1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
|
/*
* Copyright 2022 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cmath>
#include <jpegrecoverymap/recoverymapmath.h>
namespace android::recoverymap {
static const float kBt2100R = 0.2627f, kBt2100G = 0.6780f, kBt2100B = 0.0593f;
static const float kBt2100Cb = 1.8814f, kBt2100Cr = 1.4746f;
Color bt2100RgbToYuv(Color e) {
float yp = kBt2100R * e.r + kBt2100G * e.g + kBt2100B * e.b;
return {{{yp, (e.b - yp) / kBt2100Cb, (e.r - yp) / kBt2100Cr }}};
}
static const float kSrgbRCr = 1.402f, kSrgbGCb = 0.34414f, kSrgbGCr = 0.71414f, kSrgbBCb = 1.772f;
Color srgbYuvToRgb(Color e) {
return {{{ e.y + kSrgbRCr * e.v, e.y - kSrgbGCb * e.u - kSrgbGCr * e.v, e.y + kSrgbBCb * e.u }}};
}
float srgbInvOetf(float e) {
if (e <= 0.04045f) {
return e / 12.92f;
} else {
return pow((e + 0.055f) / 1.055f, 2.4);
}
}
Color srgbInvOetf(Color e) {
return {{{ srgbInvOetf(e.r), srgbInvOetf(e.g), srgbInvOetf(e.b) }}};
}
static const float kHlgA = 0.17883277f, kHlgB = 0.28466892f, kHlgC = 0.55991073;
float hlgInvOetf(float e) {
if (e <= 0.5f) {
return pow(e, 2.0f) / 3.0f;
} else {
return (exp((e - kHlgC) / kHlgA) + kHlgB) / 12.0f;
}
}
float hlgOetf(float e) {
if (e <= 1.0f/12.0f) {
return sqrt(3.0f * e);
} else {
return kHlgA * log(12.0f * e - kHlgB) + kHlgC;
}
}
Color hlgOetf(Color e) {
return {{{ hlgOetf(e.r), hlgOetf(e.g), hlgOetf(e.b) }}};
}
uint8_t EncodeRecovery(float y_sdr, float y_hdr, float hdr_ratio) {
float gain = 1.0f;
if (y_sdr > 0.0f) {
gain = y_hdr / y_sdr;
}
if (gain < -hdr_ratio) gain = -hdr_ratio;
if (gain > hdr_ratio) gain = hdr_ratio;
return static_cast<uint8_t>(log2(gain) / log2(hdr_ratio) * 127.5f + 127.5f);
}
float applyRecovery(float y_sdr, float recovery, float hdr_ratio) {
return exp2(log2(y_sdr) + recovery * log2(hdr_ratio));
}
// TODO: do we need something more clever for filtering either the map or images
// to generate the map?
static float mapUintToFloat(uint8_t map_uint) {
return (static_cast<float>(map_uint) - 127.5f) / 127.5f;
}
float sampleMap(jr_uncompressed_ptr map, size_t map_scale_factor, size_t x, size_t y) {
float x_map = static_cast<float>(x) / static_cast<float>(map_scale_factor);
float y_map = static_cast<float>(y) / static_cast<float>(map_scale_factor);
size_t x_lower = static_cast<size_t>(floor(x_map));
size_t x_upper = x_lower + 1;
size_t y_lower = static_cast<size_t>(floor(y_map));
size_t y_upper = y_lower + 1;
float x_influence = x_map - static_cast<float>(x_lower);
float y_influence = y_map - static_cast<float>(y_lower);
float e1 = mapUintToFloat(reinterpret_cast<uint8_t*>(map->data)[x_lower + y_lower * map->width]);
float e2 = mapUintToFloat(reinterpret_cast<uint8_t*>(map->data)[x_lower + y_upper * map->width]);
float e3 = mapUintToFloat(reinterpret_cast<uint8_t*>(map->data)[x_upper + y_lower * map->width]);
float e4 = mapUintToFloat(reinterpret_cast<uint8_t*>(map->data)[x_upper + y_upper * map->width]);
return e1 * (x_influence + y_influence) / 2.0f
+ e2 * (x_influence + 1.0f - y_influence) / 2.0f
+ e3 * (1.0f - x_influence + y_influence) / 2.0f
+ e4 * (1.0f - x_influence + 1.0f - y_influence) / 2.0f;
}
Color getYuv420Pixel(jr_uncompressed_ptr image, size_t x, size_t y) {
size_t pixel_count = image->width * image->height;
size_t pixel_y_idx = x + y * image->width;
size_t pixel_uv_idx = x / 2 + (y / 2) * (image->width / 2);
uint8_t y_uint = reinterpret_cast<uint8_t*>(image->data)[pixel_y_idx];
uint8_t u_uint = reinterpret_cast<uint8_t*>(image->data)[pixel_count + pixel_uv_idx];
uint8_t v_uint = reinterpret_cast<uint8_t*>(image->data)[pixel_count * 5 / 4 + pixel_uv_idx];
// 128 bias for UV given we are using jpeglib; see:
// https://github.com/kornelski/libjpeg/blob/master/structure.doc
return {{{ static_cast<float>(y_uint) / 255.0f,
(static_cast<float>(u_uint) - 128.0f) / 255.0f,
(static_cast<float>(v_uint) - 128.0f) / 255.0f }}};
}
typedef float (*sampleComponentFn)(jr_uncompressed_ptr, size_t, size_t);
static float sampleComponent(jr_uncompressed_ptr image, size_t map_scale_factor, size_t x, size_t y,
sampleComponentFn sample_fn) {
float e = 0.0f;
for (size_t dy = 0; dy < map_scale_factor; ++dy) {
for (size_t dx = 0; dx < map_scale_factor; ++dx) {
e += sample_fn(image, x * map_scale_factor + dx, y * map_scale_factor + dy);
}
}
return e / static_cast<float>(map_scale_factor * map_scale_factor);
}
static float getYuv420Y(jr_uncompressed_ptr image, size_t x, size_t y) {
size_t pixel_idx = x + y * image->width;
uint8_t y_uint = reinterpret_cast<uint8_t*>(image->data)[pixel_idx];
return static_cast<float>(y_uint) / 255.0f;
}
float sampleYuv420Y(jr_uncompressed_ptr image, size_t map_scale_factor, size_t x, size_t y) {
return sampleComponent(image, map_scale_factor, x, y, getYuv420Y);
}
static float getP010Y(jr_uncompressed_ptr image, size_t x, size_t y) {
size_t pixel_idx = x + y * image->width;
uint8_t y_uint = reinterpret_cast<uint16_t*>(image->data)[pixel_idx];
// Expecting narrow range input
return (static_cast<float>(y_uint) - 64.0f) / 960.0f;
}
float sampleP010Y(jr_uncompressed_ptr image, size_t map_scale_factor, size_t x, size_t y) {
return sampleComponent(image, map_scale_factor, x, y, getP010Y);
}
} // namespace android::recoverymap
|