1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
|
/**
* Copyright 2024 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <array>
#include <chrono>
#include <iterator>
#include <map>
#include <optional>
#include <vector>
#include <android-base/logging.h>
#include <ftl/mixins.h>
#include <input/CoordinateFilter.h>
#include <input/Input.h>
#include <input/InputTransport.h>
#include <input/RingBuffer.h>
#include <utils/Timers.h>
namespace android {
/**
* Resampler is an interface for resampling MotionEvents. Every resampling implementation
* must use this interface to enable resampling inside InputConsumer's logic.
*/
struct Resampler {
virtual ~Resampler() = default;
/**
* Tries to resample motionEvent at frameTime. The provided frameTime must be greater than
* the latest sample time of motionEvent. It is not guaranteed that resampling occurs at
* frameTime. Interpolation may occur is futureSample is available. Otherwise, motionEvent
* may be resampled by another method, or not resampled at all. Furthermore, it is the
* implementer's responsibility to guarantee the following:
* - If resampling occurs, a single additional sample should be added to motionEvent. That is,
* if motionEvent had N samples before being passed to Resampler, then it will have N + 1
* samples by the end of the resampling. No other field of motionEvent should be modified.
* - If resampling does not occur, then motionEvent must not be modified in any way.
*/
virtual void resampleMotionEvent(std::chrono::nanoseconds frameTime, MotionEvent& motionEvent,
const InputMessage* futureSample) = 0;
/**
* Returns resample latency. Resample latency is the time difference between frame time and
* resample time. More precisely, let frameTime and resampleTime be two timestamps, and
* frameTime > resampleTime. Resample latency is defined as frameTime - resampleTime.
*/
virtual std::chrono::nanoseconds getResampleLatency() const = 0;
};
class LegacyResampler final : public Resampler {
public:
/**
* Tries to resample `motionEvent` at `frameTime` by adding a resampled sample at the end of
* `motionEvent` with eventTime equal to `resampleTime` and pointer coordinates determined by
* linear interpolation or linear extrapolation. An earlier `resampleTime` will be used if
* extrapolation takes place and `resampleTime` is too far in the future. If `futureSample` is
* not null, interpolation will occur. If `futureSample` is null and there is enough historical
* data, LegacyResampler will extrapolate. Otherwise, no resampling takes place and
* `motionEvent` is unmodified. Furthermore, motionEvent is not resampled if resampleTime equals
* the last sample eventTime of motionEvent.
*/
void resampleMotionEvent(std::chrono::nanoseconds frameTime, MotionEvent& motionEvent,
const InputMessage* futureSample) override;
std::chrono::nanoseconds getResampleLatency() const override;
private:
struct Pointer {
PointerProperties properties;
PointerCoords coords;
};
/**
* Container that stores pointers as an associative array, supporting O(1) lookup by pointer id,
* as well as forward iteration in the order in which the pointer or pointers were inserted in
* the container. PointerMap has a maximum capacity equal to MAX_POINTERS.
*/
class PointerMap {
public:
struct PointerId : ftl::DefaultConstructible<PointerId, int32_t>,
ftl::Equatable<PointerId> {
using DefaultConstructible::DefaultConstructible;
};
/**
* Custom iterator to enable use of range-based for loops.
*/
template <typename T>
class iterator {
public:
using iterator_category = std::forward_iterator_tag;
using value_type = T;
using difference_type = std::ptrdiff_t;
using pointer = T*;
using reference = T&;
explicit iterator(pointer element) : mElement{element} {}
friend bool operator==(const iterator& lhs, const iterator& rhs) {
return lhs.mElement == rhs.mElement;
}
friend bool operator!=(const iterator& lhs, const iterator& rhs) {
return !(lhs == rhs);
}
iterator operator++() {
++mElement;
return *this;
}
reference operator*() const { return *mElement; }
private:
pointer mElement;
};
PointerMap() {
idToIndex.fill(std::nullopt);
for (Pointer& pointer : pointers) {
pointer.properties.clear();
pointer.coords.clear();
}
}
/**
* Forward iterators to traverse the pointers in `pointers`. The order of the pointers is
* determined by the order in which they were inserted (not by id).
*/
iterator<Pointer> begin() { return iterator<Pointer>{&pointers[0]}; }
iterator<const Pointer> begin() const { return iterator<const Pointer>{&pointers[0]}; }
iterator<Pointer> end() { return iterator<Pointer>{&pointers[nextPointerIndex]}; }
iterator<const Pointer> end() const {
return iterator<const Pointer>{&pointers[nextPointerIndex]};
}
/**
* Inserts the given pointer into the PointerMap. Precondition: The current number of
* contained pointers must be less than MAX_POINTERS when this function is called. It
* fatally logs if the user tries to insert more than MAX_POINTERS, or if pointer id is out
* of bounds.
*/
void insert(const Pointer& pointer) {
LOG_IF(FATAL, nextPointerIndex >= pointers.size())
<< "Cannot insert more than " << MAX_POINTERS << " in PointerMap.";
LOG_IF(FATAL, (pointer.properties.id < 0) || (pointer.properties.id > MAX_POINTER_ID))
<< "Invalid pointer id.";
idToIndex[pointer.properties.id] = std::optional<size_t>{nextPointerIndex};
pointers[nextPointerIndex] = pointer;
++nextPointerIndex;
}
/**
* Returns the pointer associated with the provided id if it exists.
* Otherwise, std::nullopt is returned.
*/
std::optional<Pointer> find(PointerId id) const {
const int32_t idValue = ftl::to_underlying(id);
LOG_IF(FATAL, (idValue < 0) || (idValue > MAX_POINTER_ID)) << "Invalid pointer id.";
const std::optional<size_t> index = idToIndex[idValue];
return index.has_value() ? std::optional{pointers[*index]} : std::nullopt;
}
private:
/**
* The index at which a pointer is inserted in `pointers`. Likewise, it represents the
* number of pointers in PointerMap.
*/
size_t nextPointerIndex{0};
/**
* Sequentially stores pointers. Each pointer's position is determined by the value of
* nextPointerIndex at insertion time.
*/
std::array<Pointer, MAX_POINTERS + 1> pointers;
/**
* Maps each pointer id to its associated index in pointers. If no pointer with the id
* exists in pointers, the mapped value is std::nullopt.
*/
std::array<std::optional<size_t>, MAX_POINTER_ID + 1> idToIndex;
};
struct Sample {
std::chrono::nanoseconds eventTime;
PointerMap pointerMap;
std::vector<PointerCoords> asPointerCoords() const {
std::vector<PointerCoords> pointersCoords;
for (const Pointer& pointer : pointerMap) {
pointersCoords.push_back(pointer.coords);
}
return pointersCoords;
}
};
/**
* Up to two latest samples from MotionEvent. Updated every time resampleMotionEvent is called.
* Note: We store up to two samples in order to simplify the implementation. Although,
* calculations are possible with only one previous sample.
*/
RingBuffer<Sample> mLatestSamples{/*capacity=*/2};
/**
* Latest sample in mLatestSamples after resampling motion event.
*/
std::optional<Sample> mLastRealSample;
/**
* Latest prediction. That is, the latest extrapolated sample.
*/
std::optional<Sample> mPreviousPrediction;
/**
* Adds up to mLatestSamples.capacity() of motionEvent's latest samples to mLatestSamples. If
* motionEvent has fewer samples than mLatestSamples.capacity(), then the available samples are
* added to mLatestSamples.
*/
void updateLatestSamples(const MotionEvent& motionEvent);
static Sample messageToSample(const InputMessage& message);
/**
* Checks if auxiliary sample has the same pointer properties of target sample. That is,
* auxiliary pointer IDs must appear in the same order as target pointer IDs, their toolType
* must match and be resampleable.
*/
static bool pointerPropertiesResampleable(const Sample& target, const Sample& auxiliary);
/**
* Checks if there are necessary conditions to interpolate. For example, interpolation cannot
* take place if samples are too far apart in time. mLatestSamples must have at least one sample
* when canInterpolate is invoked.
*/
bool canInterpolate(const InputMessage& futureSample) const;
/**
* Returns a sample interpolated between the latest sample of mLatestSamples and futureMessage,
* if the conditions from canInterpolate are satisfied. Otherwise, returns nullopt.
* mLatestSamples must have at least one sample when attemptInterpolation is called.
*/
std::optional<Sample> attemptInterpolation(std::chrono::nanoseconds resampleTime,
const InputMessage& futureMessage) const;
/**
* Checks if there are necessary conditions to extrapolate. That is, there are at least two
* samples in mLatestSamples, and delta is bounded within a time interval.
*/
bool canExtrapolate() const;
/**
* Returns a sample extrapolated from the two samples of mLatestSamples, if the conditions from
* canExtrapolate are satisfied. The returned sample either has eventTime equal to resampleTime,
* or an earlier time if resampleTime is too far in the future. If canExtrapolate returns false,
* this function returns nullopt.
*/
std::optional<Sample> attemptExtrapolation(std::chrono::nanoseconds resampleTime) const;
/**
* Iterates through motion event samples, and replaces real coordinates with resampled
* coordinates to avoid jerkiness in certain conditions.
*/
void overwriteMotionEventSamples(MotionEvent& motionEvent) const;
/**
* Overwrites with resampled data the pointer coordinates that did not move between motion event
* samples, that is, both x and y values are identical to mLastRealSample.
*/
void overwriteStillPointers(MotionEvent& motionEvent, size_t sampleIndex) const;
/**
* Overwrites the pointer coordinates of a sample with event time older than
* that of mPreviousPrediction.
*/
void overwriteOldPointers(MotionEvent& motionEvent, size_t sampleIndex) const;
inline static void addSampleToMotionEvent(const Sample& sample, MotionEvent& motionEvent);
};
/**
* Resampler that first applies the LegacyResampler resampling algorithm, then independently filters
* the X and Y coordinates with a pair of One Euro filters.
*/
class FilteredLegacyResampler final : public Resampler {
public:
/**
* Creates a resampler, using the given minCutoffFreq and beta to instantiate its One Euro
* filters.
*/
explicit FilteredLegacyResampler(float minCutoffFreq, float beta);
void resampleMotionEvent(std::chrono::nanoseconds requestedFrameTime, MotionEvent& motionEvent,
const InputMessage* futureMessage) override;
std::chrono::nanoseconds getResampleLatency() const override;
private:
LegacyResampler mResampler;
/**
* Minimum cutoff frequency of the value's low pass filter. Refer to OneEuroFilter class for a
* more detailed explanation.
*/
const float mMinCutoffFreq;
/**
* Scaling factor of the adaptive cutoff frequency criterion. Refer to OneEuroFilter class for a
* more detailed explanation.
*/
const float mBeta;
/*
* Note: an associative array with constant insertion and lookup times would be more efficient.
* When this was implemented, there was no container with these properties.
*/
std::map<int32_t /*pointerId*/, CoordinateFilter> mFilteredPointers;
};
} // namespace android
|