blob: 1eb0172b5182cc5e42b389a7e36c14d6cac423ce [file] [log] [blame]
/*
* Copyright 2021 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "powerhal-libperfmgr"
#define ATRACE_TAG (ATRACE_TAG_POWER | ATRACE_TAG_HAL)
#include "PowerHintSession.h"
#include <android-base/logging.h>
#include <android-base/parsedouble.h>
#include <android-base/properties.h>
#include <android-base/stringprintf.h>
#include <perfmgr/AdpfConfig.h>
#include <private/android_filesystem_config.h>
#include <sys/syscall.h>
#include <time.h>
#include <utils/Trace.h>
#include <atomic>
#include "PowerSessionManager.h"
namespace aidl {
namespace google {
namespace hardware {
namespace power {
namespace impl {
namespace pixel {
using ::android::base::StringPrintf;
using ::android::perfmgr::AdpfConfig;
using ::android::perfmgr::HintManager;
using std::chrono::duration_cast;
using std::chrono::nanoseconds;
namespace {
static inline int64_t ns_to_100us(int64_t ns) {
return ns / 100000;
}
static int64_t convertWorkDurationToBoostByPid(std::shared_ptr<AdpfConfig> adpfConfig,
nanoseconds targetDuration,
const std::vector<WorkDuration> &actualDurations,
int64_t *integral_error, int64_t *previous_error,
const std::string &idstr) {
uint64_t samplingWindowP = adpfConfig->mSamplingWindowP;
uint64_t samplingWindowI = adpfConfig->mSamplingWindowI;
uint64_t samplingWindowD = adpfConfig->mSamplingWindowD;
int64_t targetDurationNanos = (int64_t)targetDuration.count();
int64_t length = actualDurations.size();
int64_t p_start =
samplingWindowP == 0 || samplingWindowP > length ? 0 : length - samplingWindowP;
int64_t i_start =
samplingWindowI == 0 || samplingWindowI > length ? 0 : length - samplingWindowI;
int64_t d_start =
samplingWindowD == 0 || samplingWindowD > length ? 0 : length - samplingWindowD;
int64_t dt = ns_to_100us(targetDurationNanos);
int64_t err_sum = 0;
int64_t derivative_sum = 0;
for (int64_t i = std::min({p_start, i_start, d_start}); i < length; i++) {
int64_t actualDurationNanos = actualDurations[i].durationNanos;
if (std::abs(actualDurationNanos) > targetDurationNanos * 20) {
ALOGW("The actual duration is way far from the target (%" PRId64 " >> %" PRId64 ")",
actualDurationNanos, targetDurationNanos);
}
// PID control algorithm
int64_t error = ns_to_100us(actualDurationNanos - targetDurationNanos);
if (i >= d_start) {
derivative_sum += error - (*previous_error);
}
if (i >= p_start) {
err_sum += error;
}
if (i >= i_start) {
*integral_error = *integral_error + error * dt;
*integral_error = std::min(adpfConfig->getPidIHighDivI(), *integral_error);
*integral_error = std::max(adpfConfig->getPidILowDivI(), *integral_error);
}
*previous_error = error;
}
int64_t pOut = static_cast<int64_t>((err_sum > 0 ? adpfConfig->mPidPo : adpfConfig->mPidPu) *
err_sum / (length - p_start));
int64_t iOut = static_cast<int64_t>(adpfConfig->mPidI * (*integral_error));
int64_t dOut =
static_cast<int64_t>((derivative_sum > 0 ? adpfConfig->mPidDo : adpfConfig->mPidDu) *
derivative_sum / dt / (length - d_start));
int64_t output = pOut + iOut + dOut;
if (ATRACE_ENABLED()) {
std::string sz = StringPrintf("adpf.%s-pid.err", idstr.c_str());
ATRACE_INT(sz.c_str(), err_sum / (length - p_start));
sz = StringPrintf("adpf.%s-pid.integral", idstr.c_str());
ATRACE_INT(sz.c_str(), *integral_error);
sz = StringPrintf("adpf.%s-pid.derivative", idstr.c_str());
ATRACE_INT(sz.c_str(), derivative_sum / dt / (length - d_start));
sz = StringPrintf("adpf.%s-pid.pOut", idstr.c_str());
ATRACE_INT(sz.c_str(), pOut);
sz = StringPrintf("adpf.%s-pid.iOut", idstr.c_str());
ATRACE_INT(sz.c_str(), iOut);
sz = StringPrintf("adpf.%s-pid.dOut", idstr.c_str());
ATRACE_INT(sz.c_str(), dOut);
sz = StringPrintf("adpf.%s-pid.output", idstr.c_str());
ATRACE_INT(sz.c_str(), output);
}
return output;
}
} // namespace
PowerHintSession::PowerHintSession(int32_t tgid, int32_t uid, const std::vector<int32_t> &threadIds,
int64_t durationNanos) {
mDescriptor = new AppHintDesc(tgid, uid, threadIds);
mDescriptor->duration = std::chrono::nanoseconds(durationNanos);
mStaleTimerHandler = sp<StaleTimerHandler>(new StaleTimerHandler(this));
mEarlyBoostHandler = sp<EarlyBoostHandler>(new EarlyBoostHandler(this));
mPowerManagerHandler = PowerSessionManager::getInstance();
mLastUpdatedTime.store(std::chrono::steady_clock::now());
mLastStartedTimeNs =
std::chrono::duration_cast<std::chrono::nanoseconds>(
(std::chrono::steady_clock::now() - mDescriptor->duration).time_since_epoch())
.count();
mLastDurationNs = durationNanos;
mWorkPeriodNs = durationNanos;
if (ATRACE_ENABLED()) {
const std::string idstr = getIdString();
std::string sz = StringPrintf("adpf.%s-target", idstr.c_str());
ATRACE_INT(sz.c_str(), (int64_t)mDescriptor->duration.count());
sz = StringPrintf("adpf.%s-active", idstr.c_str());
ATRACE_INT(sz.c_str(), mDescriptor->is_active.load());
}
PowerSessionManager::getInstance()->addPowerSession(this);
// init boost
setSessionUclampMin(HintManager::GetInstance()->GetAdpfProfile()->mUclampMinInit);
ALOGV("PowerHintSession created: %s", mDescriptor->toString().c_str());
}
PowerHintSession::~PowerHintSession() {
close();
ALOGV("PowerHintSession deleted: %s", mDescriptor->toString().c_str());
if (ATRACE_ENABLED()) {
const std::string idstr = getIdString();
std::string sz = StringPrintf("adpf.%s-target", idstr.c_str());
ATRACE_INT(sz.c_str(), 0);
sz = StringPrintf("adpf.%s-actl_last", idstr.c_str());
ATRACE_INT(sz.c_str(), 0);
sz = sz = StringPrintf("adpf.%s-active", idstr.c_str());
ATRACE_INT(sz.c_str(), 0);
}
delete mDescriptor;
}
std::string PowerHintSession::getIdString() const {
std::string idstr = StringPrintf("%" PRId32 "-%" PRId32 "-%" PRIxPTR, mDescriptor->tgid,
mDescriptor->uid, reinterpret_cast<uintptr_t>(this) & 0xffff);
return idstr;
}
bool PowerHintSession::isAppSession() {
// Check if uid is in range reserved for applications
return mDescriptor->uid >= AID_APP_START;
}
void PowerHintSession::updateUniveralBoostMode() {
if (!isAppSession()) {
return;
}
if (ATRACE_ENABLED()) {
const std::string tag = StringPrintf("%s:updateUniveralBoostMode()", getIdString().c_str());
ATRACE_BEGIN(tag.c_str());
}
PowerHintMonitor::getInstance()->getLooper()->sendMessage(mPowerManagerHandler, NULL);
if (ATRACE_ENABLED()) {
ATRACE_END();
}
}
int PowerHintSession::setSessionUclampMin(int32_t min) {
{
std::lock_guard<std::mutex> guard(mSessionLock);
mDescriptor->current_min = min;
}
if (min) {
mStaleTimerHandler->updateTimer();
}
PowerSessionManager::getInstance()->setUclampMin(this, min);
if (ATRACE_ENABLED()) {
const std::string idstr = getIdString();
std::string sz = StringPrintf("adpf.%s-min", idstr.c_str());
ATRACE_INT(sz.c_str(), min);
}
return 0;
}
int PowerHintSession::getUclampMin() {
return mDescriptor->current_min;
}
void PowerHintSession::dumpToStream(std::ostream &stream) {
stream << "ID.Min.Act.Timeout(" << getIdString();
stream << ", " << mDescriptor->current_min;
stream << ", " << mDescriptor->is_active;
stream << ", " << isTimeout() << ")";
}
ndk::ScopedAStatus PowerHintSession::pause() {
if (mSessionClosed) {
ALOGE("Error: session is dead");
return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_STATE);
}
if (!mDescriptor->is_active.load())
return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_STATE);
// Reset to default uclamp value.
mDescriptor->is_active.store(false);
setStale();
if (ATRACE_ENABLED()) {
const std::string idstr = getIdString();
std::string sz = StringPrintf("adpf.%s-active", idstr.c_str());
ATRACE_INT(sz.c_str(), mDescriptor->is_active.load());
}
updateUniveralBoostMode();
return ndk::ScopedAStatus::ok();
}
ndk::ScopedAStatus PowerHintSession::resume() {
if (mSessionClosed) {
ALOGE("Error: session is dead");
return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_STATE);
}
if (mDescriptor->is_active.load())
return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_STATE);
mDescriptor->is_active.store(true);
// resume boost
setSessionUclampMin(mDescriptor->current_min);
if (ATRACE_ENABLED()) {
const std::string idstr = getIdString();
std::string sz = StringPrintf("adpf.%s-active", idstr.c_str());
ATRACE_INT(sz.c_str(), mDescriptor->is_active.load());
}
updateUniveralBoostMode();
return ndk::ScopedAStatus::ok();
}
ndk::ScopedAStatus PowerHintSession::close() {
bool sessionClosedExpectedToBe = false;
if (!mSessionClosed.compare_exchange_strong(sessionClosedExpectedToBe, true)) {
return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_STATE);
}
// Remove the session from PowerSessionManager first to avoid racing.
PowerSessionManager::getInstance()->removePowerSession(this);
mEarlyBoostHandler->setSessionDead();
mStaleTimerHandler->setSessionDead();
setSessionUclampMin(0);
mDescriptor->is_active.store(false);
updateUniveralBoostMode();
return ndk::ScopedAStatus::ok();
}
ndk::ScopedAStatus PowerHintSession::updateTargetWorkDuration(int64_t targetDurationNanos) {
if (mSessionClosed) {
ALOGE("Error: session is dead");
return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_STATE);
}
if (targetDurationNanos <= 0) {
ALOGE("Error: targetDurationNanos(%" PRId64 ") should bigger than 0", targetDurationNanos);
return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_ARGUMENT);
}
targetDurationNanos =
targetDurationNanos * HintManager::GetInstance()->GetAdpfProfile()->mTargetTimeFactor;
ALOGV("update target duration: %" PRId64 " ns", targetDurationNanos);
mDescriptor->duration = std::chrono::nanoseconds(targetDurationNanos);
if (ATRACE_ENABLED()) {
const std::string idstr = getIdString();
std::string sz = StringPrintf("adpf.%s-target", idstr.c_str());
ATRACE_INT(sz.c_str(), (int64_t)mDescriptor->duration.count());
}
return ndk::ScopedAStatus::ok();
}
ndk::ScopedAStatus PowerHintSession::reportActualWorkDuration(
const std::vector<WorkDuration> &actualDurations) {
if (mSessionClosed) {
ALOGE("Error: session is dead");
return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_STATE);
}
if (mDescriptor->duration.count() == 0LL) {
ALOGE("Expect to call updateTargetWorkDuration() first.");
return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_STATE);
}
if (actualDurations.size() == 0) {
ALOGE("Error: duration.size() shouldn't be %zu.", actualDurations.size());
return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_ARGUMENT);
}
if (!mDescriptor->is_active.load()) {
ALOGE("Error: shouldn't report duration during pause state.");
return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_STATE);
}
std::shared_ptr<AdpfConfig> adpfConfig = HintManager::GetInstance()->GetAdpfProfile();
mDescriptor->update_count++;
bool isFirstFrame = isTimeout();
if (ATRACE_ENABLED()) {
const std::string idstr = getIdString();
std::string sz = StringPrintf("adpf.%s-batch_size", idstr.c_str());
ATRACE_INT(sz.c_str(), actualDurations.size());
sz = StringPrintf("adpf.%s-actl_last", idstr.c_str());
ATRACE_INT(sz.c_str(), actualDurations.back().durationNanos);
sz = StringPrintf("adpf.%s-target", idstr.c_str());
ATRACE_INT(sz.c_str(), (int64_t)mDescriptor->duration.count());
sz = StringPrintf("adpf.%s-hint.count", idstr.c_str());
ATRACE_INT(sz.c_str(), mDescriptor->update_count);
sz = StringPrintf("adpf.%s-hint.overtime", idstr.c_str());
ATRACE_INT(sz.c_str(),
actualDurations.back().durationNanos - mDescriptor->duration.count() > 0);
}
mLastUpdatedTime.store(std::chrono::steady_clock::now());
if (isFirstFrame) {
updateUniveralBoostMode();
}
if (!adpfConfig->mPidOn) {
setSessionUclampMin(adpfConfig->mUclampMinHigh);
return ndk::ScopedAStatus::ok();
}
int64_t output = convertWorkDurationToBoostByPid(
adpfConfig, mDescriptor->duration, actualDurations, &(mDescriptor->integral_error),
&(mDescriptor->previous_error), getIdString());
/* apply to all the threads in the group */
int next_min = std::min(static_cast<int>(adpfConfig->mUclampMinHigh),
mDescriptor->current_min + static_cast<int>(output));
next_min = std::max(static_cast<int>(adpfConfig->mUclampMinLow), next_min);
setSessionUclampMin(next_min);
mStaleTimerHandler->updateTimer(getStaleTime());
if (HintManager::GetInstance()->GetAdpfProfile()->mEarlyBoostOn) {
updateWorkPeriod(actualDurations);
mEarlyBoostHandler->updateTimer(getEarlyBoostTime());
}
return ndk::ScopedAStatus::ok();
}
std::string AppHintDesc::toString() const {
std::string out =
StringPrintf("session %" PRIxPTR "\n", reinterpret_cast<uintptr_t>(this) & 0xffff);
const int64_t durationNanos = duration.count();
out.append(StringPrintf(" duration: %" PRId64 " ns\n", durationNanos));
out.append(StringPrintf(" uclamp.min: %d \n", current_min));
out.append(StringPrintf(" uid: %d, tgid: %d\n", uid, tgid));
out.append(" threadIds: [");
bool first = true;
for (int tid : threadIds) {
if (!first) {
out.append(", ");
}
out.append(std::to_string(tid));
first = false;
}
out.append("]\n");
return out;
}
bool PowerHintSession::isActive() {
return mDescriptor->is_active.load();
}
bool PowerHintSession::isTimeout() {
auto now = std::chrono::steady_clock::now();
return now >= getStaleTime();
}
const std::vector<int> &PowerHintSession::getTidList() const {
return mDescriptor->threadIds;
}
void PowerHintSession::setStale() {
// Reset to default uclamp value.
PowerSessionManager::getInstance()->setUclampMin(this, 0);
// Deliver a task to check if all sessions are inactive.
updateUniveralBoostMode();
if (ATRACE_ENABLED()) {
const std::string idstr = getIdString();
std::string sz = StringPrintf("adpf.%s-min", idstr.c_str());
ATRACE_INT(sz.c_str(), 0);
}
}
void PowerHintSession::wakeup() {
std::lock_guard<std::mutex> guard(mSessionLock);
// We only wake up non-paused session
if (mSessionClosed || !isActive()) {
return;
}
// Update session's timer
mStaleTimerHandler->updateTimer();
// Skip uclamp update for stale session
if (!isTimeout()) {
return;
}
if (ATRACE_ENABLED()) {
std::string tag = StringPrintf("wakeup.%s(a:%d,s:%d)", getIdString().c_str(), isActive(),
isTimeout());
ATRACE_NAME(tag.c_str());
}
std::shared_ptr<AdpfConfig> adpfConfig = HintManager::GetInstance()->GetAdpfProfile();
mDescriptor->current_min =
std::max(mDescriptor->current_min, static_cast<int>(adpfConfig->mUclampMinInit));
if (ATRACE_ENABLED()) {
const std::string idstr = getIdString();
std::string sz = StringPrintf("adpf.%s-min", idstr.c_str());
ATRACE_INT(sz.c_str(), mDescriptor->current_min);
}
}
void PowerHintSession::updateWorkPeriod(const std::vector<WorkDuration> &actualDurations) {
if (actualDurations.size() == 0)
return;
if (actualDurations.size() >= 2) {
const WorkDuration &last = actualDurations[actualDurations.size() - 2];
mLastStartedTimeNs = last.timeStampNanos - last.durationNanos;
}
const WorkDuration &current = actualDurations.back();
int64_t curr_start = current.timeStampNanos - current.durationNanos;
int64_t period = curr_start - mLastStartedTimeNs;
if (period > 0 && period < mDescriptor->duration.count() * 2) {
// Accounting workload period with moving average for the last 10 workload.
mWorkPeriodNs = 0.9 * mWorkPeriodNs + 0.1 * period;
if (ATRACE_ENABLED()) {
const std::string idstr = getIdString();
std::string sz = StringPrintf("adpf.%s-timer.period", idstr.c_str());
ATRACE_INT(sz.c_str(), mWorkPeriodNs);
}
}
mLastStartedTimeNs = curr_start;
mLastDurationNs = current.durationNanos;
}
time_point<steady_clock> PowerHintSession::getEarlyBoostTime() {
std::shared_ptr<AdpfConfig> adpfConfig = HintManager::GetInstance()->GetAdpfProfile();
int64_t earlyBoostTimeoutNs =
(int64_t)mDescriptor->duration.count() * adpfConfig->mEarlyBoostTimeFactor;
time_point<steady_clock> nextStartTime =
mLastUpdatedTime.load() + nanoseconds(mWorkPeriodNs - mLastDurationNs);
return nextStartTime + nanoseconds(earlyBoostTimeoutNs);
}
time_point<steady_clock> PowerHintSession::getStaleTime() {
return mLastUpdatedTime.load() +
nanoseconds(static_cast<int64_t>(
mDescriptor->duration.count() *
HintManager::GetInstance()->GetAdpfProfile()->mStaleTimeFactor));
}
void PowerHintSession::StaleTimerHandler::updateTimer() {
time_point<steady_clock> staleTime =
std::chrono::steady_clock::now() +
nanoseconds(static_cast<int64_t>(
mSession->mDescriptor->duration.count() *
HintManager::GetInstance()->GetAdpfProfile()->mStaleTimeFactor));
updateTimer(staleTime);
}
void PowerHintSession::StaleTimerHandler::updateTimer(time_point<steady_clock> staleTime) {
mStaleTime.store(staleTime);
{
std::lock_guard<std::mutex> guard(mMessageLock);
PowerHintMonitor::getInstance()->getLooper()->removeMessages(mSession->mStaleTimerHandler);
PowerHintMonitor::getInstance()->getLooper()->sendMessage(mSession->mStaleTimerHandler,
NULL);
}
mIsMonitoring.store(true);
if (ATRACE_ENABLED()) {
const std::string idstr = mSession->getIdString();
std::string sz = StringPrintf("adpf.%s-timer.stale", idstr.c_str());
ATRACE_INT(sz.c_str(), 0);
}
}
void PowerHintSession::StaleTimerHandler::handleMessage(const Message &) {
std::lock_guard<std::mutex> guard(mClosedLock);
if (mIsSessionDead) {
return;
}
auto now = std::chrono::steady_clock::now();
int64_t next =
static_cast<int64_t>(duration_cast<nanoseconds>(mStaleTime.load() - now).count());
if (next > 0) {
// Schedule for the stale timeout check.
std::lock_guard<std::mutex> guard(mMessageLock);
PowerHintMonitor::getInstance()->getLooper()->removeMessages(mSession->mStaleTimerHandler);
PowerHintMonitor::getInstance()->getLooper()->sendMessageDelayed(
next, mSession->mStaleTimerHandler, NULL);
} else {
mSession->setStale();
mIsMonitoring.store(false);
if (ATRACE_ENABLED()) {
const std::string idstr = mSession->getIdString();
std::string sz = StringPrintf("adpf.%s-timer.earlyboost", idstr.c_str());
ATRACE_INT(sz.c_str(), 0);
}
}
if (ATRACE_ENABLED()) {
const std::string idstr = mSession->getIdString();
std::string sz = StringPrintf("adpf.%s-timer.stale", idstr.c_str());
ATRACE_INT(sz.c_str(), mIsMonitoring ? 0 : 1);
}
}
void PowerHintSession::StaleTimerHandler::setSessionDead() {
std::lock_guard<std::mutex> guard(mClosedLock);
mIsSessionDead = true;
PowerHintMonitor::getInstance()->getLooper()->removeMessages(mSession->mStaleTimerHandler);
}
void PowerHintSession::EarlyBoostHandler::updateTimer(time_point<steady_clock> boostTime) {
mBoostTime.store(boostTime);
{
std::lock_guard<std::mutex> guard(mMessageLock);
PowerHintMonitor::getInstance()->getLooper()->removeMessages(mSession->mEarlyBoostHandler);
PowerHintMonitor::getInstance()->getLooper()->sendMessage(mSession->mEarlyBoostHandler,
NULL);
}
mIsMonitoring.store(true);
if (ATRACE_ENABLED()) {
const std::string idstr = mSession->getIdString();
std::string sz = StringPrintf("adpf.%s-timer.earlyboost", idstr.c_str());
ATRACE_INT(sz.c_str(), 1);
}
}
void PowerHintSession::EarlyBoostHandler::handleMessage(const Message &) {
std::lock_guard<std::mutex> guard(mBoostLock);
if (mIsSessionDead) {
return;
}
auto now = std::chrono::steady_clock::now();
int64_t next =
static_cast<int64_t>(duration_cast<nanoseconds>(mBoostTime.load() - now).count());
if (next > 0) {
if (ATRACE_ENABLED()) {
const std::string idstr = mSession->getIdString();
std::string sz = StringPrintf("adpf.%s-timer.earlyboost", idstr.c_str());
ATRACE_INT(sz.c_str(), 1);
}
std::lock_guard<std::mutex> guard(mMessageLock);
PowerHintMonitor::getInstance()->getLooper()->removeMessages(mSession->mEarlyBoostHandler);
PowerHintMonitor::getInstance()->getLooper()->sendMessageDelayed(
next, mSession->mEarlyBoostHandler, NULL);
} else {
std::shared_ptr<AdpfConfig> adpfConfig = HintManager::GetInstance()->GetAdpfProfile();
PowerSessionManager::getInstance()->setUclampMin(mSession, adpfConfig->mUclampMinHigh);
mIsMonitoring.store(false);
if (ATRACE_ENABLED()) {
const std::string idstr = mSession->getIdString();
std::string sz = StringPrintf("adpf.%s-min", idstr.c_str());
ATRACE_INT(sz.c_str(), adpfConfig->mUclampMinHigh);
sz = StringPrintf("adpf.%s-timer.earlyboost", idstr.c_str());
ATRACE_INT(sz.c_str(), 2);
}
}
}
void PowerHintSession::EarlyBoostHandler::setSessionDead() {
std::lock_guard<std::mutex> guard(mBoostLock);
mIsSessionDead = true;
PowerHintMonitor::getInstance()->getLooper()->removeMessages(mSession->mEarlyBoostHandler);
}
} // namespace pixel
} // namespace impl
} // namespace power
} // namespace hardware
} // namespace google
} // namespace aidl