summaryrefslogtreecommitdiff
path: root/include/ftl/enum.h
blob: 2c86e2e4c9e8fe0a53913dec29863f737e041b18 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
/*
 * Copyright 2021 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#pragma once

#include <cstddef>
#include <limits>
#include <optional>
#include <string_view>
#include <type_traits>
#include <utility>

#include <ftl/string.h>

// Returns the name of enumerator E::V and optionally the class (i.e. "E::V" or "V") as
// std::optional<std::string_view> by parsing the compiler-generated string literal for the
// signature of this function. The function is defined in the global namespace with a short name
// and inferred return type to reduce bloat in the read-only data segment.
template <bool S, typename E, E V>
constexpr auto ftl_enum_builder() {
  static_assert(std::is_enum_v<E>);

  using R = std::optional<std::string_view>;
  using namespace std::literals;

  // The "pretty" signature has the following format:
  //
  //   auto ftl_enum() [E = android::test::Enum, V = android::test::Enum::kValue]
  //
  std::string_view view = __PRETTY_FUNCTION__;
  const auto template_begin = view.rfind('[');
  const auto template_end = view.rfind(']');
  if (template_begin == view.npos || template_end == view.npos) return R{};

  // Extract the template parameters without the enclosing brackets. Example (cont'd):
  //
  //   E = android::test::Enum, V = android::test::Enum::kValue
  //
  view = view.substr(template_begin + 1, template_end - template_begin - 1);
  const auto value_begin = view.rfind("V = "sv);
  if (value_begin == view.npos) return R{};

  // Example (cont'd):
  //
  //   V = android::test::Enum::kValue
  //
  view = view.substr(value_begin);
  const auto pos = S ? view.rfind("::"sv) - 2 : view.npos;

  const auto name_begin = view.rfind("::"sv, pos);
  if (name_begin == view.npos) return R{};

  // Chop off the leading "::".
  const auto name = view.substr(name_begin + 2);

  // A value that is not enumerated has the format "Enum)42".
  return name.find(')') == view.npos ? R{name} : R{};
}

// Returns the name of enumerator E::V (i.e. "V") as std::optional<std::string_view>
template <typename E, E V>
constexpr auto ftl_enum() {
  return ftl_enum_builder<false, E, V>();
}

// Returns the name of enumerator and class E::V (i.e. "E::V") as std::optional<std::string_view>
template <typename E, E V>
constexpr auto ftl_enum_full() {
  return ftl_enum_builder<true, E, V>();
}

namespace android::ftl {

// Trait for determining whether a type is specifically a scoped enum or not. By definition, a
// scoped enum is one that is not implicitly convertible to its underlying type.
//
// TODO: Replace with std::is_scoped_enum in C++23.
//
template <typename T, bool = std::is_enum_v<T>>
struct is_scoped_enum : std::false_type {};

template <typename T>
struct is_scoped_enum<T, true> : std::negation<std::is_convertible<T, std::underlying_type_t<T>>> {
};

template <typename T>
inline constexpr bool is_scoped_enum_v = is_scoped_enum<T>::value;

// Shorthand for casting an enumerator to its integral value.
//
// TODO: Replace with std::to_underlying in C++23.
//
//   enum class E { A, B, C };
//   static_assert(ftl::to_underlying(E::B) == 1);
//
template <typename E, typename = std::enable_if_t<std::is_enum_v<E>>>
constexpr auto to_underlying(E v) {
  return static_cast<std::underlying_type_t<E>>(v);
}

// Traits for retrieving an enum's range. An enum specifies its range by defining enumerators named
// ftl_first and ftl_last. If omitted, ftl_first defaults to 0, whereas ftl_last defaults to N - 1
// where N is the bit width of the underlying type, but only if that type is unsigned, assuming the
// enumerators are flags. Also, note that unscoped enums must define both bounds, as casting out-of-
// range values results in undefined behavior if the underlying type is not fixed.
//
//   enum class E { A, B, C, F = 5, ftl_last = F };
//
//   static_assert(ftl::enum_begin_v<E> == E::A);
//   static_assert(ftl::enum_last_v<E> == E::F);
//   static_assert(ftl::enum_size_v<E> == 6);
//
//   enum class F : std::uint16_t { X = 0b1, Y = 0b10, Z = 0b100 };
//
//   static_assert(ftl::enum_begin_v<F> == F{0});
//   static_assert(ftl::enum_last_v<F> == F{15});
//   static_assert(ftl::enum_size_v<F> == 16);
//
template <typename E, typename = void>
struct enum_begin {
  static_assert(is_scoped_enum_v<E>, "Missing ftl_first enumerator");
  static constexpr E value{0};
};

template <typename E>
struct enum_begin<E, std::void_t<decltype(E::ftl_first)>> {
  static constexpr E value = E::ftl_first;
};

template <typename E>
inline constexpr E enum_begin_v = enum_begin<E>::value;

template <typename E, typename = void>
struct enum_end {
  using U = std::underlying_type_t<E>;
  static_assert(is_scoped_enum_v<E> && std::is_unsigned_v<U>, "Missing ftl_last enumerator");

  static constexpr E value{std::numeric_limits<U>::digits};
};

template <typename E>
struct enum_end<E, std::void_t<decltype(E::ftl_last)>> {
  static constexpr E value = E{to_underlying(E::ftl_last) + 1};
};

template <typename E>
inline constexpr E enum_end_v = enum_end<E>::value;

template <typename E>
inline constexpr E enum_last_v = E{to_underlying(enum_end_v<E>) - 1};

template <typename E>
struct enum_size {
  static constexpr auto kBegin = to_underlying(enum_begin_v<E>);
  static constexpr auto kEnd = to_underlying(enum_end_v<E>);
  static_assert(kBegin < kEnd, "Invalid range");

  static constexpr std::size_t value = kEnd - kBegin;
  static_assert(value <= 64, "Excessive range size");
};

template <typename E>
inline constexpr std::size_t enum_size_v = enum_size<E>::value;

namespace details {

template <auto V>
struct Identity {
  static constexpr auto value = V;
};

template <typename E>
using make_enum_sequence = std::make_integer_sequence<std::underlying_type_t<E>, enum_size_v<E>>;

template <typename E, template <E> class = Identity, typename = make_enum_sequence<E>>
struct EnumRange;

template <typename E, template <E> class F, typename T, T... Vs>
struct EnumRange<E, F, std::integer_sequence<T, Vs...>> {
  static constexpr auto kBegin = to_underlying(enum_begin_v<E>);
  static constexpr auto kSize = enum_size_v<E>;

  using R = decltype(F<E{}>::value);
  const R values[kSize] = {F<static_cast<E>(Vs + kBegin)>::value...};

  constexpr const auto* begin() const { return values; }
  constexpr const auto* end() const { return values + kSize; }
};

template <auto V>
struct EnumName {
  static constexpr auto value = ftl_enum<decltype(V), V>();
};

template <auto V>
struct EnumNameFull {
  static constexpr auto value = ftl_enum_full<decltype(V), V>();
};

template <auto I>
struct FlagName {
  using E = decltype(I);
  using U = std::underlying_type_t<E>;

  static constexpr E V{U{1} << to_underlying(I)};
  static constexpr auto value = ftl_enum<E, V>();
};

}  // namespace details

// Returns an iterable over the range of an enum.
//
//   enum class E { A, B, C, F = 5, ftl_last = F };
//
//   std::string string;
//   for (E v : ftl::enum_range<E>()) {
//     string += ftl::enum_name(v).value_or("?");
//   }
//
//   assert(string == "ABC??F");
//
template <typename E>
constexpr auto enum_range() {
  return details::EnumRange<E>{};
}

// Returns a stringified enumerator at compile time.
//
//   enum class E { A, B, C };
//   static_assert(ftl::enum_name<E::B>() == "B");
//
template <auto V>
constexpr std::string_view enum_name() {
  constexpr auto kName = ftl_enum<decltype(V), V>();
  static_assert(kName, "Unknown enumerator");
  return *kName;
}

// Returns a stringified enumerator with class at compile time.
//
//   enum class E { A, B, C };
//   static_assert(ftl::enum_name<E::B>() == "E::B");
//
template <auto V>
constexpr std::string_view enum_name_full() {
  constexpr auto kName = ftl_enum_full<decltype(V), V>();
  static_assert(kName, "Unknown enumerator");
  return *kName;
}

// Returns a stringified enumerator, possibly at compile time.
//
//   enum class E { A, B, C, F = 5, ftl_last = F };
//
//   static_assert(ftl::enum_name(E::C).value_or("?") == "C");
//   static_assert(ftl::enum_name(E{3}).value_or("?") == "?");
//
template <typename E>
constexpr std::optional<std::string_view> enum_name(E v) {
  const auto value = to_underlying(v);

  constexpr auto kBegin = to_underlying(enum_begin_v<E>);
  constexpr auto kLast = to_underlying(enum_last_v<E>);
  if (value < kBegin || value > kLast) return {};

  constexpr auto kRange = details::EnumRange<E, details::EnumName>{};
  return kRange.values[value - kBegin];
}

// Returns a stringified enumerator with class, possibly at compile time.
//
//   enum class E { A, B, C, F = 5, ftl_last = F };
//
//   static_assert(ftl::enum_name(E::C).value_or("?") == "E::C");
//   static_assert(ftl::enum_name(E{3}).value_or("?") == "?");
//
template <typename E>
constexpr std::optional<std::string_view> enum_name_full(E v) {
  const auto value = to_underlying(v);

  constexpr auto kBegin = to_underlying(enum_begin_v<E>);
  constexpr auto kLast = to_underlying(enum_last_v<E>);
  if (value < kBegin || value > kLast) return {};

  constexpr auto kRange = details::EnumRange<E, details::EnumNameFull>{};
  return kRange.values[value - kBegin];
}

// Returns a stringified flag enumerator, possibly at compile time.
//
//   enum class F : std::uint16_t { X = 0b1, Y = 0b10, Z = 0b100 };
//
//   static_assert(ftl::flag_name(F::Z).value_or("?") == "Z");
//   static_assert(ftl::flag_name(F{0b111}).value_or("?") == "?");
//
template <typename E>
constexpr std::optional<std::string_view> flag_name(E v) {
  const auto value = to_underlying(v);

  // TODO: Replace with std::popcount and std::countr_zero in C++20.
  if (__builtin_popcountll(value) != 1) return {};

  constexpr auto kRange = details::EnumRange<E, details::FlagName>{};
  return kRange.values[__builtin_ctzll(value)];
}

// Returns a stringified enumerator, or its integral value if not named.
//
//   enum class E { A, B, C, F = 5, ftl_last = F };
//
//   assert(ftl::enum_string(E::C) == "C");
//   assert(ftl::enum_string(E{3}) == "3");
//
template <typename E>
inline std::string enum_string(E v) {
  if (const auto name = enum_name(v)) {
    return std::string(*name);
  }
  return to_string(to_underlying(v));
}

// Returns a stringified enumerator with class, or its integral value if not named.
//
//   enum class E { A, B, C, F = 5, ftl_last = F };
//
//   assert(ftl::enum_string(E::C) == "E::C");
//   assert(ftl::enum_string(E{3}) == "3");
//
template <typename E>
inline std::string enum_string_full(E v) {
  if (const auto name = enum_name_full(v)) {
      return std::string(*name);
  }
  return to_string(to_underlying(v));
}

// Returns a stringified flag enumerator, or its integral value if not named.
//
//   enum class F : std::uint16_t { X = 0b1, Y = 0b10, Z = 0b100 };
//
//   assert(ftl::flag_string(F::Z) == "Z");
//   assert(ftl::flag_string(F{7}) == "0b111");
//
template <typename E>
inline std::string flag_string(E v) {
  if (const auto name = flag_name(v)) {
    return std::string(*name);
  }
  constexpr auto radix = sizeof(E) == 1 ? Radix::kBin : Radix::kHex;
  return to_string(to_underlying(v), radix);
}

}  // namespace android::ftl