/* * Copyright (C) 2017 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ //#define LOG_NDEBUG 0 #undef LOG_TAG #define LOG_TAG "BufferLayer" #define ATRACE_TAG ATRACE_TAG_GRAPHICS #include "BufferLayer.h" #include "Colorizer.h" #include "DisplayDevice.h" #include "LayerRejecter.h" #include "TimeStats/TimeStats.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace android { BufferLayer::BufferLayer(const LayerCreationArgs& args) : Layer(args), mTextureName(args.flinger->getNewTexture()) { ALOGV("Creating Layer %s", args.name.string()); mTexture.init(renderengine::Texture::TEXTURE_EXTERNAL, mTextureName); mPremultipliedAlpha = !(args.flags & ISurfaceComposerClient::eNonPremultiplied); mPotentialCursor = args.flags & ISurfaceComposerClient::eCursorWindow; mProtectedByApp = args.flags & ISurfaceComposerClient::eProtectedByApp; } BufferLayer::~BufferLayer() { mFlinger->deleteTextureAsync(mTextureName); if (!getBE().mHwcLayers.empty()) { ALOGE("Found stale hardware composer layers when destroying " "surface flinger layer %s", mName.string()); destroyAllHwcLayersPlusChildren(); } mFlinger->mTimeStats->onDestroy(getSequence()); } void BufferLayer::useSurfaceDamage() { if (mFlinger->mForceFullDamage) { surfaceDamageRegion = Region::INVALID_REGION; } else { surfaceDamageRegion = getDrawingSurfaceDamage(); } } void BufferLayer::useEmptyDamage() { surfaceDamageRegion.clear(); } bool BufferLayer::isOpaque(const Layer::State& s) const { // if we don't have a buffer or sidebandStream yet, we're translucent regardless of the // layer's opaque flag. if ((getBE().compositionInfo.hwc.sidebandStream == nullptr) && (mActiveBuffer == nullptr)) { return false; } // if the layer has the opaque flag, then we're always opaque, // otherwise we use the current buffer's format. return ((s.flags & layer_state_t::eLayerOpaque) != 0) || getOpacityForFormat(getPixelFormat()); } bool BufferLayer::isVisible() const { return !(isHiddenByPolicy()) && getAlpha() > 0.0f && (mActiveBuffer != nullptr || getBE().compositionInfo.hwc.sidebandStream != nullptr); } bool BufferLayer::isFixedSize() const { return getEffectiveScalingMode() != NATIVE_WINDOW_SCALING_MODE_FREEZE; } static constexpr mat4 inverseOrientation(uint32_t transform) { const mat4 flipH(-1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1); const mat4 flipV(1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1); const mat4 rot90(0, 1, 0, 0, -1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1); mat4 tr; if (transform & NATIVE_WINDOW_TRANSFORM_ROT_90) { tr = tr * rot90; } if (transform & NATIVE_WINDOW_TRANSFORM_FLIP_H) { tr = tr * flipH; } if (transform & NATIVE_WINDOW_TRANSFORM_FLIP_V) { tr = tr * flipV; } return inverse(tr); } /* * onDraw will draw the current layer onto the presentable buffer */ void BufferLayer::onDraw(const RenderArea& renderArea, const Region& clip, bool useIdentityTransform) { ATRACE_CALL(); if (CC_UNLIKELY(mActiveBuffer == 0)) { // the texture has not been created yet, this Layer has // in fact never been drawn into. This happens frequently with // SurfaceView because the WindowManager can't know when the client // has drawn the first time. // If there is nothing under us, we paint the screen in black, otherwise // we just skip this update. // figure out if there is something below us Region under; bool finished = false; mFlinger->mDrawingState.traverseInZOrder([&](Layer* layer) { if (finished || layer == static_cast(this)) { finished = true; return; } under.orSelf(renderArea.getTransform().transform(layer->visibleRegion)); }); // if not everything below us is covered, we plug the holes! Region holes(clip.subtract(under)); if (!holes.isEmpty()) { clearWithOpenGL(renderArea, 0, 0, 0, 1); } return; } // Bind the current buffer to the GL texture, and wait for it to be // ready for us to draw into. status_t err = bindTextureImage(); if (err != NO_ERROR) { ALOGW("onDraw: bindTextureImage failed (err=%d)", err); // Go ahead and draw the buffer anyway; no matter what we do the screen // is probably going to have something visibly wrong. } bool blackOutLayer = isProtected() || (isSecure() && !renderArea.isSecure()); auto& engine(mFlinger->getRenderEngine()); if (!blackOutLayer) { // TODO: we could be more subtle with isFixedSize() const bool useFiltering = needsFiltering(renderArea) || isFixedSize(); // Query the texture matrix given our current filtering mode. float textureMatrix[16]; setFilteringEnabled(useFiltering); getDrawingTransformMatrix(textureMatrix); if (getTransformToDisplayInverse()) { /* * the code below applies the primary display's inverse transform to * the texture transform */ uint32_t transform = DisplayDevice::getPrimaryDisplayOrientationTransform(); mat4 tr = inverseOrientation(transform); /** * TODO(b/36727915): This is basically a hack. * * Ensure that regardless of the parent transformation, * this buffer is always transformed from native display * orientation to display orientation. For example, in the case * of a camera where the buffer remains in native orientation, * we want the pixels to always be upright. */ sp p = mDrawingParent.promote(); if (p != nullptr) { const auto parentTransform = p->getTransform(); tr = tr * inverseOrientation(parentTransform.getOrientation()); } // and finally apply it to the original texture matrix const mat4 texTransform(mat4(static_cast(textureMatrix)) * tr); memcpy(textureMatrix, texTransform.asArray(), sizeof(textureMatrix)); } // Set things up for texturing. mTexture.setDimensions(mActiveBuffer->getWidth(), mActiveBuffer->getHeight()); mTexture.setFiltering(useFiltering); mTexture.setMatrix(textureMatrix); engine.setupLayerTexturing(mTexture); } else { engine.setupLayerBlackedOut(); } drawWithOpenGL(renderArea, useIdentityTransform); engine.disableTexturing(); } bool BufferLayer::isHdrY410() const { // pixel format is HDR Y410 masquerading as RGBA_1010102 return (mCurrentDataSpace == ui::Dataspace::BT2020_ITU_PQ && getDrawingApi() == NATIVE_WINDOW_API_MEDIA && getBE().compositionInfo.mBuffer->getPixelFormat() == HAL_PIXEL_FORMAT_RGBA_1010102); } void BufferLayer::setPerFrameData(DisplayId displayId, const ui::Transform& transform, const Rect& viewport, int32_t supportedPerFrameMetadata) { RETURN_IF_NO_HWC_LAYER(displayId); // Apply this display's projection's viewport to the visible region // before giving it to the HWC HAL. Region visible = transform.transform(visibleRegion.intersect(viewport)); auto& hwcInfo = getBE().mHwcLayers[displayId]; auto& hwcLayer = hwcInfo.layer; auto error = hwcLayer->setVisibleRegion(visible); if (error != HWC2::Error::None) { ALOGE("[%s] Failed to set visible region: %s (%d)", mName.string(), to_string(error).c_str(), static_cast(error)); visible.dump(LOG_TAG); } getBE().compositionInfo.hwc.visibleRegion = visible; error = hwcLayer->setSurfaceDamage(surfaceDamageRegion); if (error != HWC2::Error::None) { ALOGE("[%s] Failed to set surface damage: %s (%d)", mName.string(), to_string(error).c_str(), static_cast(error)); surfaceDamageRegion.dump(LOG_TAG); } getBE().compositionInfo.hwc.surfaceDamage = surfaceDamageRegion; // Sideband layers if (getBE().compositionInfo.hwc.sidebandStream.get()) { setCompositionType(displayId, HWC2::Composition::Sideband); ALOGV("[%s] Requesting Sideband composition", mName.string()); error = hwcLayer->setSidebandStream(getBE().compositionInfo.hwc.sidebandStream->handle()); if (error != HWC2::Error::None) { ALOGE("[%s] Failed to set sideband stream %p: %s (%d)", mName.string(), getBE().compositionInfo.hwc.sidebandStream->handle(), to_string(error).c_str(), static_cast(error)); } getBE().compositionInfo.compositionType = HWC2::Composition::Sideband; return; } // Device or Cursor layers if (mPotentialCursor) { ALOGV("[%s] Requesting Cursor composition", mName.string()); setCompositionType(displayId, HWC2::Composition::Cursor); } else { ALOGV("[%s] Requesting Device composition", mName.string()); setCompositionType(displayId, HWC2::Composition::Device); } ALOGV("setPerFrameData: dataspace = %d", mCurrentDataSpace); error = hwcLayer->setDataspace(mCurrentDataSpace); if (error != HWC2::Error::None) { ALOGE("[%s] Failed to set dataspace %d: %s (%d)", mName.string(), mCurrentDataSpace, to_string(error).c_str(), static_cast(error)); } const HdrMetadata& metadata = getDrawingHdrMetadata(); error = hwcLayer->setPerFrameMetadata(supportedPerFrameMetadata, metadata); if (error != HWC2::Error::None && error != HWC2::Error::Unsupported) { ALOGE("[%s] Failed to set hdrMetadata: %s (%d)", mName.string(), to_string(error).c_str(), static_cast(error)); } error = hwcLayer->setColorTransform(getColorTransform()); if (error != HWC2::Error::None) { ALOGE("[%s] Failed to setColorTransform: %s (%d)", mName.string(), to_string(error).c_str(), static_cast(error)); } getBE().compositionInfo.hwc.dataspace = mCurrentDataSpace; getBE().compositionInfo.hwc.hdrMetadata = getDrawingHdrMetadata(); getBE().compositionInfo.hwc.supportedPerFrameMetadata = supportedPerFrameMetadata; getBE().compositionInfo.hwc.colorTransform = getColorTransform(); setHwcLayerBuffer(displayId); } bool BufferLayer::onPreComposition(nsecs_t refreshStartTime) { if (mBufferLatched) { Mutex::Autolock lock(mFrameEventHistoryMutex); mFrameEventHistory.addPreComposition(mCurrentFrameNumber, refreshStartTime); } mRefreshPending = false; return hasReadyFrame(); } bool BufferLayer::onPostComposition(const std::optional& displayId, const std::shared_ptr& glDoneFence, const std::shared_ptr& presentFence, const CompositorTiming& compositorTiming) { // mFrameLatencyNeeded is true when a new frame was latched for the // composition. if (!mFrameLatencyNeeded) return false; // Update mFrameEventHistory. { Mutex::Autolock lock(mFrameEventHistoryMutex); mFrameEventHistory.addPostComposition(mCurrentFrameNumber, glDoneFence, presentFence, compositorTiming); } // Update mFrameTracker. nsecs_t desiredPresentTime = getDesiredPresentTime(); mFrameTracker.setDesiredPresentTime(desiredPresentTime); const int32_t layerID = getSequence(); mFlinger->mTimeStats->setDesiredTime(layerID, mCurrentFrameNumber, desiredPresentTime); std::shared_ptr frameReadyFence = getCurrentFenceTime(); if (frameReadyFence->isValid()) { mFrameTracker.setFrameReadyFence(std::move(frameReadyFence)); } else { // There was no fence for this frame, so assume that it was ready // to be presented at the desired present time. mFrameTracker.setFrameReadyTime(desiredPresentTime); } if (presentFence->isValid()) { mFlinger->mTimeStats->setPresentFence(layerID, mCurrentFrameNumber, presentFence); mFrameTracker.setActualPresentFence(std::shared_ptr(presentFence)); } else if (displayId && mFlinger->getHwComposer().isConnected(*displayId)) { // The HWC doesn't support present fences, so use the refresh // timestamp instead. const nsecs_t actualPresentTime = mFlinger->getHwComposer().getRefreshTimestamp(*displayId); mFlinger->mTimeStats->setPresentTime(layerID, mCurrentFrameNumber, actualPresentTime); mFrameTracker.setActualPresentTime(actualPresentTime); } mFrameTracker.advanceFrame(); mFrameLatencyNeeded = false; return true; } Region BufferLayer::latchBuffer(bool& recomputeVisibleRegions, nsecs_t latchTime, const sp& releaseFence) { ATRACE_CALL(); std::optional sidebandStreamDirtyRegion = latchSidebandStream(recomputeVisibleRegions); if (sidebandStreamDirtyRegion) { return *sidebandStreamDirtyRegion; } Region dirtyRegion; if (!hasReadyFrame()) { return dirtyRegion; } // if we've already called updateTexImage() without going through // a composition step, we have to skip this layer at this point // because we cannot call updateTeximage() without a corresponding // compositionComplete() call. // we'll trigger an update in onPreComposition(). if (mRefreshPending) { return dirtyRegion; } // If the head buffer's acquire fence hasn't signaled yet, return and // try again later if (!fenceHasSignaled()) { mFlinger->signalLayerUpdate(); return dirtyRegion; } // Capture the old state of the layer for comparisons later const State& s(getDrawingState()); const bool oldOpacity = isOpaque(s); sp oldBuffer = mActiveBuffer; if (!allTransactionsSignaled()) { mFlinger->signalLayerUpdate(); return dirtyRegion; } status_t err = updateTexImage(recomputeVisibleRegions, latchTime, releaseFence); if (err != NO_ERROR) { return dirtyRegion; } err = updateActiveBuffer(); if (err != NO_ERROR) { return dirtyRegion; } mBufferLatched = true; err = updateFrameNumber(latchTime); if (err != NO_ERROR) { return dirtyRegion; } mRefreshPending = true; mFrameLatencyNeeded = true; if (oldBuffer == nullptr) { // the first time we receive a buffer, we need to trigger a // geometry invalidation. recomputeVisibleRegions = true; } ui::Dataspace dataSpace = getDrawingDataSpace(); // translate legacy dataspaces to modern dataspaces switch (dataSpace) { case ui::Dataspace::SRGB: dataSpace = ui::Dataspace::V0_SRGB; break; case ui::Dataspace::SRGB_LINEAR: dataSpace = ui::Dataspace::V0_SRGB_LINEAR; break; case ui::Dataspace::JFIF: dataSpace = ui::Dataspace::V0_JFIF; break; case ui::Dataspace::BT601_625: dataSpace = ui::Dataspace::V0_BT601_625; break; case ui::Dataspace::BT601_525: dataSpace = ui::Dataspace::V0_BT601_525; break; case ui::Dataspace::BT709: dataSpace = ui::Dataspace::V0_BT709; break; default: break; } mCurrentDataSpace = dataSpace; Rect crop(getDrawingCrop()); const uint32_t transform(getDrawingTransform()); const uint32_t scalingMode(getDrawingScalingMode()); if ((crop != mCurrentCrop) || (transform != mCurrentTransform) || (scalingMode != mCurrentScalingMode)) { mCurrentCrop = crop; mCurrentTransform = transform; mCurrentScalingMode = scalingMode; recomputeVisibleRegions = true; } if (oldBuffer != nullptr) { uint32_t bufWidth = mActiveBuffer->getWidth(); uint32_t bufHeight = mActiveBuffer->getHeight(); if (bufWidth != uint32_t(oldBuffer->width) || bufHeight != uint32_t(oldBuffer->height)) { recomputeVisibleRegions = true; } } if (oldOpacity != isOpaque(s)) { recomputeVisibleRegions = true; } // Remove any sync points corresponding to the buffer which was just // latched { Mutex::Autolock lock(mLocalSyncPointMutex); auto point = mLocalSyncPoints.begin(); while (point != mLocalSyncPoints.end()) { if (!(*point)->frameIsAvailable() || !(*point)->transactionIsApplied()) { // This sync point must have been added since we started // latching. Don't drop it yet. ++point; continue; } if ((*point)->getFrameNumber() <= mCurrentFrameNumber) { point = mLocalSyncPoints.erase(point); } else { ++point; } } } // FIXME: postedRegion should be dirty & bounds // transform the dirty region to window-manager space return getTransform().transform(Region(getBufferSize(s))); } // transaction void BufferLayer::notifyAvailableFrames() { auto headFrameNumber = getHeadFrameNumber(); bool headFenceSignaled = fenceHasSignaled(); Mutex::Autolock lock(mLocalSyncPointMutex); for (auto& point : mLocalSyncPoints) { if (headFrameNumber >= point->getFrameNumber() && headFenceSignaled) { point->setFrameAvailable(); } } } bool BufferLayer::hasReadyFrame() const { return hasFrameUpdate() || getSidebandStreamChanged() || getAutoRefresh(); } uint32_t BufferLayer::getEffectiveScalingMode() const { if (mOverrideScalingMode >= 0) { return mOverrideScalingMode; } return mCurrentScalingMode; } bool BufferLayer::isProtected() const { const sp& buffer(mActiveBuffer); return (buffer != 0) && (buffer->getUsage() & GRALLOC_USAGE_PROTECTED); } bool BufferLayer::latchUnsignaledBuffers() { static bool propertyLoaded = false; static bool latch = false; static std::mutex mutex; std::lock_guard lock(mutex); if (!propertyLoaded) { char value[PROPERTY_VALUE_MAX] = {}; property_get("debug.sf.latch_unsignaled", value, "0"); latch = atoi(value); propertyLoaded = true; } return latch; } // h/w composer set-up bool BufferLayer::allTransactionsSignaled() { auto headFrameNumber = getHeadFrameNumber(); bool matchingFramesFound = false; bool allTransactionsApplied = true; Mutex::Autolock lock(mLocalSyncPointMutex); for (auto& point : mLocalSyncPoints) { if (point->getFrameNumber() > headFrameNumber) { break; } matchingFramesFound = true; if (!point->frameIsAvailable()) { // We haven't notified the remote layer that the frame for // this point is available yet. Notify it now, and then // abort this attempt to latch. point->setFrameAvailable(); allTransactionsApplied = false; break; } allTransactionsApplied = allTransactionsApplied && point->transactionIsApplied(); } return !matchingFramesFound || allTransactionsApplied; } // As documented in libhardware header, formats in the range // 0x100 - 0x1FF are specific to the HAL implementation, and // are known to have no alpha channel // TODO: move definition for device-specific range into // hardware.h, instead of using hard-coded values here. #define HARDWARE_IS_DEVICE_FORMAT(f) ((f) >= 0x100 && (f) <= 0x1FF) bool BufferLayer::getOpacityForFormat(uint32_t format) { if (HARDWARE_IS_DEVICE_FORMAT(format)) { return true; } switch (format) { case HAL_PIXEL_FORMAT_RGBA_8888: case HAL_PIXEL_FORMAT_BGRA_8888: case HAL_PIXEL_FORMAT_RGBA_FP16: case HAL_PIXEL_FORMAT_RGBA_1010102: return false; } // in all other case, we have no blending (also for unknown formats) return true; } bool BufferLayer::needsFiltering(const RenderArea& renderArea) const { return mNeedsFiltering || renderArea.needsFiltering(); } void BufferLayer::drawWithOpenGL(const RenderArea& renderArea, bool useIdentityTransform) const { ATRACE_CALL(); const State& s(getDrawingState()); computeGeometry(renderArea, getBE().mMesh, useIdentityTransform); /* * NOTE: the way we compute the texture coordinates here produces * different results than when we take the HWC path -- in the later case * the "source crop" is rounded to texel boundaries. * This can produce significantly different results when the texture * is scaled by a large amount. * * The GL code below is more logical (imho), and the difference with * HWC is due to a limitation of the HWC API to integers -- a question * is suspend is whether we should ignore this problem or revert to * GL composition when a buffer scaling is applied (maybe with some * minimal value)? Or, we could make GL behave like HWC -- but this feel * like more of a hack. */ const Rect bounds{computeBounds()}; // Rounds from FloatRect ui::Transform t = getTransform(); Rect win = bounds; const int bufferWidth = getBufferSize(s).getWidth(); const int bufferHeight = getBufferSize(s).getHeight(); const float left = float(win.left) / float(bufferWidth); const float top = float(win.top) / float(bufferHeight); const float right = float(win.right) / float(bufferWidth); const float bottom = float(win.bottom) / float(bufferHeight); // TODO: we probably want to generate the texture coords with the mesh // here we assume that we only have 4 vertices renderengine::Mesh::VertexArray texCoords(getBE().mMesh.getTexCoordArray()); // flip texcoords vertically because BufferLayerConsumer expects them to be in GL convention texCoords[0] = vec2(left, 1.0f - top); texCoords[1] = vec2(left, 1.0f - bottom); texCoords[2] = vec2(right, 1.0f - bottom); texCoords[3] = vec2(right, 1.0f - top); const auto roundedCornerState = getRoundedCornerState(); const auto cropRect = roundedCornerState.cropRect; setupRoundedCornersCropCoordinates(win, cropRect); auto& engine(mFlinger->getRenderEngine()); engine.setupLayerBlending(mPremultipliedAlpha, isOpaque(s), false /* disableTexture */, getColor(), roundedCornerState.radius); engine.setSourceDataSpace(mCurrentDataSpace); if (isHdrY410()) { engine.setSourceY410BT2020(true); } engine.setupCornerRadiusCropSize(cropRect.getWidth(), cropRect.getHeight()); engine.drawMesh(getBE().mMesh); engine.disableBlending(); engine.setSourceY410BT2020(false); } uint64_t BufferLayer::getHeadFrameNumber() const { if (hasFrameUpdate()) { return getFrameNumber(); } else { return mCurrentFrameNumber; } } Rect BufferLayer::getBufferSize(const State& s) const { // If we have a sideband stream, or we are scaling the buffer then return the layer size since // we cannot determine the buffer size. if ((s.sidebandStream != nullptr) || (getEffectiveScalingMode() != NATIVE_WINDOW_SCALING_MODE_FREEZE)) { return Rect(getActiveWidth(s), getActiveHeight(s)); } if (mActiveBuffer == nullptr) { return Rect::INVALID_RECT; } uint32_t bufWidth = mActiveBuffer->getWidth(); uint32_t bufHeight = mActiveBuffer->getHeight(); // Undo any transformations on the buffer and return the result. if (mCurrentTransform & ui::Transform::ROT_90) { std::swap(bufWidth, bufHeight); } if (getTransformToDisplayInverse()) { uint32_t invTransform = DisplayDevice::getPrimaryDisplayOrientationTransform(); if (invTransform & ui::Transform::ROT_90) { std::swap(bufWidth, bufHeight); } } return Rect(bufWidth, bufHeight); } } // namespace android #if defined(__gl_h_) #error "don't include gl/gl.h in this file" #endif #if defined(__gl2_h_) #error "don't include gl2/gl2.h in this file" #endif