blob: d90ed9be5c8f166fbdf6e2b1cdda0deb6650e5ba [file] [log] [blame]
/*
* Copyright (C) 2022 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define ATRACE_TAG (ATRACE_TAG_THERMAL | ATRACE_TAG_HAL)
#include "thermal_throttling.h"
#include <android-base/file.h>
#include <android-base/logging.h>
#include <android-base/properties.h>
#include <android-base/stringprintf.h>
#include <android-base/strings.h>
#include <utils/Trace.h>
#include <iterator>
#include <set>
#include <sstream>
#include <thread>
#include <vector>
#include "power_files.h"
#include "thermal_info.h"
namespace aidl {
namespace android {
namespace hardware {
namespace thermal {
namespace implementation {
using ::android::base::StringPrintf;
// To find the next PID target state according to the current thermal severity
size_t getTargetStateOfPID(const SensorInfo &sensor_info, const ThrottlingSeverity curr_severity) {
size_t target_state = 0;
for (const auto &severity : ::ndk::enum_range<ThrottlingSeverity>()) {
size_t state = static_cast<size_t>(severity);
if (std::isnan(sensor_info.throttling_info->s_power[state])) {
continue;
}
target_state = state;
if (severity > curr_severity) {
break;
}
}
LOG(VERBOSE) << "PID target state = " << target_state;
return target_state;
}
void ThermalThrottling::clearThrottlingData(std::string_view sensor_name,
const SensorInfo &sensor_info) {
if (!thermal_throttling_status_map_.count(sensor_name.data())) {
return;
}
std::unique_lock<std::shared_mutex> _lock(thermal_throttling_status_map_mutex_);
for (auto &pid_power_budget_pair :
thermal_throttling_status_map_.at(sensor_name.data()).pid_power_budget_map) {
pid_power_budget_pair.second = std::numeric_limits<int>::max();
}
for (auto &pid_cdev_request_pair :
thermal_throttling_status_map_.at(sensor_name.data()).pid_cdev_request_map) {
pid_cdev_request_pair.second = 0;
}
for (auto &hardlimit_cdev_request_pair :
thermal_throttling_status_map_.at(sensor_name.data()).hardlimit_cdev_request_map) {
hardlimit_cdev_request_pair.second = 0;
}
for (auto &throttling_release_pair :
thermal_throttling_status_map_.at(sensor_name.data()).throttling_release_map) {
throttling_release_pair.second = 0;
}
thermal_throttling_status_map_[sensor_name.data()].prev_err = NAN;
thermal_throttling_status_map_[sensor_name.data()].i_budget =
sensor_info.throttling_info->i_default;
thermal_throttling_status_map_[sensor_name.data()].prev_target =
static_cast<size_t>(ThrottlingSeverity::NONE);
thermal_throttling_status_map_[sensor_name.data()].prev_power_budget = NAN;
thermal_throttling_status_map_[sensor_name.data()].tran_cycle = 0;
return;
}
bool ThermalThrottling::registerThermalThrottling(
std::string_view sensor_name, const std::shared_ptr<ThrottlingInfo> &throttling_info,
const std::unordered_map<std::string, CdevInfo> &cooling_device_info_map) {
if (thermal_throttling_status_map_.count(sensor_name.data())) {
LOG(ERROR) << "Sensor " << sensor_name.data() << " throttling map has been registered";
return false;
}
if (throttling_info == nullptr) {
LOG(ERROR) << "Sensor " << sensor_name.data() << " has no throttling info";
return false;
}
thermal_throttling_status_map_[sensor_name.data()].prev_err = NAN;
thermal_throttling_status_map_[sensor_name.data()].i_budget = throttling_info->i_default;
thermal_throttling_status_map_[sensor_name.data()].prev_target =
static_cast<size_t>(ThrottlingSeverity::NONE);
thermal_throttling_status_map_[sensor_name.data()].prev_power_budget = NAN;
thermal_throttling_status_map_[sensor_name.data()].tran_cycle = 0;
for (auto &binded_cdev_pair : throttling_info->binded_cdev_info_map) {
if (!cooling_device_info_map.count(binded_cdev_pair.first)) {
LOG(ERROR) << "Could not find " << sensor_name.data() << "'s binded CDEV "
<< binded_cdev_pair.first;
return false;
}
// Register PID throttling map
for (const auto &cdev_weight : binded_cdev_pair.second.cdev_weight_for_pid) {
if (!std::isnan(cdev_weight)) {
thermal_throttling_status_map_[sensor_name.data()]
.pid_power_budget_map[binded_cdev_pair.first] =
std::numeric_limits<int>::max();
thermal_throttling_status_map_[sensor_name.data()]
.pid_cdev_request_map[binded_cdev_pair.first] = 0;
thermal_throttling_status_map_[sensor_name.data()]
.cdev_status_map[binded_cdev_pair.first] = 0;
cdev_all_request_map_[binded_cdev_pair.first].insert(0);
break;
}
}
// Register hard limit throttling map
for (const auto &limit_info : binded_cdev_pair.second.limit_info) {
if (limit_info > 0) {
thermal_throttling_status_map_[sensor_name.data()]
.hardlimit_cdev_request_map[binded_cdev_pair.first] = 0;
thermal_throttling_status_map_[sensor_name.data()]
.cdev_status_map[binded_cdev_pair.first] = 0;
cdev_all_request_map_[binded_cdev_pair.first].insert(0);
break;
}
}
// Register throttling release map if power threshold exists
if (!binded_cdev_pair.second.power_rail.empty()) {
for (const auto &power_threshold : binded_cdev_pair.second.power_thresholds) {
if (!std::isnan(power_threshold)) {
thermal_throttling_status_map_[sensor_name.data()]
.throttling_release_map[binded_cdev_pair.first] = 0;
break;
}
}
}
}
return true;
}
// return power budget based on PID algo
float ThermalThrottling::updatePowerBudget(const Temperature &temp, const SensorInfo &sensor_info,
std::chrono::milliseconds time_elapsed_ms,
ThrottlingSeverity curr_severity) {
float p = 0, d = 0;
float power_budget = std::numeric_limits<float>::max();
bool target_changed = false;
float budget_transient = 0.0;
auto &throttling_status = thermal_throttling_status_map_.at(temp.name);
std::string sensor_name = temp.name;
if (curr_severity == ThrottlingSeverity::NONE) {
return power_budget;
}
const auto target_state = getTargetStateOfPID(sensor_info, curr_severity);
if (throttling_status.prev_target != static_cast<size_t>(ThrottlingSeverity::NONE) &&
target_state != throttling_status.prev_target &&
sensor_info.throttling_info->tran_cycle > 0) {
throttling_status.tran_cycle = sensor_info.throttling_info->tran_cycle - 1;
target_changed = true;
}
throttling_status.prev_target = target_state;
// Compute PID
float err = sensor_info.hot_thresholds[target_state] - temp.value;
p = err * (err < 0 ? sensor_info.throttling_info->k_po[target_state]
: sensor_info.throttling_info->k_pu[target_state]);
if (err < sensor_info.throttling_info->i_cutoff[target_state]) {
throttling_status.i_budget += err * sensor_info.throttling_info->k_i[target_state];
}
if (fabsf(throttling_status.i_budget) > sensor_info.throttling_info->i_max[target_state]) {
throttling_status.i_budget = sensor_info.throttling_info->i_max[target_state] *
(throttling_status.i_budget > 0 ? 1 : -1);
}
if (!std::isnan(throttling_status.prev_err) &&
time_elapsed_ms != std::chrono::milliseconds::zero()) {
d = sensor_info.throttling_info->k_d[target_state] * (err - throttling_status.prev_err) /
time_elapsed_ms.count();
}
throttling_status.prev_err = err;
// Calculate power budget
power_budget =
sensor_info.throttling_info->s_power[target_state] + p + throttling_status.i_budget + d;
if (power_budget < sensor_info.throttling_info->min_alloc_power[target_state]) {
power_budget = sensor_info.throttling_info->min_alloc_power[target_state];
}
if (power_budget > sensor_info.throttling_info->max_alloc_power[target_state]) {
power_budget = sensor_info.throttling_info->max_alloc_power[target_state];
}
if (target_changed) {
throttling_status.budget_transient = throttling_status.prev_power_budget - power_budget;
}
if (throttling_status.tran_cycle) {
budget_transient = throttling_status.budget_transient *
((static_cast<float>(throttling_status.tran_cycle) /
static_cast<float>(sensor_info.throttling_info->tran_cycle)));
power_budget += budget_transient;
throttling_status.tran_cycle--;
}
LOG(INFO) << temp.name << " power_budget=" << power_budget << " err=" << err
<< " s_power=" << sensor_info.throttling_info->s_power[target_state]
<< " time_elapsed_ms=" << time_elapsed_ms.count() << " p=" << p
<< " i=" << throttling_status.i_budget << " d=" << d
<< " budget transient=" << budget_transient << " control target=" << target_state;
ATRACE_INT((sensor_name + std::string("-power_budget")).c_str(),
static_cast<int>(power_budget));
ATRACE_INT((sensor_name + std::string("-s_power")).c_str(),
static_cast<int>(sensor_info.throttling_info->s_power[target_state]));
ATRACE_INT((sensor_name + std::string("-time_elapsed_ms")).c_str(),
static_cast<int>(time_elapsed_ms.count()));
ATRACE_INT((sensor_name + std::string("-budget_transient")).c_str(),
static_cast<int>(budget_transient));
ATRACE_INT((sensor_name + std::string("-i")).c_str(),
static_cast<int>(throttling_status.i_budget));
ATRACE_INT((sensor_name + std::string("-target_state")).c_str(),
static_cast<int>(target_state));
ATRACE_INT((sensor_name + std::string("-err")).c_str(), static_cast<int>(err / sensor_info.multiplier));
ATRACE_INT((sensor_name + std::string("-p")).c_str(), static_cast<int>(p));
ATRACE_INT((sensor_name + std::string("-d")).c_str(), static_cast<int>(d));
ATRACE_INT((sensor_name + std::string("-temp")).c_str(), static_cast<int>(temp.value / sensor_info.multiplier));
throttling_status.prev_power_budget = power_budget;
return power_budget;
}
float ThermalThrottling::computeExcludedPower(
const SensorInfo &sensor_info, const ThrottlingSeverity curr_severity,
const std::unordered_map<std::string, PowerStatus> &power_status_map, std::string *log_buf,
std::string_view sensor_name) {
float excluded_power = 0.0;
for (const auto &excluded_power_info_pair :
sensor_info.throttling_info->excluded_power_info_map) {
const auto last_updated_avg_power =
power_status_map.at(excluded_power_info_pair.first).last_updated_avg_power;
if (!std::isnan(last_updated_avg_power)) {
excluded_power += last_updated_avg_power *
excluded_power_info_pair.second[static_cast<size_t>(curr_severity)];
log_buf->append(StringPrintf(
"(%s: %0.2f mW, cdev_weight: %f)", excluded_power_info_pair.first.c_str(),
last_updated_avg_power,
excluded_power_info_pair.second[static_cast<size_t>(curr_severity)]));
ATRACE_INT((std::string(sensor_name) + std::string("-") +
excluded_power_info_pair.first + std::string("-avg_power"))
.c_str(),
static_cast<int>(last_updated_avg_power));
}
}
ATRACE_INT((std::string(sensor_name) + std::string("-excluded_power")).c_str(),
static_cast<int>(excluded_power));
return excluded_power;
}
// Allocate power budget to binded cooling devices base on the real ODPM power data
bool ThermalThrottling::allocatePowerToCdev(
const Temperature &temp, const SensorInfo &sensor_info,
const ThrottlingSeverity curr_severity, const std::chrono::milliseconds time_elapsed_ms,
const std::unordered_map<std::string, PowerStatus> &power_status_map,
const std::unordered_map<std::string, CdevInfo> &cooling_device_info_map) {
float total_weight = 0;
float last_updated_avg_power = NAN;
float allocated_power = 0;
float allocated_weight = 0;
bool low_power_device_check = true;
bool is_budget_allocated = false;
bool power_data_invalid = false;
std::set<std::string> allocated_cdev;
std::string log_buf;
std::unique_lock<std::shared_mutex> _lock(thermal_throttling_status_map_mutex_);
auto total_power_budget = updatePowerBudget(temp, sensor_info, time_elapsed_ms, curr_severity);
if (sensor_info.throttling_info->excluded_power_info_map.size()) {
total_power_budget -= computeExcludedPower(sensor_info, curr_severity, power_status_map,
&log_buf, temp.name);
total_power_budget = std::max(total_power_budget, 0.0f);
if (!log_buf.empty()) {
LOG(INFO) << temp.name << " power budget=" << total_power_budget << " after " << log_buf
<< " is excluded";
}
}
// Compute total cdev weight
for (const auto &binded_cdev_info_pair : sensor_info.throttling_info->binded_cdev_info_map) {
const auto cdev_weight = binded_cdev_info_pair.second
.cdev_weight_for_pid[static_cast<size_t>(curr_severity)];
if (std::isnan(cdev_weight) || cdev_weight == 0) {
allocated_cdev.insert(binded_cdev_info_pair.first);
continue;
}
total_weight += cdev_weight;
}
while (!is_budget_allocated) {
for (const auto &binded_cdev_info_pair :
sensor_info.throttling_info->binded_cdev_info_map) {
float cdev_power_adjustment = 0;
const auto cdev_weight =
binded_cdev_info_pair.second
.cdev_weight_for_pid[static_cast<size_t>(curr_severity)];
if (allocated_cdev.count(binded_cdev_info_pair.first)) {
continue;
}
if (std::isnan(cdev_weight) || !cdev_weight) {
allocated_cdev.insert(binded_cdev_info_pair.first);
continue;
}
// Get the power data
if (!power_data_invalid) {
if (!binded_cdev_info_pair.second.power_rail.empty()) {
last_updated_avg_power =
power_status_map.at(binded_cdev_info_pair.second.power_rail)
.last_updated_avg_power;
if (std::isnan(last_updated_avg_power)) {
LOG(VERBOSE) << "power data is under collecting";
power_data_invalid = true;
break;
}
ATRACE_INT((temp.name + std::string("-") +
binded_cdev_info_pair.second.power_rail + std::string("-avg_power"))
.c_str(),
static_cast<int>(last_updated_avg_power));
} else {
power_data_invalid = true;
break;
}
if (binded_cdev_info_pair.second.throttling_with_power_link) {
return false;
}
}
auto cdev_power_budget = total_power_budget * (cdev_weight / total_weight);
cdev_power_adjustment = cdev_power_budget - last_updated_avg_power;
if (low_power_device_check) {
// Share the budget for the CDEV which power is lower than target
if (cdev_power_adjustment > 0 &&
thermal_throttling_status_map_[temp.name].pid_cdev_request_map.at(
binded_cdev_info_pair.first) == 0) {
allocated_power += last_updated_avg_power;
allocated_weight += cdev_weight;
allocated_cdev.insert(binded_cdev_info_pair.first);
if (!binded_cdev_info_pair.second.power_rail.empty()) {
log_buf.append(StringPrintf("(%s: %0.2f mW)",
binded_cdev_info_pair.second.power_rail.c_str(),
last_updated_avg_power));
}
LOG(VERBOSE) << temp.name << " binded " << binded_cdev_info_pair.first
<< " has been already at min state 0";
}
} else {
const CdevInfo &cdev_info = cooling_device_info_map.at(binded_cdev_info_pair.first);
if (!binded_cdev_info_pair.second.power_rail.empty()) {
log_buf.append(StringPrintf("(%s: %0.2f mW)",
binded_cdev_info_pair.second.power_rail.c_str(),
last_updated_avg_power));
}
// Ignore the power distribution if the CDEV has no space to reduce power
if ((cdev_power_adjustment < 0 &&
thermal_throttling_status_map_[temp.name].pid_cdev_request_map.at(
binded_cdev_info_pair.first) == cdev_info.max_state)) {
LOG(VERBOSE) << temp.name << " binded " << binded_cdev_info_pair.first
<< " has been already at max state " << cdev_info.max_state;
continue;
}
if (!power_data_invalid && binded_cdev_info_pair.second.power_rail != "") {
auto cdev_curr_power_budget =
thermal_throttling_status_map_[temp.name].pid_power_budget_map.at(
binded_cdev_info_pair.first);
if (last_updated_avg_power > cdev_curr_power_budget) {
cdev_power_budget = cdev_curr_power_budget +=
(cdev_power_adjustment *
(cdev_curr_power_budget / last_updated_avg_power));
} else {
cdev_power_budget = cdev_curr_power_budget += cdev_power_adjustment;
}
} else {
cdev_power_budget = total_power_budget * (cdev_weight / total_weight);
}
if (!std::isnan(cdev_info.state2power[0]) &&
cdev_power_budget > cdev_info.state2power[0]) {
cdev_power_budget = cdev_info.state2power[0];
} else if (cdev_power_budget < 0) {
cdev_power_budget = 0;
}
int max_cdev_vote;
if (!getCdevMaxRequest(binded_cdev_info_pair.first, &max_cdev_vote)) {
return false;
}
const auto curr_cdev_vote =
thermal_throttling_status_map_[temp.name].pid_cdev_request_map.at(
binded_cdev_info_pair.first);
if (binded_cdev_info_pair.second.max_release_step !=
std::numeric_limits<int>::max() &&
(power_data_invalid || cdev_power_adjustment > 0)) {
if (!power_data_invalid && curr_cdev_vote < max_cdev_vote) {
cdev_power_budget = cdev_info.state2power[curr_cdev_vote];
LOG(VERBOSE) << temp.name << "'s " << binded_cdev_info_pair.first
<< " vote: " << curr_cdev_vote
<< " is lower than max cdev vote: " << max_cdev_vote;
} else {
const auto target_state = std::max(
curr_cdev_vote - binded_cdev_info_pair.second.max_release_step, 0);
cdev_power_budget =
std::min(cdev_power_budget, cdev_info.state2power[target_state]);
}
}
if (binded_cdev_info_pair.second.max_throttle_step !=
std::numeric_limits<int>::max() &&
(power_data_invalid || cdev_power_adjustment < 0)) {
const auto target_state = std::min(
curr_cdev_vote + binded_cdev_info_pair.second.max_throttle_step,
cdev_info.max_state);
cdev_power_budget =
std::max(cdev_power_budget, cdev_info.state2power[target_state]);
}
thermal_throttling_status_map_[temp.name].pid_power_budget_map.at(
binded_cdev_info_pair.first) = cdev_power_budget;
LOG(VERBOSE) << temp.name << " allocate "
<< thermal_throttling_status_map_[temp.name].pid_power_budget_map.at(
binded_cdev_info_pair.first)
<< "mW to " << binded_cdev_info_pair.first
<< "(cdev_weight=" << cdev_weight << ")";
}
}
if (!power_data_invalid) {
total_power_budget -= allocated_power;
total_weight -= allocated_weight;
}
allocated_power = 0;
allocated_weight = 0;
if (low_power_device_check) {
low_power_device_check = false;
} else {
is_budget_allocated = true;
}
}
if (log_buf.size()) {
LOG(INFO) << temp.name << " binded power rails: " << log_buf;
}
return true;
}
void ThermalThrottling::updateCdevRequestByPower(
std::string sensor_name,
const std::unordered_map<std::string, CdevInfo> &cooling_device_info_map) {
size_t i;
std::unique_lock<std::shared_mutex> _lock(thermal_throttling_status_map_mutex_);
for (auto &pid_power_budget_pair :
thermal_throttling_status_map_[sensor_name.data()].pid_power_budget_map) {
const CdevInfo &cdev_info = cooling_device_info_map.at(pid_power_budget_pair.first);
for (i = 0; i < cdev_info.state2power.size() - 1; ++i) {
if (pid_power_budget_pair.second >= cdev_info.state2power[i]) {
break;
}
}
thermal_throttling_status_map_[sensor_name.data()].pid_cdev_request_map.at(
pid_power_budget_pair.first) = static_cast<int>(i);
}
return;
}
void ThermalThrottling::updateCdevRequestBySeverity(std::string_view sensor_name,
const SensorInfo &sensor_info,
ThrottlingSeverity curr_severity) {
std::unique_lock<std::shared_mutex> _lock(thermal_throttling_status_map_mutex_);
for (auto const &binded_cdev_info_pair : sensor_info.throttling_info->binded_cdev_info_map) {
thermal_throttling_status_map_[sensor_name.data()].hardlimit_cdev_request_map.at(
binded_cdev_info_pair.first) =
binded_cdev_info_pair.second.limit_info[static_cast<size_t>(curr_severity)];
LOG(VERBOSE) << "Hard Limit: Sensor " << sensor_name.data() << " update cdev "
<< binded_cdev_info_pair.first << " to "
<< thermal_throttling_status_map_[sensor_name.data()]
.hardlimit_cdev_request_map.at(binded_cdev_info_pair.first);
}
}
bool ThermalThrottling::throttlingReleaseUpdate(
std::string_view sensor_name,
const std::unordered_map<std::string, CdevInfo> &cooling_device_info_map,
const std::unordered_map<std::string, PowerStatus> &power_status_map,
const ThrottlingSeverity severity, const SensorInfo &sensor_info) {
ATRACE_CALL();
std::unique_lock<std::shared_mutex> _lock(thermal_throttling_status_map_mutex_);
if (!thermal_throttling_status_map_.count(sensor_name.data())) {
return false;
}
auto &thermal_throttling_status = thermal_throttling_status_map_.at(sensor_name.data());
for (const auto &binded_cdev_info_pair : sensor_info.throttling_info->binded_cdev_info_map) {
float avg_power = -1;
if (!thermal_throttling_status.throttling_release_map.count(binded_cdev_info_pair.first) ||
!power_status_map.count(binded_cdev_info_pair.second.power_rail)) {
return false;
}
const auto max_state = cooling_device_info_map.at(binded_cdev_info_pair.first).max_state;
auto &release_step =
thermal_throttling_status.throttling_release_map.at(binded_cdev_info_pair.first);
avg_power =
power_status_map.at(binded_cdev_info_pair.second.power_rail).last_updated_avg_power;
if (std::isnan(avg_power) || avg_power < 0) {
release_step = binded_cdev_info_pair.second.throttling_with_power_link ? max_state : 0;
continue;
}
bool is_over_budget = true;
if (!binded_cdev_info_pair.second.high_power_check) {
if (avg_power <
binded_cdev_info_pair.second.power_thresholds[static_cast<int>(severity)]) {
is_over_budget = false;
}
} else {
if (avg_power >
binded_cdev_info_pair.second.power_thresholds[static_cast<int>(severity)]) {
is_over_budget = false;
}
}
LOG(INFO) << sensor_name.data() << "'s " << binded_cdev_info_pair.first
<< " binded power rail " << binded_cdev_info_pair.second.power_rail
<< ": power threshold = "
<< binded_cdev_info_pair.second.power_thresholds[static_cast<int>(severity)]
<< ", avg power = " << avg_power;
std::string atrace_prefix = ::android::base::StringPrintf(
"%s-%s", sensor_name.data(), binded_cdev_info_pair.second.power_rail.data());
ATRACE_INT(
(atrace_prefix + std::string("-power_threshold")).c_str(),
static_cast<int>(
binded_cdev_info_pair.second.power_thresholds[static_cast<int>(severity)]));
ATRACE_INT((atrace_prefix + std::string("-avg_power")).c_str(), avg_power);
switch (binded_cdev_info_pair.second.release_logic) {
case ReleaseLogic::INCREASE:
if (!is_over_budget) {
if (std::abs(release_step) < static_cast<int>(max_state)) {
release_step--;
}
} else {
release_step = 0;
}
break;
case ReleaseLogic::DECREASE:
if (!is_over_budget) {
if (release_step < static_cast<int>(max_state)) {
release_step++;
}
} else {
release_step = 0;
}
break;
case ReleaseLogic::STEPWISE:
if (!is_over_budget) {
if (release_step < static_cast<int>(max_state)) {
release_step++;
}
} else {
if (std::abs(release_step) < static_cast<int>(max_state)) {
release_step--;
}
}
break;
case ReleaseLogic::RELEASE_TO_FLOOR:
release_step = is_over_budget ? 0 : max_state;
break;
case ReleaseLogic::NONE:
default:
break;
}
}
return true;
}
void ThermalThrottling::thermalThrottlingUpdate(
const Temperature &temp, const SensorInfo &sensor_info,
const ThrottlingSeverity curr_severity, const std::chrono::milliseconds time_elapsed_ms,
const std::unordered_map<std::string, PowerStatus> &power_status_map,
const std::unordered_map<std::string, CdevInfo> &cooling_device_info_map) {
if (!thermal_throttling_status_map_.count(temp.name)) {
return;
}
if (thermal_throttling_status_map_[temp.name].pid_power_budget_map.size()) {
if (!allocatePowerToCdev(temp, sensor_info, curr_severity, time_elapsed_ms,
power_status_map, cooling_device_info_map)) {
LOG(ERROR) << "Sensor " << temp.name << " PID request cdev failed";
// Clear the CDEV request if the power budget is failed to be allocated
for (auto &pid_cdev_request_pair :
thermal_throttling_status_map_[temp.name].pid_cdev_request_map) {
pid_cdev_request_pair.second = 0;
}
}
updateCdevRequestByPower(temp.name, cooling_device_info_map);
}
if (thermal_throttling_status_map_[temp.name].hardlimit_cdev_request_map.size()) {
updateCdevRequestBySeverity(temp.name.c_str(), sensor_info, curr_severity);
}
if (thermal_throttling_status_map_[temp.name].throttling_release_map.size()) {
throttlingReleaseUpdate(temp.name.c_str(), cooling_device_info_map, power_status_map,
curr_severity, sensor_info);
}
}
void ThermalThrottling::computeCoolingDevicesRequest(
std::string_view sensor_name, const SensorInfo &sensor_info,
const ThrottlingSeverity curr_severity, std::vector<std::string> *cooling_devices_to_update) {
int release_step = 0;
std::unique_lock<std::shared_mutex> _lock(thermal_throttling_status_map_mutex_);
if (!thermal_throttling_status_map_.count(sensor_name.data())) {
return;
}
auto &thermal_throttling_status = thermal_throttling_status_map_.at(sensor_name.data());
const auto &cdev_release_map = thermal_throttling_status.throttling_release_map;
for (auto &cdev_request_pair : thermal_throttling_status.cdev_status_map) {
int pid_cdev_request = 0;
int hardlimit_cdev_request = 0;
const auto &cdev_name = cdev_request_pair.first;
const auto &binded_cdev_info =
sensor_info.throttling_info->binded_cdev_info_map.at(cdev_name);
const auto cdev_ceiling = binded_cdev_info.cdev_ceiling[static_cast<size_t>(curr_severity)];
const auto cdev_floor =
binded_cdev_info.cdev_floor_with_power_link[static_cast<size_t>(curr_severity)];
release_step = 0;
if (thermal_throttling_status.pid_cdev_request_map.count(cdev_name)) {
pid_cdev_request = thermal_throttling_status.pid_cdev_request_map.at(cdev_name);
}
if (thermal_throttling_status.hardlimit_cdev_request_map.count(cdev_name)) {
hardlimit_cdev_request =
thermal_throttling_status.hardlimit_cdev_request_map.at(cdev_name);
}
if (cdev_release_map.count(cdev_name)) {
release_step = cdev_release_map.at(cdev_name);
}
LOG(VERBOSE) << sensor_name.data() << " binded cooling device " << cdev_name
<< "'s pid_request=" << pid_cdev_request
<< " hardlimit_cdev_request=" << hardlimit_cdev_request
<< " release_step=" << release_step
<< " cdev_floor_with_power_link=" << cdev_floor
<< " cdev_ceiling=" << cdev_ceiling;
std::string atrace_prefix =
::android::base::StringPrintf("%s-%s", sensor_name.data(), cdev_name.data());
ATRACE_INT((atrace_prefix + std::string("-pid_request")).c_str(), pid_cdev_request);
ATRACE_INT((atrace_prefix + std::string("-hardlimit_request")).c_str(),
hardlimit_cdev_request);
ATRACE_INT((atrace_prefix + std::string("-release_step")).c_str(), release_step);
ATRACE_INT((atrace_prefix + std::string("-cdev_floor")).c_str(), cdev_floor);
ATRACE_INT((atrace_prefix + std::string("-cdev_ceiling")).c_str(), cdev_ceiling);
auto request_state = std::max(pid_cdev_request, hardlimit_cdev_request);
if (release_step) {
if (release_step >= request_state) {
request_state = 0;
} else {
request_state = request_state - release_step;
}
// Only check the cdev_floor when release step is non zero
request_state = std::max(request_state, cdev_floor);
}
request_state = std::min(request_state, cdev_ceiling);
if (cdev_request_pair.second != request_state) {
if (updateCdevMaxRequestAndNotifyIfChange(cdev_name, cdev_request_pair.second,
request_state)) {
cooling_devices_to_update->emplace_back(cdev_name);
}
cdev_request_pair.second = request_state;
}
}
}
bool ThermalThrottling::updateCdevMaxRequestAndNotifyIfChange(std::string_view cdev_name,
int cur_request, int new_request) {
std::unique_lock<std::shared_mutex> _lock(cdev_all_request_map_mutex_);
auto &request_set = cdev_all_request_map_.at(cdev_name.data());
int cur_max_request = (*request_set.begin());
// Remove old cdev request and add the new one.
request_set.erase(request_set.find(cur_request));
request_set.insert(new_request);
// Check if there is any change in aggregated max cdev request.
int new_max_request = (*request_set.begin());
LOG(VERBOSE) << "For cooling device [" << cdev_name.data()
<< "] cur_max_request is: " << cur_max_request
<< " new_max_request is: " << new_max_request;
return new_max_request != cur_max_request;
}
bool ThermalThrottling::getCdevMaxRequest(std::string_view cdev_name, int *max_state) {
std::shared_lock<std::shared_mutex> _lock(cdev_all_request_map_mutex_);
if (!cdev_all_request_map_.count(cdev_name.data())) {
LOG(ERROR) << "Cooling device [" << cdev_name.data()
<< "] not present in cooling device request map";
return false;
}
*max_state = *cdev_all_request_map_.at(cdev_name.data()).begin();
return true;
}
} // namespace implementation
} // namespace thermal
} // namespace hardware
} // namespace android
} // namespace aidl