summaryrefslogtreecommitdiff
path: root/libs/input/InputConsumer.cpp
blob: 1eeb4e678cac936c140c383733eb7b3fe0fb36bf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
/**
 * Copyright 2024 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include <cstdint>
#define LOG_TAG "InputTransport"
#define ATRACE_TAG ATRACE_TAG_INPUT

#include <errno.h>
#include <fcntl.h>
#include <inttypes.h>
#include <math.h>
#include <poll.h>
#include <sys/socket.h>
#include <sys/types.h>
#include <unistd.h>

#include <android-base/logging.h>
#include <android-base/properties.h>
#include <android-base/stringprintf.h>
#include <binder/Parcel.h>
#include <cutils/properties.h>
#include <ftl/enum.h>
#include <log/log.h>
#include <utils/Trace.h>

#include <com_android_input_flags.h>
#include <input/InputConsumer.h>
#include <input/PrintTools.h>
#include <input/TraceTools.h>

namespace input_flags = com::android::input::flags;

namespace android {

namespace {

/**
 * Log debug messages relating to the consumer end of the transport channel.
 * Enable this via "adb shell setprop log.tag.InputTransportConsumer DEBUG" (requires restart)
 */

const bool DEBUG_TRANSPORT_CONSUMER =
        __android_log_is_loggable(ANDROID_LOG_DEBUG, LOG_TAG "Consumer", ANDROID_LOG_INFO);

const bool IS_DEBUGGABLE_BUILD =
#if defined(__ANDROID__)
        android::base::GetBoolProperty("ro.debuggable", false);
#else
        true;
#endif

/**
 * Log debug messages about touch event resampling.
 *
 * Enable this via "adb shell setprop log.tag.InputTransportResampling DEBUG".
 * This requires a restart on non-debuggable (e.g. user) builds, but should take effect immediately
 * on debuggable builds (e.g. userdebug).
 */
bool debugResampling() {
    if (!IS_DEBUGGABLE_BUILD) {
        static const bool DEBUG_TRANSPORT_RESAMPLING =
                __android_log_is_loggable(ANDROID_LOG_DEBUG, LOG_TAG "Resampling",
                                          ANDROID_LOG_INFO);
        return DEBUG_TRANSPORT_RESAMPLING;
    }
    return __android_log_is_loggable(ANDROID_LOG_DEBUG, LOG_TAG "Resampling", ANDROID_LOG_INFO);
}

void initializeKeyEvent(KeyEvent& event, const InputMessage& msg) {
    event.initialize(msg.body.key.eventId, msg.body.key.deviceId, msg.body.key.source,
                     ui::LogicalDisplayId{msg.body.key.displayId}, msg.body.key.hmac,
                     msg.body.key.action, msg.body.key.flags, msg.body.key.keyCode,
                     msg.body.key.scanCode, msg.body.key.metaState, msg.body.key.repeatCount,
                     msg.body.key.downTime, msg.body.key.eventTime);
}

void initializeFocusEvent(FocusEvent& event, const InputMessage& msg) {
    event.initialize(msg.body.focus.eventId, msg.body.focus.hasFocus);
}

void initializeCaptureEvent(CaptureEvent& event, const InputMessage& msg) {
    event.initialize(msg.body.capture.eventId, msg.body.capture.pointerCaptureEnabled);
}

void initializeDragEvent(DragEvent& event, const InputMessage& msg) {
    event.initialize(msg.body.drag.eventId, msg.body.drag.x, msg.body.drag.y,
                     msg.body.drag.isExiting);
}

void initializeMotionEvent(MotionEvent& event, const InputMessage& msg) {
    uint32_t pointerCount = msg.body.motion.pointerCount;
    PointerProperties pointerProperties[pointerCount];
    PointerCoords pointerCoords[pointerCount];
    for (uint32_t i = 0; i < pointerCount; i++) {
        pointerProperties[i] = msg.body.motion.pointers[i].properties;
        pointerCoords[i] = msg.body.motion.pointers[i].coords;
    }

    ui::Transform transform;
    transform.set({msg.body.motion.dsdx, msg.body.motion.dtdx, msg.body.motion.tx,
                   msg.body.motion.dtdy, msg.body.motion.dsdy, msg.body.motion.ty, 0, 0, 1});
    ui::Transform displayTransform;
    displayTransform.set({msg.body.motion.dsdxRaw, msg.body.motion.dtdxRaw, msg.body.motion.txRaw,
                          msg.body.motion.dtdyRaw, msg.body.motion.dsdyRaw, msg.body.motion.tyRaw,
                          0, 0, 1});
    event.initialize(msg.body.motion.eventId, msg.body.motion.deviceId, msg.body.motion.source,
                     ui::LogicalDisplayId{msg.body.motion.displayId}, msg.body.motion.hmac,
                     msg.body.motion.action, msg.body.motion.actionButton, msg.body.motion.flags,
                     msg.body.motion.edgeFlags, msg.body.motion.metaState,
                     msg.body.motion.buttonState, msg.body.motion.classification, transform,
                     msg.body.motion.xPrecision, msg.body.motion.yPrecision,
                     msg.body.motion.xCursorPosition, msg.body.motion.yCursorPosition,
                     displayTransform, msg.body.motion.downTime, msg.body.motion.eventTime,
                     pointerCount, pointerProperties, pointerCoords);
}

void addSample(MotionEvent& event, const InputMessage& msg) {
    uint32_t pointerCount = msg.body.motion.pointerCount;
    PointerCoords pointerCoords[pointerCount];
    for (uint32_t i = 0; i < pointerCount; i++) {
        pointerCoords[i] = msg.body.motion.pointers[i].coords;
    }

    event.setMetaState(event.getMetaState() | msg.body.motion.metaState);
    event.addSample(msg.body.motion.eventTime, pointerCoords, msg.body.motion.eventId);
}

void initializeTouchModeEvent(TouchModeEvent& event, const InputMessage& msg) {
    event.initialize(msg.body.touchMode.eventId, msg.body.touchMode.isInTouchMode);
}

// Nanoseconds per milliseconds.
constexpr nsecs_t NANOS_PER_MS = 1000000;

// Latency added during resampling.  A few milliseconds doesn't hurt much but
// reduces the impact of mispredicted touch positions.
const std::chrono::duration RESAMPLE_LATENCY = 5ms;

// Minimum time difference between consecutive samples before attempting to resample.
const nsecs_t RESAMPLE_MIN_DELTA = 2 * NANOS_PER_MS;

// Maximum time difference between consecutive samples before attempting to resample
// by extrapolation.
const nsecs_t RESAMPLE_MAX_DELTA = 20 * NANOS_PER_MS;

// Maximum time to predict forward from the last known state, to avoid predicting too
// far into the future.  This time is further bounded by 50% of the last time delta.
const nsecs_t RESAMPLE_MAX_PREDICTION = 8 * NANOS_PER_MS;

/**
 * System property for enabling / disabling touch resampling.
 * Resampling extrapolates / interpolates the reported touch event coordinates to better
 * align them to the VSYNC signal, thus resulting in smoother scrolling performance.
 * Resampling is not needed (and should be disabled) on hardware that already
 * has touch events triggered by VSYNC.
 * Set to "1" to enable resampling (default).
 * Set to "0" to disable resampling.
 * Resampling is enabled by default.
 */
const char* PROPERTY_RESAMPLING_ENABLED = "ro.input.resampling";

inline float lerp(float a, float b, float alpha) {
    return a + alpha * (b - a);
}

inline bool isPointerEvent(int32_t source) {
    return (source & AINPUT_SOURCE_CLASS_POINTER) == AINPUT_SOURCE_CLASS_POINTER;
}

bool shouldResampleTool(ToolType toolType) {
    return toolType == ToolType::FINGER || toolType == ToolType::MOUSE ||
            toolType == ToolType::STYLUS || toolType == ToolType::UNKNOWN;
}

} // namespace

using android::base::Result;
using android::base::StringPrintf;

// --- InputConsumer ---

InputConsumer::InputConsumer(const std::shared_ptr<InputChannel>& channel)
      : InputConsumer(channel, isTouchResamplingEnabled()) {}

InputConsumer::InputConsumer(const std::shared_ptr<InputChannel>& channel,
                             bool enableTouchResampling)
      : mResampleTouch(enableTouchResampling),
        mChannel(channel),
        mProcessingTraceTag(StringPrintf("InputConsumer processing on %s (%p)",
                                         mChannel->getName().c_str(), this)),
        mLifetimeTraceTag(StringPrintf("InputConsumer lifetime on %s (%p)",
                                       mChannel->getName().c_str(), this)),
        mLifetimeTraceCookie(
                static_cast<int32_t>(reinterpret_cast<std::uintptr_t>(this) & 0xFFFFFFFF)),
        mMsgDeferred(false) {
    ATRACE_ASYNC_BEGIN(mLifetimeTraceTag.c_str(), /*cookie=*/mLifetimeTraceCookie);
}

InputConsumer::~InputConsumer() {
    ATRACE_ASYNC_END(mLifetimeTraceTag.c_str(), /*cookie=*/mLifetimeTraceCookie);
}

bool InputConsumer::isTouchResamplingEnabled() {
    return property_get_bool(PROPERTY_RESAMPLING_ENABLED, true);
}

status_t InputConsumer::consume(InputEventFactoryInterface* factory, bool consumeBatches,
                                nsecs_t frameTime, uint32_t* outSeq, InputEvent** outEvent) {
    ALOGD_IF(DEBUG_TRANSPORT_CONSUMER,
             "channel '%s' consumer ~ consume: consumeBatches=%s, frameTime=%" PRId64,
             mChannel->getName().c_str(), toString(consumeBatches), frameTime);

    *outSeq = 0;
    *outEvent = nullptr;

    // Fetch the next input message.
    // Loop until an event can be returned or no additional events are received.
    while (!*outEvent) {
        if (mMsgDeferred) {
            // mMsg contains a valid input message from the previous call to consume
            // that has not yet been processed.
            mMsgDeferred = false;
        } else {
            // Receive a fresh message.
            android::base::Result<InputMessage> result = mChannel->receiveMessage();
            if (result.ok()) {
                mMsg = std::move(result.value());
                const auto [_, inserted] =
                        mConsumeTimes.emplace(mMsg.header.seq, systemTime(SYSTEM_TIME_MONOTONIC));
                LOG_ALWAYS_FATAL_IF(!inserted, "Already have a consume time for seq=%" PRIu32,
                                    mMsg.header.seq);

                // Trace the event processing timeline - event was just read from the socket
                ATRACE_ASYNC_BEGIN(mProcessingTraceTag.c_str(), /*cookie=*/mMsg.header.seq);
            } else {
                // Consume the next batched event unless batches are being held for later.
                if (consumeBatches || result.error().code() != WOULD_BLOCK) {
                    result = android::base::Error(
                            consumeBatch(factory, frameTime, outSeq, outEvent));
                    if (*outEvent) {
                        ALOGD_IF(DEBUG_TRANSPORT_CONSUMER,
                                 "channel '%s' consumer ~ consumed batch event, seq=%u",
                                 mChannel->getName().c_str(), *outSeq);
                        break;
                    }
                }
                return result.error().code();
            }
        }

        switch (mMsg.header.type) {
            case InputMessage::Type::KEY: {
                KeyEvent* keyEvent = factory->createKeyEvent();
                if (!keyEvent) return NO_MEMORY;

                initializeKeyEvent(*keyEvent, mMsg);
                *outSeq = mMsg.header.seq;
                *outEvent = keyEvent;
                ALOGD_IF(DEBUG_TRANSPORT_CONSUMER,
                         "channel '%s' consumer ~ consumed key event, seq=%u",
                         mChannel->getName().c_str(), *outSeq);
                break;
            }

            case InputMessage::Type::MOTION: {
                ssize_t batchIndex = findBatch(mMsg.body.motion.deviceId, mMsg.body.motion.source);
                if (batchIndex >= 0) {
                    Batch& batch = mBatches[batchIndex];
                    if (canAddSample(batch, &mMsg)) {
                        batch.samples.push_back(mMsg);
                        ALOGD_IF(DEBUG_TRANSPORT_CONSUMER,
                                 "channel '%s' consumer ~ appended to batch event",
                                 mChannel->getName().c_str());
                        break;
                    } else if (isPointerEvent(mMsg.body.motion.source) &&
                               mMsg.body.motion.action == AMOTION_EVENT_ACTION_CANCEL) {
                        // No need to process events that we are going to cancel anyways
                        const size_t count = batch.samples.size();
                        for (size_t i = 0; i < count; i++) {
                            const InputMessage& msg = batch.samples[i];
                            sendFinishedSignal(msg.header.seq, false);
                        }
                        batch.samples.erase(batch.samples.begin(), batch.samples.begin() + count);
                        mBatches.erase(mBatches.begin() + batchIndex);
                    } else {
                        // We cannot append to the batch in progress, so we need to consume
                        // the previous batch right now and defer the new message until later.
                        mMsgDeferred = true;
                        status_t result = consumeSamples(factory, batch, batch.samples.size(),
                                                         outSeq, outEvent);
                        mBatches.erase(mBatches.begin() + batchIndex);
                        if (result) {
                            return result;
                        }
                        ALOGD_IF(DEBUG_TRANSPORT_CONSUMER,
                                 "channel '%s' consumer ~ consumed batch event and "
                                 "deferred current event, seq=%u",
                                 mChannel->getName().c_str(), *outSeq);
                        break;
                    }
                }

                // Start a new batch if needed.
                if (mMsg.body.motion.action == AMOTION_EVENT_ACTION_MOVE ||
                    mMsg.body.motion.action == AMOTION_EVENT_ACTION_HOVER_MOVE) {
                    Batch batch;
                    batch.samples.push_back(mMsg);
                    mBatches.push_back(batch);
                    ALOGD_IF(DEBUG_TRANSPORT_CONSUMER,
                             "channel '%s' consumer ~ started batch event",
                             mChannel->getName().c_str());
                    break;
                }

                MotionEvent* motionEvent = factory->createMotionEvent();
                if (!motionEvent) return NO_MEMORY;

                updateTouchState(mMsg);
                initializeMotionEvent(*motionEvent, mMsg);
                *outSeq = mMsg.header.seq;
                *outEvent = motionEvent;

                ALOGD_IF(DEBUG_TRANSPORT_CONSUMER,
                         "channel '%s' consumer ~ consumed motion event, seq=%u",
                         mChannel->getName().c_str(), *outSeq);
                break;
            }

            case InputMessage::Type::FINISHED:
            case InputMessage::Type::TIMELINE: {
                LOG(FATAL) << "Consumed a " << ftl::enum_string(mMsg.header.type)
                           << " message, which should never be seen by "
                              "InputConsumer on "
                           << mChannel->getName();
                break;
            }

            case InputMessage::Type::FOCUS: {
                FocusEvent* focusEvent = factory->createFocusEvent();
                if (!focusEvent) return NO_MEMORY;

                initializeFocusEvent(*focusEvent, mMsg);
                *outSeq = mMsg.header.seq;
                *outEvent = focusEvent;
                break;
            }

            case InputMessage::Type::CAPTURE: {
                CaptureEvent* captureEvent = factory->createCaptureEvent();
                if (!captureEvent) return NO_MEMORY;

                initializeCaptureEvent(*captureEvent, mMsg);
                *outSeq = mMsg.header.seq;
                *outEvent = captureEvent;
                break;
            }

            case InputMessage::Type::DRAG: {
                DragEvent* dragEvent = factory->createDragEvent();
                if (!dragEvent) return NO_MEMORY;

                initializeDragEvent(*dragEvent, mMsg);
                *outSeq = mMsg.header.seq;
                *outEvent = dragEvent;
                break;
            }

            case InputMessage::Type::TOUCH_MODE: {
                TouchModeEvent* touchModeEvent = factory->createTouchModeEvent();
                if (!touchModeEvent) return NO_MEMORY;

                initializeTouchModeEvent(*touchModeEvent, mMsg);
                *outSeq = mMsg.header.seq;
                *outEvent = touchModeEvent;
                break;
            }
        }
    }
    return OK;
}

status_t InputConsumer::consumeBatch(InputEventFactoryInterface* factory, nsecs_t frameTime,
                                     uint32_t* outSeq, InputEvent** outEvent) {
    status_t result;
    for (size_t i = mBatches.size(); i > 0;) {
        i--;
        Batch& batch = mBatches[i];
        if (frameTime < 0) {
            result = consumeSamples(factory, batch, batch.samples.size(), outSeq, outEvent);
            mBatches.erase(mBatches.begin() + i);
            return result;
        }

        nsecs_t sampleTime = frameTime;
        if (mResampleTouch) {
            sampleTime -= std::chrono::nanoseconds(RESAMPLE_LATENCY).count();
        }
        ssize_t split = findSampleNoLaterThan(batch, sampleTime);
        if (split < 0) {
            continue;
        }

        result = consumeSamples(factory, batch, split + 1, outSeq, outEvent);
        const InputMessage* next;
        if (batch.samples.empty()) {
            mBatches.erase(mBatches.begin() + i);
            next = nullptr;
        } else {
            next = &batch.samples[0];
        }
        if (!result && mResampleTouch) {
            resampleTouchState(sampleTime, static_cast<MotionEvent*>(*outEvent), next);
        }
        return result;
    }

    return WOULD_BLOCK;
}

status_t InputConsumer::consumeSamples(InputEventFactoryInterface* factory, Batch& batch,
                                       size_t count, uint32_t* outSeq, InputEvent** outEvent) {
    MotionEvent* motionEvent = factory->createMotionEvent();
    if (!motionEvent) return NO_MEMORY;

    uint32_t chain = 0;
    for (size_t i = 0; i < count; i++) {
        InputMessage& msg = batch.samples[i];
        updateTouchState(msg);
        if (i) {
            SeqChain seqChain;
            seqChain.seq = msg.header.seq;
            seqChain.chain = chain;
            mSeqChains.push_back(seqChain);
            addSample(*motionEvent, msg);
        } else {
            initializeMotionEvent(*motionEvent, msg);
        }
        chain = msg.header.seq;
    }
    batch.samples.erase(batch.samples.begin(), batch.samples.begin() + count);

    *outSeq = chain;
    *outEvent = motionEvent;
    return OK;
}

void InputConsumer::updateTouchState(InputMessage& msg) {
    if (!mResampleTouch || !isPointerEvent(msg.body.motion.source)) {
        return;
    }

    int32_t deviceId = msg.body.motion.deviceId;
    int32_t source = msg.body.motion.source;

    // Update the touch state history to incorporate the new input message.
    // If the message is in the past relative to the most recently produced resampled
    // touch, then use the resampled time and coordinates instead.
    switch (msg.body.motion.action & AMOTION_EVENT_ACTION_MASK) {
        case AMOTION_EVENT_ACTION_DOWN: {
            ssize_t index = findTouchState(deviceId, source);
            if (index < 0) {
                mTouchStates.push_back({});
                index = mTouchStates.size() - 1;
            }
            TouchState& touchState = mTouchStates[index];
            touchState.initialize(deviceId, source);
            touchState.addHistory(msg);
            break;
        }

        case AMOTION_EVENT_ACTION_MOVE: {
            ssize_t index = findTouchState(deviceId, source);
            if (index >= 0) {
                TouchState& touchState = mTouchStates[index];
                touchState.addHistory(msg);
                rewriteMessage(touchState, msg);
            }
            break;
        }

        case AMOTION_EVENT_ACTION_POINTER_DOWN: {
            ssize_t index = findTouchState(deviceId, source);
            if (index >= 0) {
                TouchState& touchState = mTouchStates[index];
                touchState.lastResample.idBits.clearBit(msg.body.motion.getActionId());
                rewriteMessage(touchState, msg);
            }
            break;
        }

        case AMOTION_EVENT_ACTION_POINTER_UP: {
            ssize_t index = findTouchState(deviceId, source);
            if (index >= 0) {
                TouchState& touchState = mTouchStates[index];
                rewriteMessage(touchState, msg);
                touchState.lastResample.idBits.clearBit(msg.body.motion.getActionId());
            }
            break;
        }

        case AMOTION_EVENT_ACTION_SCROLL: {
            ssize_t index = findTouchState(deviceId, source);
            if (index >= 0) {
                TouchState& touchState = mTouchStates[index];
                rewriteMessage(touchState, msg);
            }
            break;
        }

        case AMOTION_EVENT_ACTION_UP:
        case AMOTION_EVENT_ACTION_CANCEL: {
            ssize_t index = findTouchState(deviceId, source);
            if (index >= 0) {
                TouchState& touchState = mTouchStates[index];
                rewriteMessage(touchState, msg);
                mTouchStates.erase(mTouchStates.begin() + index);
            }
            break;
        }
    }
}

/**
 * Replace the coordinates in msg with the coordinates in lastResample, if necessary.
 *
 * If lastResample is no longer valid for a specific pointer (i.e. the lastResample time
 * is in the past relative to msg and the past two events do not contain identical coordinates),
 * then invalidate the lastResample data for that pointer.
 * If the two past events have identical coordinates, then lastResample data for that pointer will
 * remain valid, and will be used to replace these coordinates. Thus, if a certain coordinate x0 is
 * resampled to the new value x1, then x1 will always be used to replace x0 until some new value
 * not equal to x0 is received.
 */
void InputConsumer::rewriteMessage(TouchState& state, InputMessage& msg) {
    nsecs_t eventTime = msg.body.motion.eventTime;
    for (uint32_t i = 0; i < msg.body.motion.pointerCount; i++) {
        uint32_t id = msg.body.motion.pointers[i].properties.id;
        if (state.lastResample.idBits.hasBit(id)) {
            if (eventTime < state.lastResample.eventTime ||
                state.recentCoordinatesAreIdentical(id)) {
                PointerCoords& msgCoords = msg.body.motion.pointers[i].coords;
                const PointerCoords& resampleCoords = state.lastResample.getPointerById(id);
                ALOGD_IF(debugResampling(), "[%d] - rewrite (%0.3f, %0.3f), old (%0.3f, %0.3f)", id,
                         resampleCoords.getX(), resampleCoords.getY(), msgCoords.getX(),
                         msgCoords.getY());
                msgCoords.setAxisValue(AMOTION_EVENT_AXIS_X, resampleCoords.getX());
                msgCoords.setAxisValue(AMOTION_EVENT_AXIS_Y, resampleCoords.getY());
                msgCoords.isResampled = true;
            } else {
                state.lastResample.idBits.clearBit(id);
            }
        }
    }
}

void InputConsumer::resampleTouchState(nsecs_t sampleTime, MotionEvent* event,
                                       const InputMessage* next) {
    if (!mResampleTouch || !(isPointerEvent(event->getSource())) ||
        event->getAction() != AMOTION_EVENT_ACTION_MOVE) {
        return;
    }

    ssize_t index = findTouchState(event->getDeviceId(), event->getSource());
    if (index < 0) {
        ALOGD_IF(debugResampling(), "Not resampled, no touch state for device.");
        return;
    }

    TouchState& touchState = mTouchStates[index];
    if (touchState.historySize < 1) {
        ALOGD_IF(debugResampling(), "Not resampled, no history for device.");
        return;
    }

    // Ensure that the current sample has all of the pointers that need to be reported.
    const History* current = touchState.getHistory(0);
    size_t pointerCount = event->getPointerCount();
    for (size_t i = 0; i < pointerCount; i++) {
        uint32_t id = event->getPointerId(i);
        if (!current->idBits.hasBit(id)) {
            ALOGD_IF(debugResampling(), "Not resampled, missing id %d", id);
            return;
        }
        if (!shouldResampleTool(event->getToolType(i))) {
            ALOGD_IF(debugResampling(),
                     "Not resampled, containing unsupported tool type at pointer %d", id);
            return;
        }
    }

    // Find the data to use for resampling.
    const History* other;
    History future;
    float alpha;
    if (next) {
        // Interpolate between current sample and future sample.
        // So current->eventTime <= sampleTime <= future.eventTime.
        future.initializeFrom(*next);
        other = &future;
        nsecs_t delta = future.eventTime - current->eventTime;
        if (delta < RESAMPLE_MIN_DELTA) {
            ALOGD_IF(debugResampling(), "Not resampled, delta time is too small: %" PRId64 " ns.",
                     delta);
            return;
        }
        alpha = float(sampleTime - current->eventTime) / delta;
    } else if (touchState.historySize >= 2) {
        // Extrapolate future sample using current sample and past sample.
        // So other->eventTime <= current->eventTime <= sampleTime.
        other = touchState.getHistory(1);
        nsecs_t delta = current->eventTime - other->eventTime;
        if (delta < RESAMPLE_MIN_DELTA) {
            ALOGD_IF(debugResampling(), "Not resampled, delta time is too small: %" PRId64 " ns.",
                     delta);
            return;
        } else if (delta > RESAMPLE_MAX_DELTA) {
            ALOGD_IF(debugResampling(), "Not resampled, delta time is too large: %" PRId64 " ns.",
                     delta);
            return;
        }
        nsecs_t maxPredict = current->eventTime + std::min(delta / 2, RESAMPLE_MAX_PREDICTION);
        if (sampleTime > maxPredict) {
            ALOGD_IF(debugResampling(),
                     "Sample time is too far in the future, adjusting prediction "
                     "from %" PRId64 " to %" PRId64 " ns.",
                     sampleTime - current->eventTime, maxPredict - current->eventTime);
            sampleTime = maxPredict;
        }
        alpha = float(current->eventTime - sampleTime) / delta;
    } else {
        ALOGD_IF(debugResampling(), "Not resampled, insufficient data.");
        return;
    }

    if (current->eventTime == sampleTime) {
        ALOGD_IF(debugResampling(), "Not resampled, 2 events with identical times.");
        return;
    }

    for (size_t i = 0; i < pointerCount; i++) {
        uint32_t id = event->getPointerId(i);
        if (!other->idBits.hasBit(id)) {
            ALOGD_IF(debugResampling(), "Not resampled, the other doesn't have pointer id %d.", id);
            return;
        }
    }

    // Resample touch coordinates.
    History oldLastResample;
    oldLastResample.initializeFrom(touchState.lastResample);
    touchState.lastResample.eventTime = sampleTime;
    touchState.lastResample.idBits.clear();
    for (size_t i = 0; i < pointerCount; i++) {
        uint32_t id = event->getPointerId(i);
        touchState.lastResample.idToIndex[id] = i;
        touchState.lastResample.idBits.markBit(id);
        if (oldLastResample.hasPointerId(id) && touchState.recentCoordinatesAreIdentical(id)) {
            // We maintain the previously resampled value for this pointer (stored in
            // oldLastResample) when the coordinates for this pointer haven't changed since then.
            // This way we don't introduce artificial jitter when pointers haven't actually moved.
            // The isResampled flag isn't cleared as the values don't reflect what the device is
            // actually reporting.

            // We know here that the coordinates for the pointer haven't changed because we
            // would've cleared the resampled bit in rewriteMessage if they had. We can't modify
            // lastResample in place because the mapping from pointer ID to index may have changed.
            touchState.lastResample.pointers[i] = oldLastResample.getPointerById(id);
            continue;
        }

        PointerCoords& resampledCoords = touchState.lastResample.pointers[i];
        const PointerCoords& currentCoords = current->getPointerById(id);
        resampledCoords = currentCoords;
        resampledCoords.isResampled = true;
        const PointerCoords& otherCoords = other->getPointerById(id);
        resampledCoords.setAxisValue(AMOTION_EVENT_AXIS_X,
                                     lerp(currentCoords.getX(), otherCoords.getX(), alpha));
        resampledCoords.setAxisValue(AMOTION_EVENT_AXIS_Y,
                                     lerp(currentCoords.getY(), otherCoords.getY(), alpha));
        ALOGD_IF(debugResampling(),
                 "[%d] - out (%0.3f, %0.3f), cur (%0.3f, %0.3f), "
                 "other (%0.3f, %0.3f), alpha %0.3f",
                 id, resampledCoords.getX(), resampledCoords.getY(), currentCoords.getX(),
                 currentCoords.getY(), otherCoords.getX(), otherCoords.getY(), alpha);
    }

    event->addSample(sampleTime, touchState.lastResample.pointers, event->getId());
}

status_t InputConsumer::sendFinishedSignal(uint32_t seq, bool handled) {
    ALOGD_IF(DEBUG_TRANSPORT_CONSUMER,
             "channel '%s' consumer ~ sendFinishedSignal: seq=%u, handled=%s",
             mChannel->getName().c_str(), seq, toString(handled));

    if (!seq) {
        ALOGE("Attempted to send a finished signal with sequence number 0.");
        return BAD_VALUE;
    }

    // Send finished signals for the batch sequence chain first.
    size_t seqChainCount = mSeqChains.size();
    if (seqChainCount) {
        uint32_t currentSeq = seq;
        uint32_t chainSeqs[seqChainCount];
        size_t chainIndex = 0;
        for (size_t i = seqChainCount; i > 0;) {
            i--;
            const SeqChain& seqChain = mSeqChains[i];
            if (seqChain.seq == currentSeq) {
                currentSeq = seqChain.chain;
                chainSeqs[chainIndex++] = currentSeq;
                mSeqChains.erase(mSeqChains.begin() + i);
            }
        }
        status_t status = OK;
        while (!status && chainIndex > 0) {
            chainIndex--;
            status = sendUnchainedFinishedSignal(chainSeqs[chainIndex], handled);
        }
        if (status) {
            // An error occurred so at least one signal was not sent, reconstruct the chain.
            for (;;) {
                SeqChain seqChain;
                seqChain.seq = chainIndex != 0 ? chainSeqs[chainIndex - 1] : seq;
                seqChain.chain = chainSeqs[chainIndex];
                mSeqChains.push_back(seqChain);
                if (!chainIndex) break;
                chainIndex--;
            }
            return status;
        }
    }

    // Send finished signal for the last message in the batch.
    return sendUnchainedFinishedSignal(seq, handled);
}

status_t InputConsumer::sendTimeline(int32_t inputEventId,
                                     std::array<nsecs_t, GraphicsTimeline::SIZE> graphicsTimeline) {
    ALOGD_IF(DEBUG_TRANSPORT_CONSUMER,
             "channel '%s' consumer ~ sendTimeline: inputEventId=%" PRId32
             ", gpuCompletedTime=%" PRId64 ", presentTime=%" PRId64,
             mChannel->getName().c_str(), inputEventId,
             graphicsTimeline[GraphicsTimeline::GPU_COMPLETED_TIME],
             graphicsTimeline[GraphicsTimeline::PRESENT_TIME]);

    InputMessage msg;
    msg.header.type = InputMessage::Type::TIMELINE;
    msg.header.seq = 0;
    msg.body.timeline.eventId = inputEventId;
    msg.body.timeline.graphicsTimeline = std::move(graphicsTimeline);
    return mChannel->sendMessage(&msg);
}

nsecs_t InputConsumer::getConsumeTime(uint32_t seq) const {
    auto it = mConsumeTimes.find(seq);
    // Consume time will be missing if either 'finishInputEvent' is called twice, or if it was
    // called for the wrong (synthetic?) input event. Either way, it is a bug that should be fixed.
    LOG_ALWAYS_FATAL_IF(it == mConsumeTimes.end(), "Could not find consume time for seq=%" PRIu32,
                        seq);
    return it->second;
}

void InputConsumer::popConsumeTime(uint32_t seq) {
    mConsumeTimes.erase(seq);
}

status_t InputConsumer::sendUnchainedFinishedSignal(uint32_t seq, bool handled) {
    InputMessage msg;
    msg.header.type = InputMessage::Type::FINISHED;
    msg.header.seq = seq;
    msg.body.finished.handled = handled;
    msg.body.finished.consumeTime = getConsumeTime(seq);
    status_t result = mChannel->sendMessage(&msg);
    if (result == OK) {
        // Remove the consume time if the socket write succeeded. We will not need to ack this
        // message anymore. If the socket write did not succeed, we will try again and will still
        // need consume time.
        popConsumeTime(seq);

        // Trace the event processing timeline - event was just finished
        ATRACE_ASYNC_END(mProcessingTraceTag.c_str(), /*cookie=*/seq);
    }
    return result;
}

bool InputConsumer::hasPendingBatch() const {
    return !mBatches.empty();
}

int32_t InputConsumer::getPendingBatchSource() const {
    if (mBatches.empty()) {
        return AINPUT_SOURCE_CLASS_NONE;
    }

    const Batch& batch = mBatches[0];
    const InputMessage& head = batch.samples[0];
    return head.body.motion.source;
}

bool InputConsumer::probablyHasInput() const {
    return hasPendingBatch() || mChannel->probablyHasInput();
}

ssize_t InputConsumer::findBatch(int32_t deviceId, int32_t source) const {
    for (size_t i = 0; i < mBatches.size(); i++) {
        const Batch& batch = mBatches[i];
        const InputMessage& head = batch.samples[0];
        if (head.body.motion.deviceId == deviceId && head.body.motion.source == source) {
            return i;
        }
    }
    return -1;
}

ssize_t InputConsumer::findTouchState(int32_t deviceId, int32_t source) const {
    for (size_t i = 0; i < mTouchStates.size(); i++) {
        const TouchState& touchState = mTouchStates[i];
        if (touchState.deviceId == deviceId && touchState.source == source) {
            return i;
        }
    }
    return -1;
}

bool InputConsumer::canAddSample(const Batch& batch, const InputMessage* msg) {
    const InputMessage& head = batch.samples[0];
    uint32_t pointerCount = msg->body.motion.pointerCount;
    if (head.body.motion.pointerCount != pointerCount ||
        head.body.motion.action != msg->body.motion.action) {
        return false;
    }
    for (size_t i = 0; i < pointerCount; i++) {
        if (head.body.motion.pointers[i].properties != msg->body.motion.pointers[i].properties) {
            return false;
        }
    }
    return true;
}

ssize_t InputConsumer::findSampleNoLaterThan(const Batch& batch, nsecs_t time) {
    size_t numSamples = batch.samples.size();
    size_t index = 0;
    while (index < numSamples && batch.samples[index].body.motion.eventTime <= time) {
        index += 1;
    }
    return ssize_t(index) - 1;
}

std::string InputConsumer::dump() const {
    std::string out;
    out = out + "mResampleTouch = " + toString(mResampleTouch) + "\n";
    out = out + "mChannel = " + mChannel->getName() + "\n";
    out = out + "mMsgDeferred: " + toString(mMsgDeferred) + "\n";
    if (mMsgDeferred) {
        out = out + "mMsg : " + ftl::enum_string(mMsg.header.type) + "\n";
    }
    out += "Batches:\n";
    for (const Batch& batch : mBatches) {
        out += "    Batch:\n";
        for (const InputMessage& msg : batch.samples) {
            out += android::base::StringPrintf("        Message %" PRIu32 ": %s ", msg.header.seq,
                                               ftl::enum_string(msg.header.type).c_str());
            switch (msg.header.type) {
                case InputMessage::Type::KEY: {
                    out += android::base::StringPrintf("action=%s keycode=%" PRId32,
                                                       KeyEvent::actionToString(
                                                               msg.body.key.action),
                                                       msg.body.key.keyCode);
                    break;
                }
                case InputMessage::Type::MOTION: {
                    out = out + "action=" + MotionEvent::actionToString(msg.body.motion.action);
                    for (uint32_t i = 0; i < msg.body.motion.pointerCount; i++) {
                        const float x = msg.body.motion.pointers[i].coords.getX();
                        const float y = msg.body.motion.pointers[i].coords.getY();
                        out += android::base::StringPrintf("\n            Pointer %" PRIu32
                                                           " : x=%.1f y=%.1f",
                                                           i, x, y);
                    }
                    break;
                }
                case InputMessage::Type::FINISHED: {
                    out += android::base::StringPrintf("handled=%s, consumeTime=%" PRId64,
                                                       toString(msg.body.finished.handled),
                                                       msg.body.finished.consumeTime);
                    break;
                }
                case InputMessage::Type::FOCUS: {
                    out += android::base::StringPrintf("hasFocus=%s",
                                                       toString(msg.body.focus.hasFocus));
                    break;
                }
                case InputMessage::Type::CAPTURE: {
                    out += android::base::StringPrintf("hasCapture=%s",
                                                       toString(msg.body.capture
                                                                        .pointerCaptureEnabled));
                    break;
                }
                case InputMessage::Type::DRAG: {
                    out += android::base::StringPrintf("x=%.1f y=%.1f, isExiting=%s",
                                                       msg.body.drag.x, msg.body.drag.y,
                                                       toString(msg.body.drag.isExiting));
                    break;
                }
                case InputMessage::Type::TIMELINE: {
                    const nsecs_t gpuCompletedTime =
                            msg.body.timeline
                                    .graphicsTimeline[GraphicsTimeline::GPU_COMPLETED_TIME];
                    const nsecs_t presentTime =
                            msg.body.timeline.graphicsTimeline[GraphicsTimeline::PRESENT_TIME];
                    out += android::base::StringPrintf("inputEventId=%" PRId32
                                                       ", gpuCompletedTime=%" PRId64
                                                       ", presentTime=%" PRId64,
                                                       msg.body.timeline.eventId, gpuCompletedTime,
                                                       presentTime);
                    break;
                }
                case InputMessage::Type::TOUCH_MODE: {
                    out += android::base::StringPrintf("isInTouchMode=%s",
                                                       toString(msg.body.touchMode.isInTouchMode));
                    break;
                }
            }
            out += "\n";
        }
    }
    if (mBatches.empty()) {
        out += "    <empty>\n";
    }
    out += "mSeqChains:\n";
    for (const SeqChain& chain : mSeqChains) {
        out += android::base::StringPrintf("    chain: seq = %" PRIu32 " chain=%" PRIu32, chain.seq,
                                           chain.chain);
    }
    if (mSeqChains.empty()) {
        out += "    <empty>\n";
    }
    out += "mConsumeTimes:\n";
    for (const auto& [seq, consumeTime] : mConsumeTimes) {
        out += android::base::StringPrintf("    seq = %" PRIu32 " consumeTime = %" PRId64, seq,
                                           consumeTime);
    }
    if (mConsumeTimes.empty()) {
        out += "    <empty>\n";
    }
    return out;
}

} // namespace android