1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
|
/*
* Copyright 2022 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <functional>
#include <optional>
#include <utility>
#include <android-base/expected.h>
#include <ftl/details/optional.h>
namespace android::ftl {
// Superset of std::optional<T> with monadic operations, as proposed in https://wg21.link/P0798R8.
//
// TODO: Remove standard APIs in C++23.
//
template <typename T>
struct Optional final : std::optional<T> {
using std::optional<T>::optional;
// Implicit downcast.
Optional(std::optional<T> other) : std::optional<T>(std::move(other)) {}
using std::optional<T>::has_value;
using std::optional<T>::value;
// Returns Optional<U> where F is a function that maps T to U.
template <typename F>
constexpr auto transform(F&& f) const& {
using R = details::transform_result_t<F, decltype(value())>;
if (has_value()) return R(std::invoke(std::forward<F>(f), value()));
return R();
}
template <typename F>
constexpr auto transform(F&& f) & {
using R = details::transform_result_t<F, decltype(value())>;
if (has_value()) return R(std::invoke(std::forward<F>(f), value()));
return R();
}
template <typename F>
constexpr auto transform(F&& f) const&& {
using R = details::transform_result_t<F, decltype(std::move(value()))>;
if (has_value()) return R(std::invoke(std::forward<F>(f), std::move(value())));
return R();
}
template <typename F>
constexpr auto transform(F&& f) && {
using R = details::transform_result_t<F, decltype(std::move(value()))>;
if (has_value()) return R(std::invoke(std::forward<F>(f), std::move(value())));
return R();
}
// Returns Optional<U> where F is a function that maps T to Optional<U>.
template <typename F>
constexpr auto and_then(F&& f) const& {
using R = details::and_then_result_t<F, decltype(value())>;
if (has_value()) return std::invoke(std::forward<F>(f), value());
return R();
}
template <typename F>
constexpr auto and_then(F&& f) & {
using R = details::and_then_result_t<F, decltype(value())>;
if (has_value()) return std::invoke(std::forward<F>(f), value());
return R();
}
template <typename F>
constexpr auto and_then(F&& f) const&& {
using R = details::and_then_result_t<F, decltype(std::move(value()))>;
if (has_value()) return std::invoke(std::forward<F>(f), std::move(value()));
return R();
}
template <typename F>
constexpr auto and_then(F&& f) && {
using R = details::and_then_result_t<F, decltype(std::move(value()))>;
if (has_value()) return std::invoke(std::forward<F>(f), std::move(value()));
return R();
}
// Returns this Optional<T> if not nullopt, or else the Optional<T> returned by the function F.
template <typename F>
constexpr auto or_else(F&& f) const& -> details::or_else_result_t<F, T> {
if (has_value()) return *this;
return std::forward<F>(f)();
}
template <typename F>
constexpr auto or_else(F&& f) && -> details::or_else_result_t<F, T> {
if (has_value()) return std::move(*this);
return std::forward<F>(f)();
}
// Maps this Optional<T> to expected<T, E> where nullopt becomes E.
template <typename E>
constexpr auto ok_or(E&& e) && -> base::expected<T, E> {
if (has_value()) return std::move(value());
return base::unexpected(std::forward<E>(e));
}
// Delete new for this class. Its base doesn't have a virtual destructor, and
// if it got deleted via base class pointer, it would cause undefined
// behavior. There's not a good reason to allocate this object on the heap
// anyway.
static void* operator new(size_t) = delete;
static void* operator new[](size_t) = delete;
};
template <typename T, typename U>
constexpr bool operator==(const Optional<T>& lhs, const Optional<U>& rhs) {
return static_cast<std::optional<T>>(lhs) == static_cast<std::optional<U>>(rhs);
}
template <typename T, typename U>
constexpr bool operator!=(const Optional<T>& lhs, const Optional<U>& rhs) {
return !(lhs == rhs);
}
// Deduction guides.
template <typename T>
Optional(T) -> Optional<T>;
template <typename T>
Optional(std::optional<T>) -> Optional<T>;
} // namespace android::ftl
|