summaryrefslogtreecommitdiff
path: root/libs/binder/RpcState.cpp
blob: 53eba5aea61f5ac906d9612b8225635728582351 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
/*
 * Copyright (C) 2020 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#define LOG_TAG "RpcState"

#include "RpcState.h"

#include <android-base/scopeguard.h>
#include <binder/BpBinder.h>
#include <binder/IPCThreadState.h>
#include <binder/RpcServer.h>

#include "Debug.h"
#include "RpcWireFormat.h"

#include <inttypes.h>

namespace android {

using base::ScopeGuard;

RpcState::RpcState() {}
RpcState::~RpcState() {}

status_t RpcState::onBinderLeaving(const sp<RpcSession>& session, const sp<IBinder>& binder,
                                   RpcAddress* outAddress) {
    bool isRemote = binder->remoteBinder();
    bool isRpc = isRemote && binder->remoteBinder()->isRpcBinder();

    if (isRpc && binder->remoteBinder()->getPrivateAccessorForId().rpcSession() != session) {
        // We need to be able to send instructions over the socket for how to
        // connect to a different server, and we also need to let the host
        // process know that this is happening.
        ALOGE("Cannot send binder from unrelated binder RPC session.");
        return INVALID_OPERATION;
    }

    if (isRemote && !isRpc) {
        // Without additional work, this would have the effect of using this
        // process to proxy calls from the socket over to the other process, and
        // it would make those calls look like they come from us (not over the
        // sockets). In order to make this work transparently like binder, we
        // would instead need to send instructions over the socket for how to
        // connect to the host process, and we also need to let the host process
        // know this was happening.
        ALOGE("Cannot send binder proxy %p over sockets", binder.get());
        return INVALID_OPERATION;
    }

    std::lock_guard<std::mutex> _l(mNodeMutex);
    if (mTerminated) return DEAD_OBJECT;

    // TODO(b/182939933): maybe move address out of BpBinder, and keep binder->address map
    // in RpcState
    for (auto& [addr, node] : mNodeForAddress) {
        if (binder == node.binder) {
            if (isRpc) {
                const RpcAddress& actualAddr =
                        binder->remoteBinder()->getPrivateAccessorForId().rpcAddress();
                // TODO(b/182939933): this is only checking integrity of data structure
                // a different data structure doesn't need this
                LOG_ALWAYS_FATAL_IF(addr < actualAddr, "Address mismatch");
                LOG_ALWAYS_FATAL_IF(actualAddr < addr, "Address mismatch");
            }
            node.timesSent++;
            node.sentRef = binder; // might already be set
            *outAddress = addr;
            return OK;
        }
    }
    LOG_ALWAYS_FATAL_IF(isRpc, "RPC binder must have known address at this point");

    auto&& [it, inserted] = mNodeForAddress.insert({RpcAddress::unique(),
                                                    BinderNode{
                                                            .binder = binder,
                                                            .timesSent = 1,
                                                            .sentRef = binder,
                                                    }});
    // TODO(b/182939933): better organization could avoid needing this log
    LOG_ALWAYS_FATAL_IF(!inserted);

    *outAddress = it->first;
    return OK;
}

status_t RpcState::onBinderEntering(const sp<RpcSession>& session, const RpcAddress& address,
                                    sp<IBinder>* out) {
    std::unique_lock<std::mutex> _l(mNodeMutex);
    if (mTerminated) return DEAD_OBJECT;

    if (auto it = mNodeForAddress.find(address); it != mNodeForAddress.end()) {
        *out = it->second.binder.promote();

        // implicitly have strong RPC refcount, since we received this binder
        it->second.timesRecd++;

        _l.unlock();

        // We have timesRecd RPC refcounts, but we only need to hold on to one
        // when we keep the object. All additional dec strongs are sent
        // immediately, we wait to send the last one in BpBinder::onLastDecStrong.
        (void)session->sendDecStrong(address);

        return OK;
    }

    auto&& [it, inserted] = mNodeForAddress.insert({address, BinderNode{}});
    LOG_ALWAYS_FATAL_IF(!inserted, "Failed to insert binder when creating proxy");

    // Currently, all binders are assumed to be part of the same session (no
    // device global binders in the RPC world).
    it->second.binder = *out = BpBinder::create(session, it->first);
    it->second.timesRecd = 1;
    return OK;
}

size_t RpcState::countBinders() {
    std::lock_guard<std::mutex> _l(mNodeMutex);
    return mNodeForAddress.size();
}

void RpcState::dump() {
    std::lock_guard<std::mutex> _l(mNodeMutex);
    dumpLocked();
}

void RpcState::clear() {
    std::unique_lock<std::mutex> _l(mNodeMutex);

    if (mTerminated) {
        LOG_ALWAYS_FATAL_IF(!mNodeForAddress.empty(),
                            "New state should be impossible after terminating!");
        return;
    }

    if (SHOULD_LOG_RPC_DETAIL) {
        ALOGE("RpcState::clear()");
        dumpLocked();
    }

    // if the destructor of a binder object makes another RPC call, then calling
    // decStrong could deadlock. So, we must hold onto these binders until
    // mNodeMutex is no longer taken.
    std::vector<sp<IBinder>> tempHoldBinder;

    mTerminated = true;
    for (auto& [address, node] : mNodeForAddress) {
        sp<IBinder> binder = node.binder.promote();
        LOG_ALWAYS_FATAL_IF(binder == nullptr, "Binder %p expected to be owned.", binder.get());

        if (node.sentRef != nullptr) {
            tempHoldBinder.push_back(node.sentRef);
        }
    }

    mNodeForAddress.clear();

    _l.unlock();
    tempHoldBinder.clear(); // explicit
}

void RpcState::dumpLocked() {
    ALOGE("DUMP OF RpcState %p", this);
    ALOGE("DUMP OF RpcState (%zu nodes)", mNodeForAddress.size());
    for (const auto& [address, node] : mNodeForAddress) {
        sp<IBinder> binder = node.binder.promote();

        const char* desc;
        if (binder) {
            if (binder->remoteBinder()) {
                if (binder->remoteBinder()->isRpcBinder()) {
                    desc = "(rpc binder proxy)";
                } else {
                    desc = "(binder proxy)";
                }
            } else {
                desc = "(local binder)";
            }
        } else {
            desc = "(null)";
        }

        ALOGE("- BINDER NODE: %p times sent:%zu times recd: %zu a:%s type:%s",
              node.binder.unsafe_get(), node.timesSent, node.timesRecd, address.toString().c_str(),
              desc);
    }
    ALOGE("END DUMP OF RpcState");
}


RpcState::CommandData::CommandData(size_t size) : mSize(size) {
    // The maximum size for regular binder is 1MB for all concurrent
    // transactions. A very small proportion of transactions are even
    // larger than a page, but we need to avoid allocating too much
    // data on behalf of an arbitrary client, or we could risk being in
    // a position where a single additional allocation could run out of
    // memory.
    //
    // Note, this limit may not reflect the total amount of data allocated for a
    // transaction (in some cases, additional fixed size amounts are added),
    // though for rough consistency, we should avoid cases where this data type
    // is used for multiple dynamic allocations for a single transaction.
    constexpr size_t kMaxTransactionAllocation = 100 * 1000;
    if (size == 0) return;
    if (size > kMaxTransactionAllocation) {
        ALOGW("Transaction requested too much data allocation %zu", size);
        return;
    }
    mData.reset(new (std::nothrow) uint8_t[size]);
}

status_t RpcState::rpcSend(const base::unique_fd& fd, const sp<RpcSession>& session,
                           const char* what, const void* data, size_t size) {
    LOG_RPC_DETAIL("Sending %s on fd %d: %s", what, fd.get(), hexString(data, size).c_str());

    if (size > std::numeric_limits<ssize_t>::max()) {
        ALOGE("Cannot send %s at size %zu (too big)", what, size);
        (void)session->shutdownAndWait(false);
        return BAD_VALUE;
    }

    ssize_t sent = TEMP_FAILURE_RETRY(send(fd.get(), data, size, MSG_NOSIGNAL));

    if (sent < 0 || sent != static_cast<ssize_t>(size)) {
        int savedErrno = errno;
        LOG_RPC_DETAIL("Failed to send %s (sent %zd of %zu bytes) on fd %d, error: %s", what, sent,
                       size, fd.get(), strerror(savedErrno));

        (void)session->shutdownAndWait(false);
        return -savedErrno;
    }

    return OK;
}

status_t RpcState::rpcRec(const base::unique_fd& fd, const sp<RpcSession>& session,
                          const char* what, void* data, size_t size) {
    if (size > std::numeric_limits<ssize_t>::max()) {
        ALOGE("Cannot rec %s at size %zu (too big)", what, size);
        (void)session->shutdownAndWait(false);
        return BAD_VALUE;
    }

    if (status_t status = session->mShutdownTrigger->interruptableReadFully(fd.get(), data, size);
        status != OK) {
        LOG_RPC_DETAIL("Failed to read %s (%zu bytes) on fd %d, error: %s", what, size, fd.get(),
                       statusToString(status).c_str());
        return status;
    }

    LOG_RPC_DETAIL("Received %s on fd %d: %s", what, fd.get(), hexString(data, size).c_str());
    return OK;
}

status_t RpcState::sendConnectionInit(const base::unique_fd& fd, const sp<RpcSession>& session) {
    RpcClientConnectionInit init{
            .msg = RPC_CONNECTION_INIT_OKAY,
    };
    return rpcSend(fd, session, "connection init", &init, sizeof(init));
}

status_t RpcState::readConnectionInit(const base::unique_fd& fd, const sp<RpcSession>& session) {
    RpcClientConnectionInit init;
    if (status_t status = rpcRec(fd, session, "connection init", &init, sizeof(init)); status != OK)
        return status;

    static_assert(sizeof(init.msg) == sizeof(RPC_CONNECTION_INIT_OKAY));
    if (0 != strncmp(init.msg, RPC_CONNECTION_INIT_OKAY, sizeof(init.msg))) {
        ALOGE("Connection init message unrecognized %.*s", static_cast<int>(sizeof(init.msg)),
              init.msg);
        return BAD_VALUE;
    }
    return OK;
}

sp<IBinder> RpcState::getRootObject(const base::unique_fd& fd, const sp<RpcSession>& session) {
    Parcel data;
    data.markForRpc(session);
    Parcel reply;

    status_t status = transactAddress(fd, RpcAddress::zero(), RPC_SPECIAL_TRANSACT_GET_ROOT, data,
                                      session, &reply, 0);
    if (status != OK) {
        ALOGE("Error getting root object: %s", statusToString(status).c_str());
        return nullptr;
    }

    return reply.readStrongBinder();
}

status_t RpcState::getMaxThreads(const base::unique_fd& fd, const sp<RpcSession>& session,
                                 size_t* maxThreadsOut) {
    Parcel data;
    data.markForRpc(session);
    Parcel reply;

    status_t status = transactAddress(fd, RpcAddress::zero(), RPC_SPECIAL_TRANSACT_GET_MAX_THREADS,
                                      data, session, &reply, 0);
    if (status != OK) {
        ALOGE("Error getting max threads: %s", statusToString(status).c_str());
        return status;
    }

    int32_t maxThreads;
    status = reply.readInt32(&maxThreads);
    if (status != OK) return status;
    if (maxThreads <= 0) {
        ALOGE("Error invalid max maxThreads: %d", maxThreads);
        return BAD_VALUE;
    }

    *maxThreadsOut = maxThreads;
    return OK;
}

status_t RpcState::getSessionId(const base::unique_fd& fd, const sp<RpcSession>& session,
                                int32_t* sessionIdOut) {
    Parcel data;
    data.markForRpc(session);
    Parcel reply;

    status_t status = transactAddress(fd, RpcAddress::zero(), RPC_SPECIAL_TRANSACT_GET_SESSION_ID,
                                      data, session, &reply, 0);
    if (status != OK) {
        ALOGE("Error getting session ID: %s", statusToString(status).c_str());
        return status;
    }

    int32_t sessionId;
    status = reply.readInt32(&sessionId);
    if (status != OK) return status;

    *sessionIdOut = sessionId;
    return OK;
}

status_t RpcState::transact(const base::unique_fd& fd, const sp<IBinder>& binder, uint32_t code,
                            const Parcel& data, const sp<RpcSession>& session, Parcel* reply,
                            uint32_t flags) {
    if (!data.isForRpc()) {
        ALOGE("Refusing to send RPC with parcel not crafted for RPC");
        return BAD_TYPE;
    }

    if (data.objectsCount() != 0) {
        ALOGE("Parcel at %p has attached objects but is being used in an RPC call", &data);
        return BAD_TYPE;
    }

    RpcAddress address = RpcAddress::zero();
    if (status_t status = onBinderLeaving(session, binder, &address); status != OK) return status;

    return transactAddress(fd, address, code, data, session, reply, flags);
}

status_t RpcState::transactAddress(const base::unique_fd& fd, const RpcAddress& address,
                                   uint32_t code, const Parcel& data, const sp<RpcSession>& session,
                                   Parcel* reply, uint32_t flags) {
    LOG_ALWAYS_FATAL_IF(!data.isForRpc());
    LOG_ALWAYS_FATAL_IF(data.objectsCount() != 0);

    uint64_t asyncNumber = 0;

    if (!address.isZero()) {
        std::unique_lock<std::mutex> _l(mNodeMutex);
        if (mTerminated) return DEAD_OBJECT; // avoid fatal only, otherwise races
        auto it = mNodeForAddress.find(address);
        LOG_ALWAYS_FATAL_IF(it == mNodeForAddress.end(), "Sending transact on unknown address %s",
                            address.toString().c_str());

        if (flags & IBinder::FLAG_ONEWAY) {
            asyncNumber = it->second.asyncNumber;
            if (!nodeProgressAsyncNumber(&it->second)) {
                _l.unlock();
                (void)session->shutdownAndWait(false);
                return DEAD_OBJECT;
            }
        }
    }

    LOG_ALWAYS_FATAL_IF(std::numeric_limits<int32_t>::max() - sizeof(RpcWireHeader) -
                                        sizeof(RpcWireTransaction) <
                                data.dataSize(),
                        "Too much data %zu", data.dataSize());

    RpcWireHeader command{
            .command = RPC_COMMAND_TRANSACT,
            .bodySize = static_cast<uint32_t>(sizeof(RpcWireTransaction) + data.dataSize()),
    };
    RpcWireTransaction transaction{
            .address = address.viewRawEmbedded(),
            .code = code,
            .flags = flags,
            .asyncNumber = asyncNumber,
    };
    CommandData transactionData(sizeof(RpcWireHeader) + sizeof(RpcWireTransaction) +
                                data.dataSize());
    if (!transactionData.valid()) {
        return NO_MEMORY;
    }

    memcpy(transactionData.data() + 0, &command, sizeof(RpcWireHeader));
    memcpy(transactionData.data() + sizeof(RpcWireHeader), &transaction,
           sizeof(RpcWireTransaction));
    memcpy(transactionData.data() + sizeof(RpcWireHeader) + sizeof(RpcWireTransaction), data.data(),
           data.dataSize());

    if (status_t status =
                rpcSend(fd, session, "transaction", transactionData.data(), transactionData.size());
        status != OK)
        // TODO(b/167966510): need to undo onBinderLeaving - we know the
        // refcount isn't successfully transferred.
        return status;

    if (flags & IBinder::FLAG_ONEWAY) {
        LOG_RPC_DETAIL("Oneway command, so no longer waiting on %d", fd.get());

        // Do not wait on result.
        // However, too many oneway calls may cause refcounts to build up and fill up the socket,
        // so process those.
        return drainCommands(fd, session, CommandType::CONTROL_ONLY);
    }

    LOG_ALWAYS_FATAL_IF(reply == nullptr, "Reply parcel must be used for synchronous transaction.");

    return waitForReply(fd, session, reply);
}

static void cleanup_reply_data(Parcel* p, const uint8_t* data, size_t dataSize,
                               const binder_size_t* objects, size_t objectsCount) {
    (void)p;
    delete[] const_cast<uint8_t*>(data - offsetof(RpcWireReply, data));
    (void)dataSize;
    LOG_ALWAYS_FATAL_IF(objects != nullptr);
    LOG_ALWAYS_FATAL_IF(objectsCount, 0);
}

status_t RpcState::waitForReply(const base::unique_fd& fd, const sp<RpcSession>& session,
                                Parcel* reply) {
    RpcWireHeader command;
    while (true) {
        if (status_t status = rpcRec(fd, session, "command header", &command, sizeof(command));
            status != OK)
            return status;

        if (command.command == RPC_COMMAND_REPLY) break;

        if (status_t status = processServerCommand(fd, session, command, CommandType::ANY);
            status != OK)
            return status;
    }

    CommandData data(command.bodySize);
    if (!data.valid()) return NO_MEMORY;

    if (status_t status = rpcRec(fd, session, "reply body", data.data(), command.bodySize);
        status != OK)
        return status;

    if (command.bodySize < sizeof(RpcWireReply)) {
        ALOGE("Expecting %zu but got %" PRId32 " bytes for RpcWireReply. Terminating!",
              sizeof(RpcWireReply), command.bodySize);
        (void)session->shutdownAndWait(false);
        return BAD_VALUE;
    }
    RpcWireReply* rpcReply = reinterpret_cast<RpcWireReply*>(data.data());
    if (rpcReply->status != OK) return rpcReply->status;

    data.release();
    reply->ipcSetDataReference(rpcReply->data, command.bodySize - offsetof(RpcWireReply, data),
                               nullptr, 0, cleanup_reply_data);

    reply->markForRpc(session);

    return OK;
}

status_t RpcState::sendDecStrong(const base::unique_fd& fd, const sp<RpcSession>& session,
                                 const RpcAddress& addr) {
    {
        std::lock_guard<std::mutex> _l(mNodeMutex);
        if (mTerminated) return DEAD_OBJECT; // avoid fatal only, otherwise races
        auto it = mNodeForAddress.find(addr);
        LOG_ALWAYS_FATAL_IF(it == mNodeForAddress.end(), "Sending dec strong on unknown address %s",
                            addr.toString().c_str());
        LOG_ALWAYS_FATAL_IF(it->second.timesRecd <= 0, "Bad dec strong %s",
                            addr.toString().c_str());

        it->second.timesRecd--;
        LOG_ALWAYS_FATAL_IF(nullptr != tryEraseNode(it),
                            "Bad state. RpcState shouldn't own received binder");
    }

    RpcWireHeader cmd = {
            .command = RPC_COMMAND_DEC_STRONG,
            .bodySize = sizeof(RpcWireAddress),
    };
    if (status_t status = rpcSend(fd, session, "dec ref header", &cmd, sizeof(cmd)); status != OK)
        return status;
    if (status_t status = rpcSend(fd, session, "dec ref body", &addr.viewRawEmbedded(),
                                  sizeof(RpcWireAddress));
        status != OK)
        return status;
    return OK;
}

status_t RpcState::getAndExecuteCommand(const base::unique_fd& fd, const sp<RpcSession>& session,
                                        CommandType type) {
    LOG_RPC_DETAIL("getAndExecuteCommand on fd %d", fd.get());

    RpcWireHeader command;
    if (status_t status = rpcRec(fd, session, "command header", &command, sizeof(command));
        status != OK)
        return status;

    return processServerCommand(fd, session, command, type);
}

status_t RpcState::drainCommands(const base::unique_fd& fd, const sp<RpcSession>& session,
                                 CommandType type) {
    uint8_t buf;
    while (0 < TEMP_FAILURE_RETRY(recv(fd.get(), &buf, sizeof(buf), MSG_PEEK | MSG_DONTWAIT))) {
        status_t status = getAndExecuteCommand(fd, session, type);
        if (status != OK) return status;
    }
    return OK;
}

status_t RpcState::processServerCommand(const base::unique_fd& fd, const sp<RpcSession>& session,
                                        const RpcWireHeader& command, CommandType type) {
    IPCThreadState* kernelBinderState = IPCThreadState::selfOrNull();
    IPCThreadState::SpGuard spGuard{
            .address = __builtin_frame_address(0),
            .context = "processing binder RPC command",
    };
    const IPCThreadState::SpGuard* origGuard;
    if (kernelBinderState != nullptr) {
        origGuard = kernelBinderState->pushGetCallingSpGuard(&spGuard);
    }
    ScopeGuard guardUnguard = [&]() {
        if (kernelBinderState != nullptr) {
            kernelBinderState->restoreGetCallingSpGuard(origGuard);
        }
    };

    switch (command.command) {
        case RPC_COMMAND_TRANSACT:
            if (type != CommandType::ANY) return BAD_TYPE;
            return processTransact(fd, session, command);
        case RPC_COMMAND_DEC_STRONG:
            return processDecStrong(fd, session, command);
    }

    // We should always know the version of the opposing side, and since the
    // RPC-binder-level wire protocol is not self synchronizing, we have no way
    // to understand where the current command ends and the next one begins. We
    // also can't consider it a fatal error because this would allow any client
    // to kill us, so ending the session for misbehaving client.
    ALOGE("Unknown RPC command %d - terminating session", command.command);
    (void)session->shutdownAndWait(false);
    return DEAD_OBJECT;
}
status_t RpcState::processTransact(const base::unique_fd& fd, const sp<RpcSession>& session,
                                   const RpcWireHeader& command) {
    LOG_ALWAYS_FATAL_IF(command.command != RPC_COMMAND_TRANSACT, "command: %d", command.command);

    CommandData transactionData(command.bodySize);
    if (!transactionData.valid()) {
        return NO_MEMORY;
    }
    if (status_t status = rpcRec(fd, session, "transaction body", transactionData.data(),
                                 transactionData.size());
        status != OK)
        return status;

    return processTransactInternal(fd, session, std::move(transactionData));
}

static void do_nothing_to_transact_data(Parcel* p, const uint8_t* data, size_t dataSize,
                                        const binder_size_t* objects, size_t objectsCount) {
    (void)p;
    (void)data;
    (void)dataSize;
    (void)objects;
    (void)objectsCount;
}

status_t RpcState::processTransactInternal(const base::unique_fd& fd, const sp<RpcSession>& session,
                                           CommandData transactionData) {
    // for 'recursive' calls to this, we have already read and processed the
    // binder from the transaction data and taken reference counts into account,
    // so it is cached here.
    sp<IBinder> targetRef;
processTransactInternalTailCall:

    if (transactionData.size() < sizeof(RpcWireTransaction)) {
        ALOGE("Expecting %zu but got %zu bytes for RpcWireTransaction. Terminating!",
              sizeof(RpcWireTransaction), transactionData.size());
        (void)session->shutdownAndWait(false);
        return BAD_VALUE;
    }
    RpcWireTransaction* transaction = reinterpret_cast<RpcWireTransaction*>(transactionData.data());

    // TODO(b/182939933): heap allocation just for lookup in mNodeForAddress,
    // maybe add an RpcAddress 'view' if the type remains 'heavy'
    auto addr = RpcAddress::fromRawEmbedded(&transaction->address);

    status_t replyStatus = OK;
    sp<IBinder> target;
    if (!addr.isZero()) {
        if (!targetRef) {
            replyStatus = onBinderEntering(session, addr, &target);
        } else {
            target = targetRef;
        }

        if (replyStatus != OK) {
            // do nothing
        } else if (target == nullptr) {
            // This can happen if the binder is remote in this process, and
            // another thread has called the last decStrong on this binder.
            // However, for local binders, it indicates a misbehaving client
            // (any binder which is being transacted on should be holding a
            // strong ref count), so in either case, terminating the
            // session.
            ALOGE("While transacting, binder has been deleted at address %s. Terminating!",
                  addr.toString().c_str());
            (void)session->shutdownAndWait(false);
            replyStatus = BAD_VALUE;
        } else if (target->localBinder() == nullptr) {
            ALOGE("Unknown binder address or non-local binder, not address %s. Terminating!",
                  addr.toString().c_str());
            (void)session->shutdownAndWait(false);
            replyStatus = BAD_VALUE;
        } else if (transaction->flags & IBinder::FLAG_ONEWAY) {
            std::unique_lock<std::mutex> _l(mNodeMutex);
            auto it = mNodeForAddress.find(addr);
            if (it->second.binder.promote() != target) {
                ALOGE("Binder became invalid during transaction. Bad client? %s",
                      addr.toString().c_str());
                replyStatus = BAD_VALUE;
            } else if (transaction->asyncNumber != it->second.asyncNumber) {
                // we need to process some other asynchronous transaction
                // first
                it->second.asyncTodo.push(BinderNode::AsyncTodo{
                        .ref = target,
                        .data = std::move(transactionData),
                        .asyncNumber = transaction->asyncNumber,
                });

                size_t numPending = it->second.asyncTodo.size();
                LOG_RPC_DETAIL("Enqueuing %" PRId64 " on %s (%zu pending)",
                               transaction->asyncNumber, addr.toString().c_str(), numPending);

                constexpr size_t kArbitraryOnewayCallTerminateLevel = 10000;
                constexpr size_t kArbitraryOnewayCallWarnLevel = 1000;
                constexpr size_t kArbitraryOnewayCallWarnPer = 1000;

                if (numPending >= kArbitraryOnewayCallWarnLevel) {
                    if (numPending >= kArbitraryOnewayCallTerminateLevel) {
                        ALOGE("WARNING: %zu pending oneway transactions. Terminating!", numPending);
                        _l.unlock();
                        (void)session->shutdownAndWait(false);
                        return FAILED_TRANSACTION;
                    }

                    if (numPending % kArbitraryOnewayCallWarnPer == 0) {
                        ALOGW("Warning: many oneway transactions built up on %p (%zu)",
                              target.get(), numPending);
                    }
                }
                return OK;
            }
        }
    }

    Parcel reply;
    reply.markForRpc(session);

    if (replyStatus == OK) {
        Parcel data;
        // transaction->data is owned by this function. Parcel borrows this data and
        // only holds onto it for the duration of this function call. Parcel will be
        // deleted before the 'transactionData' object.
        data.ipcSetDataReference(transaction->data,
                                 transactionData.size() - offsetof(RpcWireTransaction, data),
                                 nullptr /*object*/, 0 /*objectCount*/,
                                 do_nothing_to_transact_data);
        data.markForRpc(session);

        if (target) {
            replyStatus = target->transact(transaction->code, data, &reply, transaction->flags);
        } else {
            LOG_RPC_DETAIL("Got special transaction %u", transaction->code);

            switch (transaction->code) {
                case RPC_SPECIAL_TRANSACT_GET_MAX_THREADS: {
                    replyStatus = reply.writeInt32(session->getMaxThreads());
                    break;
                }
                case RPC_SPECIAL_TRANSACT_GET_SESSION_ID: {
                    // for client connections, this should always report the value
                    // originally returned from the server
                    int32_t id = session->mId.value();
                    replyStatus = reply.writeInt32(id);
                    break;
                }
                default: {
                    sp<RpcServer> server = session->server().promote();
                    if (server) {
                        switch (transaction->code) {
                            case RPC_SPECIAL_TRANSACT_GET_ROOT: {
                                replyStatus = reply.writeStrongBinder(server->getRootObject());
                                break;
                            }
                            default: {
                                replyStatus = UNKNOWN_TRANSACTION;
                            }
                        }
                    } else {
                        ALOGE("Special command sent, but no server object attached.");
                    }
                }
            }
        }
    }

    if (transaction->flags & IBinder::FLAG_ONEWAY) {
        if (replyStatus != OK) {
            ALOGW("Oneway call failed with error: %d", replyStatus);
        }

        LOG_RPC_DETAIL("Processed async transaction %" PRId64 " on %s", transaction->asyncNumber,
                       addr.toString().c_str());

        // Check to see if there is another asynchronous transaction to process.
        // This behavior differs from binder behavior, since in the binder
        // driver, asynchronous transactions will be processed after existing
        // pending binder transactions on the queue. The downside of this is
        // that asynchronous transactions can be drowned out by synchronous
        // transactions. However, we have no easy way to queue these
        // transactions after the synchronous transactions we may want to read
        // from the wire. So, in socket binder here, we have the opposite
        // downside: asynchronous transactions may drown out synchronous
        // transactions.
        {
            std::unique_lock<std::mutex> _l(mNodeMutex);
            auto it = mNodeForAddress.find(addr);
            // last refcount dropped after this transaction happened
            if (it == mNodeForAddress.end()) return OK;

            if (!nodeProgressAsyncNumber(&it->second)) {
                _l.unlock();
                (void)session->shutdownAndWait(false);
                return DEAD_OBJECT;
            }

            if (it->second.asyncTodo.size() == 0) return OK;
            if (it->second.asyncTodo.top().asyncNumber == it->second.asyncNumber) {
                LOG_RPC_DETAIL("Found next async transaction %" PRId64 " on %s",
                               it->second.asyncNumber, addr.toString().c_str());

                // justification for const_cast (consider avoiding priority_queue):
                // - AsyncTodo operator< doesn't depend on 'data' or 'ref' objects
                // - gotta go fast
                auto& todo = const_cast<BinderNode::AsyncTodo&>(it->second.asyncTodo.top());

                // reset up arguments
                transactionData = std::move(todo.data);
                targetRef = std::move(todo.ref);

                it->second.asyncTodo.pop();
                goto processTransactInternalTailCall;
            }
        }
        return OK;
    }

    LOG_ALWAYS_FATAL_IF(std::numeric_limits<int32_t>::max() - sizeof(RpcWireHeader) -
                                        sizeof(RpcWireReply) <
                                reply.dataSize(),
                        "Too much data for reply %zu", reply.dataSize());

    RpcWireHeader cmdReply{
            .command = RPC_COMMAND_REPLY,
            .bodySize = static_cast<uint32_t>(sizeof(RpcWireReply) + reply.dataSize()),
    };
    RpcWireReply rpcReply{
            .status = replyStatus,
    };

    CommandData replyData(sizeof(RpcWireHeader) + sizeof(RpcWireReply) + reply.dataSize());
    if (!replyData.valid()) {
        return NO_MEMORY;
    }
    memcpy(replyData.data() + 0, &cmdReply, sizeof(RpcWireHeader));
    memcpy(replyData.data() + sizeof(RpcWireHeader), &rpcReply, sizeof(RpcWireReply));
    memcpy(replyData.data() + sizeof(RpcWireHeader) + sizeof(RpcWireReply), reply.data(),
           reply.dataSize());

    return rpcSend(fd, session, "reply", replyData.data(), replyData.size());
}

status_t RpcState::processDecStrong(const base::unique_fd& fd, const sp<RpcSession>& session,
                                    const RpcWireHeader& command) {
    LOG_ALWAYS_FATAL_IF(command.command != RPC_COMMAND_DEC_STRONG, "command: %d", command.command);

    CommandData commandData(command.bodySize);
    if (!commandData.valid()) {
        return NO_MEMORY;
    }
    if (status_t status =
                rpcRec(fd, session, "dec ref body", commandData.data(), commandData.size());
        status != OK)
        return status;

    if (command.bodySize < sizeof(RpcWireAddress)) {
        ALOGE("Expecting %zu but got %" PRId32 " bytes for RpcWireAddress. Terminating!",
              sizeof(RpcWireAddress), command.bodySize);
        (void)session->shutdownAndWait(false);
        return BAD_VALUE;
    }
    RpcWireAddress* address = reinterpret_cast<RpcWireAddress*>(commandData.data());

    // TODO(b/182939933): heap allocation just for lookup
    auto addr = RpcAddress::fromRawEmbedded(address);
    std::unique_lock<std::mutex> _l(mNodeMutex);
    auto it = mNodeForAddress.find(addr);
    if (it == mNodeForAddress.end()) {
        ALOGE("Unknown binder address %s for dec strong.", addr.toString().c_str());
        return OK;
    }

    sp<IBinder> target = it->second.binder.promote();
    if (target == nullptr) {
        ALOGE("While requesting dec strong, binder has been deleted at address %s. Terminating!",
              addr.toString().c_str());
        _l.unlock();
        (void)session->shutdownAndWait(false);
        return BAD_VALUE;
    }

    if (it->second.timesSent == 0) {
        ALOGE("No record of sending binder, but requested decStrong: %s", addr.toString().c_str());
        return OK;
    }

    LOG_ALWAYS_FATAL_IF(it->second.sentRef == nullptr, "Inconsistent state, lost ref for %s",
                        addr.toString().c_str());

    it->second.timesSent--;
    sp<IBinder> tempHold = tryEraseNode(it);
    _l.unlock();
    tempHold = nullptr; // destructor may make binder calls on this session

    return OK;
}

sp<IBinder> RpcState::tryEraseNode(std::map<RpcAddress, BinderNode>::iterator& it) {
    sp<IBinder> ref;

    if (it->second.timesSent == 0) {
        ref = std::move(it->second.sentRef);

        if (it->second.timesRecd == 0) {
            LOG_ALWAYS_FATAL_IF(!it->second.asyncTodo.empty(),
                                "Can't delete binder w/ pending async transactions");
            mNodeForAddress.erase(it);
        }
    }

    return ref;
}

bool RpcState::nodeProgressAsyncNumber(BinderNode* node) {
    // 2**64 =~ 10**19 =~ 1000 transactions per second for 585 million years to
    // a single binder
    if (node->asyncNumber >= std::numeric_limits<decltype(node->asyncNumber)>::max()) {
        ALOGE("Out of async transaction IDs. Terminating");
        return false;
    }
    node->asyncNumber++;
    return true;
}

} // namespace android