMT_CLK)) | 0x07); |
| } |
| |
| static int tsi108_get_mac(struct net_device *dev) |
| { |
| struct tsi108_prv_data *data = netdev_priv(dev); |
| u32 word1 = TSI_READ(TSI108_MAC_ADDR1); |
| u32 word2 = TSI_READ(TSI108_MAC_ADDR2); |
| |
| /* Note that the octets are reversed from what the manual says, |
| * producing an even weirder ordering... |
| */ |
| if (word2 == 0 && word1 == 0) { |
| dev->dev_addr[0] = 0x00; |
| dev->dev_addr[1] = 0x06; |
| dev->dev_addr[2] = 0xd2; |
| dev->dev_addr[3] = 0x00; |
| dev->dev_addr[4] = 0x00; |
| if (0x8 == data->phy) |
| dev->dev_addr[5] = 0x01; |
| else |
| dev->dev_addr[5] = 0x02; |
| |
| word2 = (dev->dev_addr[0] << 16) | (dev->dev_addr[1] << 24); |
| |
| word1 = (dev->dev_addr[2] << 0) | (dev->dev_addr[3] << 8) | |
| (dev->dev_addr[4] << 16) | (dev->dev_addr[5] << 24); |
| |
| TSI_WRITE(TSI108_MAC_ADDR1, word1); |
| TSI_WRITE(TSI108_MAC_ADDR2, word2); |
| } else { |
| dev->dev_addr[0] = (word2 >> 16) & 0xff; |
| dev->dev_addr[1] = (word2 >> 24) & 0xff; |
| dev->dev_addr[2] = (word1 >> 0) & 0xff; |
| dev->dev_addr[3] = (word1 >> 8) & 0xff; |
| dev->dev_addr[4] = (word1 >> 16) & 0xff; |
| dev->dev_addr[5] = (word1 >> 24) & 0xff; |
| } |
| |
| if (!is_valid_ether_addr(dev->dev_addr)) { |
| printk("KERN_ERR: word1: %08x, word2: %08x\n", word1, word2); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static int tsi108_set_mac(struct net_device *dev, void *addr) |
| { |
| struct tsi108_prv_data *data = netdev_priv(dev); |
| u32 word1, word2; |
| int i; |
| |
| if (!is_valid_ether_addr(addr)) |
| return -EINVAL; |
| |
| for (i = 0; i < 6; i++) |
| /* +2 is for the offset of the HW addr type */ |
| dev->dev_addr[i] = ((unsigned char *)addr)[i + 2]; |
| |
| word2 = (dev->dev_addr[0] << 16) | (dev->dev_addr[1] << 24); |
| |
| word1 = (dev->dev_addr[2] << 0) | (dev->dev_addr[3] << 8) | |
| (dev->dev_addr[4] << 16) | (dev->dev_addr[5] << 24); |
| |
| spin_lock_irq(&data->misclock); |
| TSI_WRITE(TSI108_MAC_ADDR1, word1); |
| TSI_WRITE(TSI108_MAC_ADDR2, word2); |
| spin_lock(&data->txlock); |
| |
| if (data->txfree && data->link_up) |
| netif_wake_queue(dev); |
| |
| spin_unlock(&data->txlock); |
| spin_unlock_irq(&data->misclock); |
| return 0; |
| } |
| |
| /* Protected by dev->xmit_lock. */ |
| static void tsi108_set_rx_mode(struct net_device *dev) |
| { |
| struct tsi108_prv_data *data = netdev_priv(dev); |
| u32 rxcfg = TSI_READ(TSI108_EC_RXCFG); |
| |
| if (dev->flags & IFF_PROMISC) { |
| rxcfg &= ~(TSI108_EC_RXCFG_UC_HASH | TSI108_EC_RXCFG_MC_HASH); |
| rxcfg |= TSI108_EC_RXCFG_UFE | TSI108_EC_RXCFG_MFE; |
| goto out; |
| } |
| |
| rxcfg &= ~(TSI108_EC_RXCFG_UFE | TSI108_EC_RXCFG_MFE); |
| |
| if (dev->flags & IFF_ALLMULTI || dev->mc_count) { |
| int i; |
| struct dev_mc_list *mc = dev->mc_list; |
| rxcfg |= TSI108_EC_RXCFG_MFE | TSI108_EC_RXCFG_MC_HASH; |
| |
| memset(data->mc_hash, 0, sizeof(data->mc_hash)); |
| |
| while (mc) { |
| u32 hash, crc; |
| |
| if (mc->dmi_addrlen == 6) { |
| crc = ether_crc(6, mc->dmi_addr); |
| hash = crc >> 23; |
| |
| __set_bit(hash, &data->mc_hash[0]); |
| } else { |
| printk(KERN_ERR |
| "%s: got multicast address of length %d " |
| "instead of 6.\n", dev->name, |
| mc->dmi_addrlen); |
| } |
| |
| mc = mc->next; |
| } |
| |
| TSI_WRITE(TSI108_EC_HASHADDR, |
| TSI108_EC_HASHADDR_AUTOINC | |
| TSI108_EC_HASHADDR_MCAST); |
| |
| for (i = 0; i < 16; i++) { |
| /* The manual says that the hardware may drop |
| * back-to-back writes to the data register. |
| */ |
| udelay(1); |
| TSI_WRITE(TSI108_EC_HASHDATA, |
| data->mc_hash[i]); |
| } |
| } |
| |
| out: |
| TSI_WRITE(TSI108_EC_RXCFG, rxcfg); |
| } |
| |
| static void tsi108_init_phy(struct net_device *dev) |
| { |
| struct tsi108_prv_data *data = netdev_priv(dev); |
| u32 i = 0; |
| u16 phyval = 0; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&phy_lock, flags); |
| |
| tsi108_write_mii(data, MII_BMCR, BMCR_RESET); |
| while (i--){ |
| if(!(tsi108_read_mii(data, MII_BMCR) & BMCR_RESET)) |
| break; |
| udelay(10); |
| } |
| if (i == 0) |
| printk(KERN_ERR "%s function time out \n", __func__); |
| |
| if (data->phy_type == TSI108_PHY_BCM54XX) { |
| tsi108_write_mii(data, 0x09, 0x0300); |
| tsi108_write_mii(data, 0x10, 0x1020); |
| tsi108_write_mii(data, 0x1c, 0x8c00); |
| } |
| |
| tsi108_write_mii(data, |
| MII_BMCR, |
| BMCR_ANENABLE | BMCR_ANRESTART); |
| while (tsi108_read_mii(data, MII_BMCR) & BMCR_ANRESTART) |
| cpu_relax(); |
| |
| /* Set G/MII mode and receive clock select in TBI control #2. The |
| * second port won't work if this isn't done, even though we don't |
| * use TBI mode. |
| */ |
| |
| tsi108_write_tbi(data, 0x11, 0x30); |
| |
| /* FIXME: It seems to take more than 2 back-to-back reads to the |
| * PHY_STAT register before the link up status bit is set. |
| */ |
| |
| data->link_up = 0; |
| |
| while (!((phyval = tsi108_read_mii(data, MII_BMSR)) & |
| BMSR_LSTATUS)) { |
| if (i++ > (MII_READ_DELAY / 10)) { |
| break; |
| } |
| spin_unlock_irqrestore(&phy_lock, flags); |
| msleep(10); |
| spin_lock_irqsave(&phy_lock, flags); |
| } |
| |
| data->mii_if.supports_gmii = mii_check_gmii_support(&data->mii_if); |
| printk(KERN_DEBUG "PHY_STAT reg contains %08x\n", phyval); |
| data->phy_ok = 1; |
| data->init_media = 1; |
| spin_unlock_irqrestore(&phy_lock, flags); |
| } |
| |
| static void tsi108_kill_phy(struct net_device *dev) |
| { |
| struct tsi108_prv_data *data = netdev_priv(dev); |
| unsigned long flags; |
| |
| spin_lock_irqsave(&phy_lock, flags); |
| tsi108_write_mii(data, MII_BMCR, BMCR_PDOWN); |
| data->phy_ok = 0; |
| spin_unlock_irqrestore(&phy_lock, flags); |
| } |
| |
| static int tsi108_open(struct net_device *dev) |
| { |
| int i; |
| struct tsi108_prv_data *data = netdev_priv(dev); |
| unsigned int rxring_size = TSI108_RXRING_LEN * sizeof(rx_desc); |
| unsigned int txring_size = TSI108_TXRING_LEN * sizeof(tx_desc); |
| |
| i = request_irq(data->irq_num, tsi108_irq, 0, dev->name, dev); |
| if (i != 0) { |
| printk(KERN_ERR "tsi108_eth%d: Could not allocate IRQ%d.\n", |
| data->id, data->irq_num); |
| return i; |
| } else { |
| dev->irq = data->irq_num; |
| printk(KERN_NOTICE |
| "tsi108_open : Port %d Assigned IRQ %d to %s\n", |
| data->id, dev->irq, dev->name); |
| } |
| |
| data->rxring = dma_alloc_coherent(NULL, rxring_size, |
| &data->rxdma, GFP_KERNEL); |
| |
| if (!data->rxring) { |
| printk(KERN_DEBUG |
| "TSI108_ETH: failed to allocate memory for rxring!\n"); |
| return -ENOMEM; |
| } else { |
| memset(data->rxring, 0, rxring_size); |
| } |
| |
| data->txring = dma_alloc_coherent(NULL, txring_size, |
| &data->txdma, GFP_KERNEL); |
| |
| if (!data->txring) { |
| printk(KERN_DEBUG |
| "TSI108_ETH: failed to allocate memory for txring!\n"); |
| pci_free_consistent(0, rxring_size, data->rxring, data->rxdma); |
| return -ENOMEM; |
| } else { |
| memset(data->txring, 0, txring_size); |
| } |
| |
| for (i = 0; i < TSI108_RXRING_LEN; i++) { |
| data->rxring[i].next0 = data->rxdma + (i + 1) * sizeof(rx_desc); |
| data->rxring[i].blen = TSI108_RXBUF_SIZE; |
| data->rxring[i].vlan = 0; |
| } |
| |
| data->rxring[TSI108_RXRING_LEN - 1].next0 = data->rxdma; |
| |
| data->rxtail = 0; |
| data->rxhead = 0; |
| |
| for (i = 0; i < TSI108_RXRING_LEN; i++) { |
| struct sk_buff *skb; |
| |
| skb = netdev_alloc_skb(dev, TSI108_RXBUF_SIZE + NET_IP_ALIGN); |
| if (!skb) { |
| /* Bah. No memory for now, but maybe we'll get |
| * some more later. |
| * For now, we'll live with the smaller ring. |
| */ |
| printk(KERN_WARNING |
| "%s: Could only allocate %d receive skb(s).\n", |
| dev->name, i); |
| data->rxhead = i; |
| break; |
| } |
| |
| data->rxskbs[i] = skb; |
| /* Align the payload on a 4-byte boundary */ |
| skb_reserve(skb, 2); |
| data->rxskbs[i] = skb; |
| data->rxring[i].buf0 = virt_to_phys(data->rxskbs[i]->data); |
| data->rxring[i].misc = TSI108_RX_OWN | TSI108_RX_INT; |
| } |
| |
| data->rxfree = i; |
| TSI_WRITE(TSI108_EC_RXQ_PTRLOW, data->rxdma); |
| |
| for (i = 0; i < TSI108_TXRING_LEN; i++) { |
| data->txring[i].next0 = data->txdma + (i + 1) * sizeof(tx_desc); |
| data->txring[i].misc = 0; |
| } |
| |
| data->txring[TSI108_TXRING_LEN - 1].next0 = data->txdma; |
| data->txtail = 0; |
| data->txhead = 0; |
| data->txfree = TSI108_TXRING_LEN; |
| TSI_WRITE(TSI108_EC_TXQ_PTRLOW, data->txdma); |
| tsi108_init_phy(dev); |
| |
| napi_enable(&data->napi); |
| |
| setup_timer(&data->timer, tsi108_timed_checker, (unsigned long)dev); |
| mod_timer(&data->timer, jiffies + 1); |
| |
| tsi108_restart_rx(data, dev); |
| |
| TSI_WRITE(TSI108_EC_INTSTAT, ~0); |
| |
| TSI_WRITE(TSI108_EC_INTMASK, |
| ~(TSI108_INT_TXQUEUE0 | TSI108_INT_RXERROR | |
| TSI108_INT_RXTHRESH | TSI108_INT_RXQUEUE0 | |
| TSI108_INT_RXOVERRUN | TSI108_INT_RXWAIT | |
| TSI108_INT_SFN | TSI108_INT_STATCARRY)); |
| |
| TSI_WRITE(TSI108_MAC_CFG1, |
| TSI108_MAC_CFG1_RXEN | TSI108_MAC_CFG1_TXEN); |
| netif_start_queue(dev); |
| return 0; |
| } |
| |
| static int tsi108_close(struct net_device *dev) |
| { |
| struct tsi108_prv_data *data = netdev_priv(dev); |
| |
| netif_stop_queue(dev); |
| napi_disable(&data->napi); |
| |
| del_timer_sync(&data->timer); |
| |
| tsi108_stop_ethernet(dev); |
| tsi108_kill_phy(dev); |
| TSI_WRITE(TSI108_EC_INTMASK, ~0); |
| TSI_WRITE(TSI108_MAC_CFG1, 0); |
| |
| /* Check for any pending TX packets, and drop them. */ |
| |
| while (!data->txfree || data->txhead != data->txtail) { |
| int tx = data->txtail; |
| struct sk_buff *skb; |
| skb = data->txskbs[tx]; |
| data->txtail = (data->txtail + 1) % TSI108_TXRING_LEN; |
| data->txfree++; |
| dev_kfree_skb(skb); |
| } |
| |
| free_irq(data->irq_num, dev); |
| |
| /* Discard the RX ring. */ |
| |
| while (data->rxfree) { |
| int rx = data->rxtail; |
| struct sk_buff *skb; |
| |
| skb = data->rxskbs[rx]; |
| data->rxtail = (data->rxtail + 1) % TSI108_RXRING_LEN; |
| data->rxfree--; |
| dev_kfree_skb(skb); |
| } |
| |
| dma_free_coherent(0, |
| TSI108_RXRING_LEN * sizeof(rx_desc), |
| data->rxring, data->rxdma); |
| dma_free_coherent(0, |
| TSI108_TXRING_LEN * sizeof(tx_desc), |
| data->txring, data->txdma); |
| |
| return 0; |
| } |
| |
| static void tsi108_init_mac(struct net_device *dev) |
| { |
| struct tsi108_prv_data *data = netdev_priv(dev); |
| |
| TSI_WRITE(TSI108_MAC_CFG2, TSI108_MAC_CFG2_DFLT_PREAMBLE | |
| TSI108_MAC_CFG2_PADCRC); |
| |
| TSI_WRITE(TSI108_EC_TXTHRESH, |
| (192 << TSI108_EC_TXTHRESH_STARTFILL) | |
| (192 << TSI108_EC_TXTHRESH_STOPFILL)); |
| |
| TSI_WRITE(TSI108_STAT_CARRYMASK1, |
| ~(TSI108_STAT_CARRY1_RXBYTES | |
| TSI108_STAT_CARRY1_RXPKTS | |
| TSI108_STAT_CARRY1_RXFCS | |
| TSI108_STAT_CARRY1_RXMCAST | |
| TSI108_STAT_CARRY1_RXALIGN | |
| TSI108_STAT_CARRY1_RXLENGTH | |
| TSI108_STAT_CARRY1_RXRUNT | |
| TSI108_STAT_CARRY1_RXJUMBO | |
| TSI108_STAT_CARRY1_RXFRAG | |
| TSI108_STAT_CARRY1_RXJABBER | |
| TSI108_STAT_CARRY1_RXDROP)); |
| |
| TSI_WRITE(TSI108_STAT_CARRYMASK2, |
| ~(TSI108_STAT_CARRY2_TXBYTES | |
| TSI108_STAT_CARRY2_TXPKTS | |
| TSI108_STAT_CARRY2_TXEXDEF | |
| TSI108_STAT_CARRY2_TXEXCOL | |
| TSI108_STAT_CARRY2_TXTCOL | |
| TSI108_STAT_CARRY2_TXPAUSE)); |
| |
| TSI_WRITE(TSI108_EC_PORTCTRL, TSI108_EC_PORTCTRL_STATEN); |
| TSI_WRITE(TSI108_MAC_CFG1, 0); |
| |
| TSI_WRITE(TSI108_EC_RXCFG, |
| TSI108_EC_RXCFG_SE | TSI108_EC_RXCFG_BFE); |
| |
| TSI_WRITE(TSI108_EC_TXQ_CFG, TSI108_EC_TXQ_CFG_DESC_INT | |
| TSI108_EC_TXQ_CFG_EOQ_OWN_INT | |
| TSI108_EC_TXQ_CFG_WSWP | (TSI108_PBM_PORT << |
| TSI108_EC_TXQ_CFG_SFNPORT)); |
| |
| TSI_WRITE(TSI108_EC_RXQ_CFG, TSI108_EC_RXQ_CFG_DESC_INT | |
| TSI108_EC_RXQ_CFG_EOQ_OWN_INT | |
| TSI108_EC_RXQ_CFG_WSWP | (TSI108_PBM_PORT << |
| TSI108_EC_RXQ_CFG_SFNPORT)); |
| |
| TSI_WRITE(TSI108_EC_TXQ_BUFCFG, |
| TSI108_EC_TXQ_BUFCFG_BURST256 | |
| TSI108_EC_TXQ_BUFCFG_BSWP | (TSI108_PBM_PORT << |
| TSI108_EC_TXQ_BUFCFG_SFNPORT)); |
| |
| TSI_WRITE(TSI108_EC_RXQ_BUFCFG, |
| TSI108_EC_RXQ_BUFCFG_BURST256 | |
| TSI108_EC_RXQ_BUFCFG_BSWP | (TSI108_PBM_PORT << |
| TSI108_EC_RXQ_BUFCFG_SFNPORT)); |
| |
| TSI_WRITE(TSI108_EC_INTMASK, ~0); |
| } |
| |
| static int tsi108_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) |
| { |
| struct tsi108_prv_data *data = netdev_priv(dev); |
| unsigned long flags; |
| int rc; |
| |
| spin_lock_irqsave(&data->txlock, flags); |
| rc = mii_ethtool_gset(&data->mii_if, cmd); |
| spin_unlock_irqrestore(&data->txlock, flags); |
| |
| return rc; |
| } |
| |
| static int tsi108_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) |
| { |
| struct tsi108_prv_data *data = netdev_priv(dev); |
| unsigned long flags; |
| int rc; |
| |
| spin_lock_irqsave(&data->txlock, flags); |
| rc = mii_ethtool_sset(&data->mii_if, cmd); |
| spin_unlock_irqrestore(&data->txlock, flags); |
| |
| return rc; |
| } |
| |
| static int tsi108_do_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) |
| { |
| struct tsi108_prv_data *data = netdev_priv(dev); |
| if (!netif_running(dev)) |
| return -EINVAL; |
| return generic_mii_ioctl(&data->mii_if, if_mii(rq), cmd, NULL); |
| } |
| |
| static const struct ethtool_ops tsi108_ethtool_ops = { |
| .get_link = ethtool_op_get_link, |
| .get_settings = tsi108_get_settings, |
| .set_settings = tsi108_set_settings, |
| }; |
| |
| static int |
| tsi108_init_one(struct platform_device *pdev) |
| { |
| struct net_device *dev = NULL; |
| struct tsi108_prv_data *data = NULL; |
| hw_info *einfo; |
| int err = 0; |
| |
| einfo = pdev->dev.platform_data; |
| |
| if (NULL == einfo) { |
| printk(KERN_ERR "tsi-eth %d: Missing additional data!\n", |
| pdev->id); |
| return -ENODEV; |
| } |
| |
| /* Create an ethernet device instance */ |
| |
| dev = alloc_etherdev(sizeof(struct tsi108_prv_data)); |
| if (!dev) { |
| printk("tsi108_eth: Could not allocate a device structure\n"); |
| return -ENOMEM; |
| } |
| |
| printk("tsi108_eth%d: probe...\n", pdev->id); |
| data = netdev_priv(dev); |
| data->dev = dev; |
| |
| pr_debug("tsi108_eth%d:regs:phyresgs:phy:irq_num=0x%x:0x%x:0x%x:0x%x\n", |
| pdev->id, einfo->regs, einfo->phyregs, |
| einfo->phy, einfo->irq_num); |
| |
| data->regs = ioremap(einfo->regs, 0x400); |
| if (NULL == data->regs) { |
| err = -ENOMEM; |
| goto regs_fail; |
| } |
| |
| data->phyregs = ioremap(einfo->phyregs, 0x400); |
| if (NULL == data->phyregs) { |
| err = -ENOMEM; |
| goto regs_fail; |
| } |
| /* MII setup */ |
| data->mii_if.dev = dev; |
| data->mii_if.mdio_read = tsi108_mdio_read; |
| data->mii_if.mdio_write = tsi108_mdio_write; |
| data->mii_if.phy_id = einfo->phy; |
| data->mii_if.phy_id_mask = 0x1f; |
| data->mii_if.reg_num_mask = 0x1f; |
| |
| data->phy = einfo->phy; |
| data->phy_type = einfo->phy_type; |
| data->irq_num = einfo->irq_num; |
| data->id = pdev->id; |
| dev->open = tsi108_open; |
| dev->stop = tsi108_close; |
| dev->hard_start_xmit = tsi108_send_packet; |
| dev->set_mac_address = tsi108_set_mac; |
| dev->set_multicast_list = tsi108_set_rx_mode; |
| dev->get_stats = tsi108_get_stats; |
| netif_napi_add(dev, &data->napi, tsi108_poll, 64); |
| dev->do_ioctl = tsi108_do_ioctl; |
| dev->ethtool_ops = &tsi108_ethtool_ops; |
| |
| /* Apparently, the Linux networking code won't use scatter-gather |
| * if the hardware doesn't do checksums. However, it's faster |
| * to checksum in place and use SG, as (among other reasons) |
| * the cache won't be dirtied (which then has to be flushed |
| * before DMA). The checksumming is done by the driver (via |
| * a new function skb_csum_dev() in net/core/skbuff.c). |
| */ |
| |
| dev->features = NETIF_F_HIGHDMA; |
| |
| spin_lock_init(&data->txlock); |
| spin_lock_init(&data->misclock); |
| |
| tsi108_reset_ether(data); |
| tsi108_kill_phy(dev); |
| |
| if ((err = tsi108_get_mac(dev)) != 0) { |
| printk(KERN_ERR "%s: Invalid MAC address. Please correct.\n", |
| dev->name); |
| goto register_fail; |
| } |
| |
| tsi108_init_mac(dev); |
| err = register_netdev(dev); |
| if (err) { |
| printk(KERN_ERR "%s: Cannot register net device, aborting.\n", |
| dev->name); |
| goto register_fail; |
| } |
| |
| platform_set_drvdata(pdev, dev); |
| printk(KERN_INFO "%s: Tsi108 Gigabit Ethernet, MAC: %pM\n", |
| dev->name, dev->dev_addr); |
| #ifdef DEBUG |
| data->msg_enable = DEBUG; |
| dump_eth_one(dev); |
| #endif |
| |
| return 0; |
| |
| register_fail: |
| iounmap(data->regs); |
| iounmap(data->phyregs); |
| |
| regs_fail: |
| free_netdev(dev); |
| return err; |
| } |
| |
| /* There's no way to either get interrupts from the PHY when |
| * something changes, or to have the Tsi108 automatically communicate |
| * with the PHY to reconfigure itself. |
| * |
| * Thus, we have to do it using a timer. |
| */ |
| |
| static void tsi108_timed_checker(unsigned long dev_ptr) |
| { |
| struct net_device *dev = (struct net_device *)dev_ptr; |
| struct tsi108_prv_data *data = netdev_priv(dev); |
| |
| tsi108_check_phy(dev); |
| tsi108_check_rxring(dev); |
| mod_timer(&data->timer, jiffies + CHECK_PHY_INTERVAL); |
| } |
| |
| static int tsi108_ether_init(void) |
| { |
| int ret; |
| ret = platform_driver_register (&tsi_eth_driver); |
| if (ret < 0){ |
| printk("tsi108_ether_init: error initializing ethernet " |
| "device\n"); |
| return ret; |
| } |
| return 0; |
| } |
| |
| static int tsi108_ether_remove(struct platform_device *pdev) |
| { |
| struct net_device *dev = platform_get_drvdata(pdev); |
| struct tsi108_prv_data *priv = netdev_priv(dev); |
| |
| unregister_netdev(dev); |
| tsi108_stop_ethernet(dev); |
| platform_set_drvdata(pdev, NULL); |
| iounmap(priv->regs); |
| iounmap(priv->phyregs); |
| free_netdev(dev); |
| |
| return 0; |
| } |
| static void tsi108_ether_exit(void) |
| { |
| platform_driver_unregister(&tsi_eth_driver); |
| } |
| |
| module_init(tsi108_ether_init); |
| module_exit(tsi108_ether_exit); |
| |
| MODULE_AUTHOR("Tundra Semiconductor Corporation"); |
| MODULE_DESCRIPTION("Tsi108 Gigabit Ethernet driver"); |
| MODULE_LICENSE("GPL"); |
| MODULE_ALIAS("platform:tsi-ethernet"); |