| #include <linux/init.h> |
| #include <linux/string.h> |
| #include <linux/delay.h> |
| #include <linux/smp.h> |
| #include <linux/module.h> |
| #include <linux/percpu.h> |
| #include <linux/bootmem.h> |
| #include <asm/semaphore.h> |
| #include <asm/processor.h> |
| #include <asm/i387.h> |
| #include <asm/msr.h> |
| #include <asm/io.h> |
| #include <asm/mmu_context.h> |
| #include <asm/mtrr.h> |
| #include <asm/mce.h> |
| #ifdef CONFIG_X86_LOCAL_APIC |
| #include <asm/mpspec.h> |
| #include <asm/apic.h> |
| #include <mach_apic.h> |
| #endif |
| #include <asm/pda.h> |
| |
| #include "cpu.h" |
| |
| DEFINE_PER_CPU(struct Xgt_desc_struct, cpu_gdt_descr); |
| EXPORT_PER_CPU_SYMBOL(cpu_gdt_descr); |
| |
| struct i386_pda *_cpu_pda[NR_CPUS] __read_mostly; |
| EXPORT_SYMBOL(_cpu_pda); |
| |
| static int cachesize_override __cpuinitdata = -1; |
| static int disable_x86_fxsr __cpuinitdata; |
| static int disable_x86_serial_nr __cpuinitdata = 1; |
| static int disable_x86_sep __cpuinitdata; |
| |
| struct cpu_dev * cpu_devs[X86_VENDOR_NUM] = {}; |
| |
| extern int disable_pse; |
| |
| static void __cpuinit default_init(struct cpuinfo_x86 * c) |
| { |
| /* Not much we can do here... */ |
| /* Check if at least it has cpuid */ |
| if (c->cpuid_level == -1) { |
| /* No cpuid. It must be an ancient CPU */ |
| if (c->x86 == 4) |
| strcpy(c->x86_model_id, "486"); |
| else if (c->x86 == 3) |
| strcpy(c->x86_model_id, "386"); |
| } |
| } |
| |
| static struct cpu_dev __cpuinitdata default_cpu = { |
| .c_init = default_init, |
| .c_vendor = "Unknown", |
| }; |
| static struct cpu_dev * this_cpu __cpuinitdata = &default_cpu; |
| |
| static int __init cachesize_setup(char *str) |
| { |
| get_option (&str, &cachesize_override); |
| return 1; |
| } |
| __setup("cachesize=", cachesize_setup); |
| |
| int __cpuinit get_model_name(struct cpuinfo_x86 *c) |
| { |
| unsigned int *v; |
| char *p, *q; |
| |
| if (cpuid_eax(0x80000000) < 0x80000004) |
| return 0; |
| |
| v = (unsigned int *) c->x86_model_id; |
| cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]); |
| cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]); |
| cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]); |
| c->x86_model_id[48] = 0; |
| |
| /* Intel chips right-justify this string for some dumb reason; |
| undo that brain damage */ |
| p = q = &c->x86_model_id[0]; |
| while ( *p == ' ' ) |
| p++; |
| if ( p != q ) { |
| while ( *p ) |
| *q++ = *p++; |
| while ( q <= &c->x86_model_id[48] ) |
| *q++ = '\0'; /* Zero-pad the rest */ |
| } |
| |
| return 1; |
| } |
| |
| |
| void __cpuinit display_cacheinfo(struct cpuinfo_x86 *c) |
| { |
| unsigned int n, dummy, ecx, edx, l2size; |
| |
| n = cpuid_eax(0x80000000); |
| |
| if (n >= 0x80000005) { |
| cpuid(0x80000005, &dummy, &dummy, &ecx, &edx); |
| printk(KERN_INFO "CPU: L1 I Cache: %dK (%d bytes/line), D cache %dK (%d bytes/line)\n", |
| edx>>24, edx&0xFF, ecx>>24, ecx&0xFF); |
| c->x86_cache_size=(ecx>>24)+(edx>>24); |
| } |
| |
| if (n < 0x80000006) /* Some chips just has a large L1. */ |
| return; |
| |
| ecx = cpuid_ecx(0x80000006); |
| l2size = ecx >> 16; |
| |
| /* do processor-specific cache resizing */ |
| if (this_cpu->c_size_cache) |
| l2size = this_cpu->c_size_cache(c,l2size); |
| |
| /* Allow user to override all this if necessary. */ |
| if (cachesize_override != -1) |
| l2size = cachesize_override; |
| |
| if ( l2size == 0 ) |
| return; /* Again, no L2 cache is possible */ |
| |
| c->x86_cache_size = l2size; |
| |
| printk(KERN_INFO "CPU: L2 Cache: %dK (%d bytes/line)\n", |
| l2size, ecx & 0xFF); |
| } |
| |
| /* Naming convention should be: <Name> [(<Codename>)] */ |
| /* This table only is used unless init_<vendor>() below doesn't set it; */ |
| /* in particular, if CPUID levels 0x80000002..4 are supported, this isn't used */ |
| |
| /* Look up CPU names by table lookup. */ |
| static char __cpuinit *table_lookup_model(struct cpuinfo_x86 *c) |
| { |
| struct cpu_model_info *info; |
| |
| if ( c->x86_model >= 16 ) |
| return NULL; /* Range check */ |
| |
| if (!this_cpu) |
| return NULL; |
| |
| info = this_cpu->c_models; |
| |
| while (info && info->family) { |
| if (info->family == c->x86) |
| return info->model_names[c->x86_model]; |
| info++; |
| } |
| return NULL; /* Not found */ |
| } |
| |
| |
| static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c, int early) |
| { |
| char *v = c->x86_vendor_id; |
| int i; |
| static int printed; |
| |
| for (i = 0; i < X86_VENDOR_NUM; i++) { |
| if (cpu_devs[i]) { |
| if (!strcmp(v,cpu_devs[i]->c_ident[0]) || |
| (cpu_devs[i]->c_ident[1] && |
| !strcmp(v,cpu_devs[i]->c_ident[1]))) { |
| c->x86_vendor = i; |
| if (!early) |
| this_cpu = cpu_devs[i]; |
| return; |
| } |
| } |
| } |
| if (!printed) { |
| printed++; |
| printk(KERN_ERR "CPU: Vendor unknown, using generic init.\n"); |
| printk(KERN_ERR "CPU: Your system may be unstable.\n"); |
| } |
| c->x86_vendor = X86_VENDOR_UNKNOWN; |
| this_cpu = &default_cpu; |
| } |
| |
| |
| static int __init x86_fxsr_setup(char * s) |
| { |
| /* Tell all the other CPU's to not use it... */ |
| disable_x86_fxsr = 1; |
| |
| /* |
| * ... and clear the bits early in the boot_cpu_data |
| * so that the bootup process doesn't try to do this |
| * either. |
| */ |
| clear_bit(X86_FEATURE_FXSR, boot_cpu_data.x86_capability); |
| clear_bit(X86_FEATURE_XMM, boot_cpu_data.x86_capability); |
| return 1; |
| } |
| __setup("nofxsr", x86_fxsr_setup); |
| |
| |
| static int __init x86_sep_setup(char * s) |
| { |
| disable_x86_sep = 1; |
| return 1; |
| } |
| __setup("nosep", x86_sep_setup); |
| |
| |
| /* Standard macro to see if a specific flag is changeable */ |
| static inline int flag_is_changeable_p(u32 flag) |
| { |
| u32 f1, f2; |
| |
| asm("pushfl\n\t" |
| "pushfl\n\t" |
| "popl %0\n\t" |
| "movl %0,%1\n\t" |
| "xorl %2,%0\n\t" |
| "pushl %0\n\t" |
| "popfl\n\t" |
| "pushfl\n\t" |
| "popl %0\n\t" |
| "popfl\n\t" |
| : "=&r" (f1), "=&r" (f2) |
| : "ir" (flag)); |
| |
| return ((f1^f2) & flag) != 0; |
| } |
| |
| |
| /* Probe for the CPUID instruction */ |
| static int __cpuinit have_cpuid_p(void) |
| { |
| return flag_is_changeable_p(X86_EFLAGS_ID); |
| } |
| |
| void __init cpu_detect(struct cpuinfo_x86 *c) |
| { |
| /* Get vendor name */ |
| cpuid(0x00000000, &c->cpuid_level, |
| (int *)&c->x86_vendor_id[0], |
| (int *)&c->x86_vendor_id[8], |
| (int *)&c->x86_vendor_id[4]); |
| |
| c->x86 = 4; |
| if (c->cpuid_level >= 0x00000001) { |
| u32 junk, tfms, cap0, misc; |
| cpuid(0x00000001, &tfms, &misc, &junk, &cap0); |
| c->x86 = (tfms >> 8) & 15; |
| c->x86_model = (tfms >> 4) & 15; |
| if (c->x86 == 0xf) |
| c->x86 += (tfms >> 20) & 0xff; |
| if (c->x86 >= 0x6) |
| c->x86_model += ((tfms >> 16) & 0xF) << 4; |
| c->x86_mask = tfms & 15; |
| if (cap0 & (1<<19)) |
| c->x86_cache_alignment = ((misc >> 8) & 0xff) * 8; |
| } |
| } |
| |
| /* Do minimum CPU detection early. |
| Fields really needed: vendor, cpuid_level, family, model, mask, cache alignment. |
| The others are not touched to avoid unwanted side effects. |
| |
| WARNING: this function is only called on the BP. Don't add code here |
| that is supposed to run on all CPUs. */ |
| static void __init early_cpu_detect(void) |
| { |
| struct cpuinfo_x86 *c = &boot_cpu_data; |
| |
| c->x86_cache_alignment = 32; |
| |
| if (!have_cpuid_p()) |
| return; |
| |
| cpu_detect(c); |
| |
| get_cpu_vendor(c, 1); |
| } |
| |
| static void __cpuinit generic_identify(struct cpuinfo_x86 * c) |
| { |
| u32 tfms, xlvl; |
| int ebx; |
| |
| if (have_cpuid_p()) { |
| /* Get vendor name */ |
| cpuid(0x00000000, &c->cpuid_level, |
| (int *)&c->x86_vendor_id[0], |
| (int *)&c->x86_vendor_id[8], |
| (int *)&c->x86_vendor_id[4]); |
| |
| get_cpu_vendor(c, 0); |
| /* Initialize the standard set of capabilities */ |
| /* Note that the vendor-specific code below might override */ |
| |
| /* Intel-defined flags: level 0x00000001 */ |
| if ( c->cpuid_level >= 0x00000001 ) { |
| u32 capability, excap; |
| cpuid(0x00000001, &tfms, &ebx, &excap, &capability); |
| c->x86_capability[0] = capability; |
| c->x86_capability[4] = excap; |
| c->x86 = (tfms >> 8) & 15; |
| c->x86_model = (tfms >> 4) & 15; |
| if (c->x86 == 0xf) |
| c->x86 += (tfms >> 20) & 0xff; |
| if (c->x86 >= 0x6) |
| c->x86_model += ((tfms >> 16) & 0xF) << 4; |
| c->x86_mask = tfms & 15; |
| #ifdef CONFIG_X86_HT |
| c->apicid = phys_pkg_id((ebx >> 24) & 0xFF, 0); |
| #else |
| c->apicid = (ebx >> 24) & 0xFF; |
| #endif |
| if (c->x86_capability[0] & (1<<19)) |
| c->x86_clflush_size = ((ebx >> 8) & 0xff) * 8; |
| } else { |
| /* Have CPUID level 0 only - unheard of */ |
| c->x86 = 4; |
| } |
| |
| /* AMD-defined flags: level 0x80000001 */ |
| xlvl = cpuid_eax(0x80000000); |
| if ( (xlvl & 0xffff0000) == 0x80000000 ) { |
| if ( xlvl >= 0x80000001 ) { |
| c->x86_capability[1] = cpuid_edx(0x80000001); |
| c->x86_capability[6] = cpuid_ecx(0x80000001); |
| } |
| if ( xlvl >= 0x80000004 ) |
| get_model_name(c); /* Default name */ |
| } |
| } |
| |
| early_intel_workaround(c); |
| |
| #ifdef CONFIG_X86_HT |
| c->phys_proc_id = (cpuid_ebx(1) >> 24) & 0xff; |
| #endif |
| } |
| |
| static void __cpuinit squash_the_stupid_serial_number(struct cpuinfo_x86 *c) |
| { |
| if (cpu_has(c, X86_FEATURE_PN) && disable_x86_serial_nr ) { |
| /* Disable processor serial number */ |
| unsigned long lo,hi; |
| rdmsr(MSR_IA32_BBL_CR_CTL,lo,hi); |
| lo |= 0x200000; |
| wrmsr(MSR_IA32_BBL_CR_CTL,lo,hi); |
| printk(KERN_NOTICE "CPU serial number disabled.\n"); |
| clear_bit(X86_FEATURE_PN, c->x86_capability); |
| |
| /* Disabling the serial number may affect the cpuid level */ |
| c->cpuid_level = cpuid_eax(0); |
| } |
| } |
| |
| static int __init x86_serial_nr_setup(char *s) |
| { |
| disable_x86_serial_nr = 0; |
| return 1; |
| } |
| __setup("serialnumber", x86_serial_nr_setup); |
| |
| |
| |
| /* |
| * This does the hard work of actually picking apart the CPU stuff... |
| */ |
| void __cpuinit identify_cpu(struct cpuinfo_x86 *c) |
| { |
| int i; |
| |
| c->loops_per_jiffy = loops_per_jiffy; |
| c->x86_cache_size = -1; |
| c->x86_vendor = X86_VENDOR_UNKNOWN; |
| c->cpuid_level = -1; /* CPUID not detected */ |
| c->x86_model = c->x86_mask = 0; /* So far unknown... */ |
| c->x86_vendor_id[0] = '\0'; /* Unset */ |
| c->x86_model_id[0] = '\0'; /* Unset */ |
| c->x86_max_cores = 1; |
| c->x86_clflush_size = 32; |
| memset(&c->x86_capability, 0, sizeof c->x86_capability); |
| |
| if (!have_cpuid_p()) { |
| /* First of all, decide if this is a 486 or higher */ |
| /* It's a 486 if we can modify the AC flag */ |
| if ( flag_is_changeable_p(X86_EFLAGS_AC) ) |
| c->x86 = 4; |
| else |
| c->x86 = 3; |
| } |
| |
| generic_identify(c); |
| |
| printk(KERN_DEBUG "CPU: After generic identify, caps:"); |
| for (i = 0; i < NCAPINTS; i++) |
| printk(" %08lx", c->x86_capability[i]); |
| printk("\n"); |
| |
| if (this_cpu->c_identify) { |
| this_cpu->c_identify(c); |
| |
| printk(KERN_DEBUG "CPU: After vendor identify, caps:"); |
| for (i = 0; i < NCAPINTS; i++) |
| printk(" %08lx", c->x86_capability[i]); |
| printk("\n"); |
| } |
| |
| /* |
| * Vendor-specific initialization. In this section we |
| * canonicalize the feature flags, meaning if there are |
| * features a certain CPU supports which CPUID doesn't |
| * tell us, CPUID claiming incorrect flags, or other bugs, |
| * we handle them here. |
| * |
| * At the end of this section, c->x86_capability better |
| * indicate the features this CPU genuinely supports! |
| */ |
| if (this_cpu->c_init) |
| this_cpu->c_init(c); |
| |
| /* Disable the PN if appropriate */ |
| squash_the_stupid_serial_number(c); |
| |
| /* |
| * The vendor-specific functions might have changed features. Now |
| * we do "generic changes." |
| */ |
| |
| /* TSC disabled? */ |
| if ( tsc_disable ) |
| clear_bit(X86_FEATURE_TSC, c->x86_capability); |
| |
| /* FXSR disabled? */ |
| if (disable_x86_fxsr) { |
| clear_bit(X86_FEATURE_FXSR, c->x86_capability); |
| clear_bit(X86_FEATURE_XMM, c->x86_capability); |
| } |
| |
| /* SEP disabled? */ |
| if (disable_x86_sep) |
| clear_bit(X86_FEATURE_SEP, c->x86_capability); |
| |
| if (disable_pse) |
| clear_bit(X86_FEATURE_PSE, c->x86_capability); |
| |
| /* If the model name is still unset, do table lookup. */ |
| if ( !c->x86_model_id[0] ) { |
| char *p; |
| p = table_lookup_model(c); |
| if ( p ) |
| strcpy(c->x86_model_id, p); |
| else |
| /* Last resort... */ |
| sprintf(c->x86_model_id, "%02x/%02x", |
| c->x86, c->x86_model); |
| } |
| |
| /* Now the feature flags better reflect actual CPU features! */ |
| |
| printk(KERN_DEBUG "CPU: After all inits, caps:"); |
| for (i = 0; i < NCAPINTS; i++) |
| printk(" %08lx", c->x86_capability[i]); |
| printk("\n"); |
| |
| /* |
| * On SMP, boot_cpu_data holds the common feature set between |
| * all CPUs; so make sure that we indicate which features are |
| * common between the CPUs. The first time this routine gets |
| * executed, c == &boot_cpu_data. |
| */ |
| if ( c != &boot_cpu_data ) { |
| /* AND the already accumulated flags with these */ |
| for ( i = 0 ; i < NCAPINTS ; i++ ) |
| boot_cpu_data.x86_capability[i] &= c->x86_capability[i]; |
| } |
| |
| /* Init Machine Check Exception if available. */ |
| mcheck_init(c); |
| |
| if (c == &boot_cpu_data) |
| sysenter_setup(); |
| enable_sep_cpu(); |
| |
| if (c == &boot_cpu_data) |
| mtrr_bp_init(); |
| else |
| mtrr_ap_init(); |
| } |
| |
| #ifdef CONFIG_X86_HT |
| void __cpuinit detect_ht(struct cpuinfo_x86 *c) |
| { |
| u32 eax, ebx, ecx, edx; |
| int index_msb, core_bits; |
| |
| cpuid(1, &eax, &ebx, &ecx, &edx); |
| |
| if (!cpu_has(c, X86_FEATURE_HT) || cpu_has(c, X86_FEATURE_CMP_LEGACY)) |
| return; |
| |
| smp_num_siblings = (ebx & 0xff0000) >> 16; |
| |
| if (smp_num_siblings == 1) { |
| printk(KERN_INFO "CPU: Hyper-Threading is disabled\n"); |
| } else if (smp_num_siblings > 1 ) { |
| |
| if (smp_num_siblings > NR_CPUS) { |
| printk(KERN_WARNING "CPU: Unsupported number of the " |
| "siblings %d", smp_num_siblings); |
| smp_num_siblings = 1; |
| return; |
| } |
| |
| index_msb = get_count_order(smp_num_siblings); |
| c->phys_proc_id = phys_pkg_id((ebx >> 24) & 0xFF, index_msb); |
| |
| printk(KERN_INFO "CPU: Physical Processor ID: %d\n", |
| c->phys_proc_id); |
| |
| smp_num_siblings = smp_num_siblings / c->x86_max_cores; |
| |
| index_msb = get_count_order(smp_num_siblings) ; |
| |
| core_bits = get_count_order(c->x86_max_cores); |
| |
| c->cpu_core_id = phys_pkg_id((ebx >> 24) & 0xFF, index_msb) & |
| ((1 << core_bits) - 1); |
| |
| if (c->x86_max_cores > 1) |
| printk(KERN_INFO "CPU: Processor Core ID: %d\n", |
| c->cpu_core_id); |
| } |
| } |
| #endif |
| |
| void __cpuinit print_cpu_info(struct cpuinfo_x86 *c) |
| { |
| char *vendor = NULL; |
| |
| if (c->x86_vendor < X86_VENDOR_NUM) |
| vendor = this_cpu->c_vendor; |
| else if (c->cpuid_level >= 0) |
| vendor = c->x86_vendor_id; |
| |
| if (vendor && strncmp(c->x86_model_id, vendor, strlen(vendor))) |
| printk("%s ", vendor); |
| |
| if (!c->x86_model_id[0]) |
| printk("%d86", c->x86); |
| else |
| printk("%s", c->x86_model_id); |
| |
| if (c->x86_mask || c->cpuid_level >= 0) |
| printk(" stepping %02x\n", c->x86_mask); |
| else |
| printk("\n"); |
| } |
| |
| cpumask_t cpu_initialized __cpuinitdata = CPU_MASK_NONE; |
| |
| /* This is hacky. :) |
| * We're emulating future behavior. |
| * In the future, the cpu-specific init functions will be called implicitly |
| * via the magic of initcalls. |
| * They will insert themselves into the cpu_devs structure. |
| * Then, when cpu_init() is called, we can just iterate over that array. |
| */ |
| |
| extern int intel_cpu_init(void); |
| extern int cyrix_init_cpu(void); |
| extern int nsc_init_cpu(void); |
| extern int amd_init_cpu(void); |
| extern int centaur_init_cpu(void); |
| extern int transmeta_init_cpu(void); |
| extern int rise_init_cpu(void); |
| extern int nexgen_init_cpu(void); |
| extern int umc_init_cpu(void); |
| |
| void __init early_cpu_init(void) |
| { |
| intel_cpu_init(); |
| cyrix_init_cpu(); |
| nsc_init_cpu(); |
| amd_init_cpu(); |
| centaur_init_cpu(); |
| transmeta_init_cpu(); |
| rise_init_cpu(); |
| nexgen_init_cpu(); |
| umc_init_cpu(); |
| early_cpu_detect(); |
| |
| #ifdef CONFIG_DEBUG_PAGEALLOC |
| /* pse is not compatible with on-the-fly unmapping, |
| * disable it even if the cpus claim to support it. |
| */ |
| clear_bit(X86_FEATURE_PSE, boot_cpu_data.x86_capability); |
| disable_pse = 1; |
| #endif |
| } |
| |
| /* Make sure %gs is initialized properly in idle threads */ |
| struct pt_regs * __devinit idle_regs(struct pt_regs *regs) |
| { |
| memset(regs, 0, sizeof(struct pt_regs)); |
| regs->xgs = __KERNEL_PDA; |
| return regs; |
| } |
| |
| static __cpuinit int alloc_gdt(int cpu) |
| { |
| struct Xgt_desc_struct *cpu_gdt_descr = &per_cpu(cpu_gdt_descr, cpu); |
| struct desc_struct *gdt; |
| struct i386_pda *pda; |
| |
| gdt = (struct desc_struct *)cpu_gdt_descr->address; |
| pda = cpu_pda(cpu); |
| |
| /* |
| * This is a horrible hack to allocate the GDT. The problem |
| * is that cpu_init() is called really early for the boot CPU |
| * (and hence needs bootmem) but much later for the secondary |
| * CPUs, when bootmem will have gone away |
| */ |
| if (NODE_DATA(0)->bdata->node_bootmem_map) { |
| BUG_ON(gdt != NULL || pda != NULL); |
| |
| gdt = alloc_bootmem_pages(PAGE_SIZE); |
| pda = alloc_bootmem(sizeof(*pda)); |
| /* alloc_bootmem(_pages) panics on failure, so no check */ |
| |
| memset(gdt, 0, PAGE_SIZE); |
| memset(pda, 0, sizeof(*pda)); |
| } else { |
| /* GDT and PDA might already have been allocated if |
| this is a CPU hotplug re-insertion. */ |
| if (gdt == NULL) |
| gdt = (struct desc_struct *)get_zeroed_page(GFP_KERNEL); |
| |
| if (pda == NULL) |
| pda = kmalloc_node(sizeof(*pda), GFP_KERNEL, cpu_to_node(cpu)); |
| |
| if (unlikely(!gdt || !pda)) { |
| free_pages((unsigned long)gdt, 0); |
| kfree(pda); |
| return 0; |
| } |
| } |
| |
| cpu_gdt_descr->address = (unsigned long)gdt; |
| cpu_pda(cpu) = pda; |
| |
| return 1; |
| } |
| |
| /* Initial PDA used by boot CPU */ |
| struct i386_pda boot_pda = { |
| ._pda = &boot_pda, |
| .cpu_number = 0, |
| .pcurrent = &init_task, |
| }; |
| |
| static inline void set_kernel_gs(void) |
| { |
| /* Set %gs for this CPU's PDA. Memory clobber is to create a |
| barrier with respect to any PDA operations, so the compiler |
| doesn't move any before here. */ |
| asm volatile ("mov %0, %%gs" : : "r" (__KERNEL_PDA) : "memory"); |
| } |
| |
| /* Initialize the CPU's GDT and PDA. The boot CPU does this for |
| itself, but secondaries find this done for them. */ |
| __cpuinit int init_gdt(int cpu, struct task_struct *idle) |
| { |
| struct Xgt_desc_struct *cpu_gdt_descr = &per_cpu(cpu_gdt_descr, cpu); |
| struct desc_struct *gdt; |
| struct i386_pda *pda; |
| |
| /* For non-boot CPUs, the GDT and PDA should already have been |
| allocated. */ |
| if (!alloc_gdt(cpu)) { |
| printk(KERN_CRIT "CPU%d failed to allocate GDT or PDA\n", cpu); |
| return 0; |
| } |
| |
| gdt = (struct desc_struct *)cpu_gdt_descr->address; |
| pda = cpu_pda(cpu); |
| |
| BUG_ON(gdt == NULL || pda == NULL); |
| |
| /* |
| * Initialize the per-CPU GDT with the boot GDT, |
| * and set up the GDT descriptor: |
| */ |
| memcpy(gdt, cpu_gdt_table, GDT_SIZE); |
| cpu_gdt_descr->size = GDT_SIZE - 1; |
| |
| pack_descriptor((u32 *)&gdt[GDT_ENTRY_PDA].a, |
| (u32 *)&gdt[GDT_ENTRY_PDA].b, |
| (unsigned long)pda, sizeof(*pda) - 1, |
| 0x80 | DESCTYPE_S | 0x2, 0); /* present read-write data segment */ |
| |
| memset(pda, 0, sizeof(*pda)); |
| pda->_pda = pda; |
| pda->cpu_number = cpu; |
| pda->pcurrent = idle; |
| |
| return 1; |
| } |
| |
| void __cpuinit cpu_set_gdt(int cpu) |
| { |
| struct Xgt_desc_struct *cpu_gdt_descr = &per_cpu(cpu_gdt_descr, cpu); |
| |
| /* Reinit these anyway, even if they've already been done (on |
| the boot CPU, this will transition from the boot gdt+pda to |
| the real ones). */ |
| load_gdt(cpu_gdt_descr); |
| set_kernel_gs(); |
| } |
| |
| /* Common CPU init for both boot and secondary CPUs */ |
| static void __cpuinit _cpu_init(int cpu, struct task_struct *curr) |
| { |
| struct tss_struct * t = &per_cpu(init_tss, cpu); |
| struct thread_struct *thread = &curr->thread; |
| |
| if (cpu_test_and_set(cpu, cpu_initialized)) { |
| printk(KERN_WARNING "CPU#%d already initialized!\n", cpu); |
| for (;;) local_irq_enable(); |
| } |
| |
| printk(KERN_INFO "Initializing CPU#%d\n", cpu); |
| |
| if (cpu_has_vme || cpu_has_tsc || cpu_has_de) |
| clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE); |
| if (tsc_disable && cpu_has_tsc) { |
| printk(KERN_NOTICE "Disabling TSC...\n"); |
| /**** FIX-HPA: DOES THIS REALLY BELONG HERE? ****/ |
| clear_bit(X86_FEATURE_TSC, boot_cpu_data.x86_capability); |
| set_in_cr4(X86_CR4_TSD); |
| } |
| |
| load_idt(&idt_descr); |
| |
| /* |
| * Set up and load the per-CPU TSS and LDT |
| */ |
| atomic_inc(&init_mm.mm_count); |
| curr->active_mm = &init_mm; |
| if (curr->mm) |
| BUG(); |
| enter_lazy_tlb(&init_mm, curr); |
| |
| load_esp0(t, thread); |
| set_tss_desc(cpu,t); |
| load_TR_desc(); |
| load_LDT(&init_mm.context); |
| |
| #ifdef CONFIG_DOUBLEFAULT |
| /* Set up doublefault TSS pointer in the GDT */ |
| __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss); |
| #endif |
| |
| /* Clear %fs. */ |
| asm volatile ("mov %0, %%fs" : : "r" (0)); |
| |
| /* Clear all 6 debug registers: */ |
| set_debugreg(0, 0); |
| set_debugreg(0, 1); |
| set_debugreg(0, 2); |
| set_debugreg(0, 3); |
| set_debugreg(0, 6); |
| set_debugreg(0, 7); |
| |
| /* |
| * Force FPU initialization: |
| */ |
| current_thread_info()->status = 0; |
| clear_used_math(); |
| mxcsr_feature_mask_init(); |
| } |
| |
| /* Entrypoint to initialize secondary CPU */ |
| void __cpuinit secondary_cpu_init(void) |
| { |
| int cpu = smp_processor_id(); |
| struct task_struct *curr = current; |
| |
| _cpu_init(cpu, curr); |
| } |
| |
| /* |
| * cpu_init() initializes state that is per-CPU. Some data is already |
| * initialized (naturally) in the bootstrap process, such as the GDT |
| * and IDT. We reload them nevertheless, this function acts as a |
| * 'CPU state barrier', nothing should get across. |
| */ |
| void __cpuinit cpu_init(void) |
| { |
| int cpu = smp_processor_id(); |
| struct task_struct *curr = current; |
| |
| /* Set up the real GDT and PDA, so we can transition from the |
| boot versions. */ |
| if (!init_gdt(cpu, curr)) { |
| /* failed to allocate something; not much we can do... */ |
| for (;;) |
| local_irq_enable(); |
| } |
| |
| cpu_set_gdt(cpu); |
| _cpu_init(cpu, curr); |
| } |
| |
| #ifdef CONFIG_HOTPLUG_CPU |
| void __cpuinit cpu_uninit(void) |
| { |
| int cpu = raw_smp_processor_id(); |
| cpu_clear(cpu, cpu_initialized); |
| |
| /* lazy TLB state */ |
| per_cpu(cpu_tlbstate, cpu).state = 0; |
| per_cpu(cpu_tlbstate, cpu).active_mm = &init_mm; |
| } |
| #endif |