summaryrefslogtreecommitdiff
path: root/include/ftl/function.h
blob: 3538ca4eae2fa5f3e93865db9a012d102d542c2b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
/*
 * Copyright 2022 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#pragma once

#include <cstddef>
#include <functional>
#include <type_traits>
#include <utility>

#include <ftl/details/function.h>

namespace android::ftl {

// ftl::Function<F, N> is a container for function object, and can mostly be used in place of
// std::function<F>.
//
// Unlike std::function<F>, a ftl::Function<F, N>:
//
//  * Uses a static amount of memory (controlled by N), and never any dynamic allocation.
//  * Satisfies the std::is_trivially_copyable<> trait.
//  * Satisfies the std::is_trivially_destructible<> trait.
//
// However those same limits are also required from the contained function object in turn.
//
// The size of a ftl::Function<F, N> is guaranteed to be:
//
//     sizeof(std::intptr_t) * (N + 2)
//
// A ftl::Function<F, N> can always be implicitly converted to a larger size ftl::Function<F, M>.
// Trying to convert the other way leads to a compilation error.
//
// A default-constructed ftl::Function is in an empty state. The operator bool() overload returns
// false in this state. It is undefined behavior to attempt to invoke the function in this state.
//
// The ftl::Function<F, N> can also be constructed or assigned from ftl::no_op. This sets up the
// ftl::Function to be non-empty, with a function that when called does nothing except
// default-constructs a return value.
//
// The ftl::make_function() helpers construct a ftl::Function<F, N>, including deducing the
// values of F and N from the arguments it is given.
//
// The static ftl::Function<F, N>::make() helpers construct a ftl::Function<F, N> without that
// deduction, and also allow for implicit argument conversion if the target being called needs them.
//
// The construction helpers allow any of the following types of functions to be stored:
//
//  * Any SMALL function object (as defined by the C++ Standard), such as a lambda with a small
//    capture, or other "functor". The requirements are:
//
//      1) The function object must be trivial to destroy (in fact, the destructor will never
//         actually be called once copied to the internal storage).
//      2) The function object must be trivial to copy (the raw bytes will be copied as the
//         ftl::Function<F, N> is copied/moved).
//      3) The size of the function object cannot be larger than sizeof(std::intptr_t) * (N + 1),
//         and it cannot require stricter alignment than alignof(std::intptr_t).
//
//    With the default of N=0, a lambda can only capture a single pointer-sized argument. This is
//    enough to capture `this`, which is why N=0 is the default.
//
//  * A member function, with the address passed as the template value argument to the construction
//    helper function, along with the instance pointer needed to invoke it passed as an ordinary
//    argument.
//
//        ftl::make_function<&Class::member_function>(this);
//
//    Note that the indicated member function will be invoked non-virtually. If you need it to be
//    invoked virtually, you should invoke it yourself with a small lambda like so:
//
//        ftl::function([this] { virtual_member_function(); });
//
//  * An ordinary function ("free function"), with the address of the function passed as a template
//    value argument.
//
//        ftl::make_function<&std::atoi>();
//
//   As with the member function helper, as the function is known at compile time, it will be called
//   directly.
//
// Example usage:
//
//   class MyClass {
//    public:
//     void on_event() const {}
//     int on_string(int*, std::string_view) { return 1; }
//
//     auto get_function() {
//       return ftl::function([this] { on_event(); });
//     }
//   } cls;
//
//   // A function container with no arguments, and returning no value.
//   ftl::Function<void()> f;
//
//   // Construct a ftl::Function containing a small lambda.
//   f = cls.get_function();
//
//   // Construct a ftl::Function that calls `cls.on_event()`.
//   f = ftl::function<&MyClass::on_event>(&cls);
//
//   // Create a do-nothing function.
//   f = ftl::no_op;
//
//   // Invoke the contained function.
//   f();
//
//   // Also invokes it.
//   std::invoke(f);
//
//   // Create a typedef to give a more meaningful name and bound the size.
//   using MyFunction = ftl::Function<int(std::string_view), 2>;
//   int* ptr = nullptr;
//   auto f1 = MyFunction::make_function(
//       [cls = &cls, ptr](std::string_view sv) {
//           return cls->on_string(ptr, sv);
//       });
//   int r = f1("abc"sv);
//
//   // Returns a default-constructed int (0).
//   f1 = ftl::no_op;
//   r = f1("abc"sv);
//   assert(r == 0);

template <typename F, std::size_t N = 0>
class Function;

// Used to construct a Function that does nothing.
struct NoOpTag {};

constexpr NoOpTag no_op;

// Detects that a type is a `ftl::Function<F, N>` regardless of what `F` and `N` are.
template <typename>
struct is_function : public std::false_type {};

template <typename F, std::size_t N>
struct is_function<Function<F, N>> : public std::true_type {};

template <typename T>
constexpr bool is_function_v = is_function<T>::value;

template <typename Ret, typename... Args, std::size_t N>
class Function<Ret(Args...), N> final {
  // Enforce a valid size, with an arbitrary maximum allowed size for the container of
  // sizeof(std::intptr_t) * 16, though that maximum can be relaxed.
  static_assert(N <= details::kFunctionMaximumN);

  using OpaqueStorageTraits = details::function_opaque_storage<N>;

 public:
  // Defining result_type allows ftl::Function to be substituted for std::function.
  using result_type = Ret;

  // Constructs an empty ftl::Function.
  Function() = default;

  // Constructing or assigning from nullptr_t also creates an empty ftl::Function.
  Function(std::nullptr_t) {}
  Function& operator=(std::nullptr_t) { return *this = Function(nullptr); }

  // Constructing from NoOpTag sets up a a special no-op function which is valid to call, and which
  // returns a default constructed return value.
  Function(NoOpTag) : function_(details::bind_opaque_no_op<Ret, Args...>()) {}
  Function& operator=(NoOpTag) { return *this = Function(no_op); }

  // Constructing/assigning from a function object stores a copy of that function object, however:
  //  * It must be trivially copyable, as the implementation makes a copy with memcpy().
  //  * It must be trivially destructible, as the implementation doesn't destroy the copy!
  //  * It must fit in the limited internal storage, which enforces size/alignment restrictions.

  template <typename F, typename = std::enable_if_t<std::is_invocable_r_v<Ret, F, Args...>>>
  Function(const F& f)
      : opaque_(OpaqueStorageTraits::opaque_copy(f)),
        function_(details::bind_opaque_function_object<F, Ret, Args...>(f)) {}

  template <typename F, typename = std::enable_if_t<std::is_invocable_r_v<Ret, F, Args...>>>
  Function& operator=(const F& f) noexcept {
    return *this = Function{OpaqueStorageTraits::opaque_copy(f),
                            details::bind_opaque_function_object<F, Ret, Args...>(f)};
  }

  // Constructing/assigning from a smaller ftl::Function is allowed, but not anything else.

  template <std::size_t M>
  Function(const Function<Ret(Args...), M>& other)
      : opaque_{OpaqueStorageTraits::opaque_copy(other.opaque_)}, function_(other.function_) {}

  template <std::size_t M>
  auto& operator=(const Function<Ret(Args...), M>& other) {
    return *this = Function{OpaqueStorageTraits::opaque_copy(other.opaque_), other.function_};
  }

  // Returns true if a function is set.
  explicit operator bool() const { return function_ != nullptr; }

  // Checks if the other function has the same contents as this one.
  bool operator==(const Function& other) const {
    return other.opaque_ == opaque_ && other.function_ == function_;
  }
  bool operator!=(const Function& other) const { return !operator==(other); }

  // Alternative way of testing for a function being set.
  bool operator==(std::nullptr_t) const { return function_ == nullptr; }
  bool operator!=(std::nullptr_t) const { return function_ != nullptr; }

  // Invokes the function.
  Ret operator()(Args... args) const {
    return std::invoke(function_, opaque_.data(), std::forward<Args>(args)...);
  }

  // Creation helper for function objects, such as lambdas.
  template <typename F>
  static auto make(const F& f) -> decltype(Function{f}) {
    return Function{f};
  }

  // Creation helper for a class pointer and a compile-time chosen member function to call.
  template <auto MemberFunction, typename Class>
  static auto make(Class* instance) -> decltype(Function{
      details::bind_member_function<MemberFunction>(instance,
                                                    static_cast<Ret (*)(Args...)>(nullptr))}) {
    return Function{details::bind_member_function<MemberFunction>(
        instance, static_cast<Ret (*)(Args...)>(nullptr))};
  }

  // Creation helper for a compile-time chosen free function to call.
  template <auto FreeFunction>
  static auto make() -> decltype(Function{
      details::bind_free_function<FreeFunction>(static_cast<Ret (*)(Args...)>(nullptr))}) {
    return Function{
        details::bind_free_function<FreeFunction>(static_cast<Ret (*)(Args...)>(nullptr))};
  }

 private:
  // Needed so a Function<F, M> can be converted to a Function<F, N>.
  template <typename, std::size_t>
  friend class Function;

  // The function pointer type of function stored in `function_`. The first argument is always
  // `&opaque_`.
  using StoredFunction = Ret(void*, Args...);

  // The type of the opaque storage, used to hold an appropriate function object.
  // The type stored here is ONLY known to the StoredFunction.
  // We always use at least one std::intptr_t worth of storage, and always a multiple of that size.
  using OpaqueStorage = typename OpaqueStorageTraits::type;

  // Internal constructor for creating from a raw opaque blob + function pointer.
  Function(const OpaqueStorage& opaque, StoredFunction* function)
      : opaque_(opaque), function_(function) {}

  // Note: `mutable` so that `operator() const` can use it.
  mutable OpaqueStorage opaque_{};
  StoredFunction* function_{nullptr};
};

// Makes a ftl::Function given a function object `F`.
template <typename F, typename T = details::function_traits<F>>
Function(const F&) -> Function<typename T::type, T::size>;

template <typename F>
auto make_function(const F& f) -> decltype(Function{f}) {
  return Function{f};
}

// Makes a ftl::Function given a `MemberFunction` and a instance pointer to the associated `Class`.
template <auto MemberFunction, typename Class>
auto make_function(Class* instance)
    -> decltype(Function{details::bind_member_function<MemberFunction>(
        instance,
        static_cast<details::remove_member_function_pointer_t<MemberFunction>*>(nullptr))}) {
  return Function{details::bind_member_function<MemberFunction>(
      instance, static_cast<details::remove_member_function_pointer_t<MemberFunction>*>(nullptr))};
}

// Makes a ftl::Function given an ordinary free function.
template <auto FreeFunction>
auto make_function() -> decltype(Function{
    details::bind_free_function<FreeFunction>(static_cast<decltype(FreeFunction)>(nullptr))}) {
  return Function{
      details::bind_free_function<FreeFunction>(static_cast<decltype(FreeFunction)>(nullptr))};
}

}  // namespace android::ftl