1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
|
/*
* Copyright 2020 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <future>
#include <type_traits>
#include <utility>
#include <variant>
#include <ftl/details/future.h>
namespace android::ftl {
// Thin wrapper around FutureImpl<T> (concretely std::future<T> or std::shared_future<T>) with
// extensions for pure values (created via ftl::yield) and continuations.
//
// See also SharedFuture<T> shorthand below.
//
template <typename T, template <typename> class FutureImpl = std::future>
class Future final : public details::BaseFuture<Future<T, FutureImpl>, T, FutureImpl> {
using Base = details::BaseFuture<Future, T, FutureImpl>;
friend Base; // For BaseFuture<...>::self.
friend details::BaseFuture<Future<T>, T, std::future>; // For BaseFuture<...>::share.
public:
// Constructs an invalid future.
Future() : future_(std::in_place_type<FutureImpl<T>>) {}
// Constructs a future from its standard counterpart, implicitly.
Future(FutureImpl<T>&& f) : future_(std::move(f)) {}
bool valid() const {
return std::holds_alternative<T>(future_) || std::get<FutureImpl<T>>(future_).valid();
}
// Forwarding functions. Base::share is only defined when FutureImpl is std::future, whereas the
// following are defined for either FutureImpl:
using Base::get;
using Base::wait_for;
// Attaches a continuation to the future. The continuation is a function that maps T to either R
// or ftl::Future<R>. In the former case, the chain wraps the result in a future as if by
// ftl::yield.
//
// auto future = ftl::yield(123);
// ftl::Future<char> futures[] = {ftl::yield('a'), ftl::yield('b')};
//
// auto chain =
// ftl::Future(std::move(future))
// .then([](int x) { return static_cast<std::size_t>(x % 2); })
// .then([&futures](std::size_t i) { return std::move(futures[i]); });
//
// assert(chain.get() == 'b');
//
template <typename F, typename R = std::invoke_result_t<F, T>>
auto then(F&& op) && -> Future<details::future_result_t<R>> {
return defer(
[](auto&& f, F&& op) {
R r = op(f.get());
if constexpr (std::is_same_v<R, details::future_result_t<R>>) {
return r;
} else {
return r.get();
}
},
std::move(*this), std::forward<F>(op));
}
private:
template <typename V>
friend Future<V> yield(V&&);
template <typename V, typename... Args>
friend Future<V> yield(Args&&...);
template <typename... Args>
Future(details::ValueTag, Args&&... args)
: future_(std::in_place_type<T>, std::forward<Args>(args)...) {}
std::variant<T, FutureImpl<T>> future_;
};
template <typename T>
using SharedFuture = Future<T, std::shared_future>;
// Deduction guide for implicit conversion.
template <typename T, template <typename> class FutureImpl>
Future(FutureImpl<T>&&) -> Future<T, FutureImpl>;
// Creates a future that wraps a value.
//
// auto future = ftl::yield(42);
// assert(future.get() == 42);
//
// auto ptr = std::make_unique<char>('!');
// auto future = ftl::yield(std::move(ptr));
// assert(*future.get() == '!');
//
template <typename V>
inline Future<V> yield(V&& value) {
return {details::ValueTag{}, std::move(value)};
}
template <typename V, typename... Args>
inline Future<V> yield(Args&&... args) {
return {details::ValueTag{}, std::forward<Args>(args)...};
}
// Creates a future that defers a function call until its result is queried.
//
// auto future = ftl::defer([](int x) { return x + 1; }, 99);
// assert(future.get() == 100);
//
template <typename F, typename... Args>
inline auto defer(F&& f, Args&&... args) {
return Future(std::async(std::launch::deferred, std::forward<F>(f), std::forward<Args>(args)...));
}
} // namespace android::ftl
|