/* * Copyright 2022 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include namespace android::ultrahdr { #define ALIGNM(x, m) ((((x) + ((m) - 1)) / (m)) * (m)) // The destination manager that can access |mResultBuffer| in JpegEncoderHelper. struct destination_mgr { public: struct jpeg_destination_mgr mgr; JpegEncoderHelper* encoder; }; JpegEncoderHelper::JpegEncoderHelper() { } JpegEncoderHelper::~JpegEncoderHelper() { } bool JpegEncoderHelper::compressImage(const void* image, int width, int height, int quality, const void* iccBuffer, unsigned int iccSize, bool isSingleChannel) { mResultBuffer.clear(); if (!encode(image, width, height, quality, iccBuffer, iccSize, isSingleChannel)) { return false; } ALOGI("Compressed JPEG: %d[%dx%d] -> %zu bytes", (width * height * 12) / 8, width, height, mResultBuffer.size()); return true; } void* JpegEncoderHelper::getCompressedImagePtr() { return mResultBuffer.data(); } size_t JpegEncoderHelper::getCompressedImageSize() { return mResultBuffer.size(); } void JpegEncoderHelper::initDestination(j_compress_ptr cinfo) { destination_mgr* dest = reinterpret_cast(cinfo->dest); std::vector& buffer = dest->encoder->mResultBuffer; buffer.resize(kBlockSize); dest->mgr.next_output_byte = &buffer[0]; dest->mgr.free_in_buffer = buffer.size(); } boolean JpegEncoderHelper::emptyOutputBuffer(j_compress_ptr cinfo) { destination_mgr* dest = reinterpret_cast(cinfo->dest); std::vector& buffer = dest->encoder->mResultBuffer; size_t oldsize = buffer.size(); buffer.resize(oldsize + kBlockSize); dest->mgr.next_output_byte = &buffer[oldsize]; dest->mgr.free_in_buffer = kBlockSize; return true; } void JpegEncoderHelper::terminateDestination(j_compress_ptr cinfo) { destination_mgr* dest = reinterpret_cast(cinfo->dest); std::vector& buffer = dest->encoder->mResultBuffer; buffer.resize(buffer.size() - dest->mgr.free_in_buffer); } void JpegEncoderHelper::outputErrorMessage(j_common_ptr cinfo) { char buffer[JMSG_LENGTH_MAX]; /* Create the message */ (*cinfo->err->format_message) (cinfo, buffer); ALOGE("%s\n", buffer); } bool JpegEncoderHelper::encode(const void* image, int width, int height, int jpegQuality, const void* iccBuffer, unsigned int iccSize, bool isSingleChannel) { jpeg_compress_struct cinfo; jpeg_error_mgr jerr; cinfo.err = jpeg_std_error(&jerr); // Override output_message() to print error log with ALOGE(). cinfo.err->output_message = &outputErrorMessage; jpeg_create_compress(&cinfo); setJpegDestination(&cinfo); setJpegCompressStruct(width, height, jpegQuality, &cinfo, isSingleChannel); jpeg_start_compress(&cinfo, TRUE); if (iccBuffer != nullptr && iccSize > 0) { jpeg_write_marker(&cinfo, JPEG_APP0 + 2, static_cast(iccBuffer), iccSize); } bool status = compress(&cinfo, static_cast(image), isSingleChannel); jpeg_finish_compress(&cinfo); jpeg_destroy_compress(&cinfo); return status; } void JpegEncoderHelper::setJpegDestination(jpeg_compress_struct* cinfo) { destination_mgr* dest = static_cast((*cinfo->mem->alloc_small) ( (j_common_ptr) cinfo, JPOOL_PERMANENT, sizeof(destination_mgr))); dest->encoder = this; dest->mgr.init_destination = &initDestination; dest->mgr.empty_output_buffer = &emptyOutputBuffer; dest->mgr.term_destination = &terminateDestination; cinfo->dest = reinterpret_cast(dest); } void JpegEncoderHelper::setJpegCompressStruct(int width, int height, int quality, jpeg_compress_struct* cinfo, bool isSingleChannel) { cinfo->image_width = width; cinfo->image_height = height; if (isSingleChannel) { cinfo->input_components = 1; cinfo->in_color_space = JCS_GRAYSCALE; } else { cinfo->input_components = 3; cinfo->in_color_space = JCS_YCbCr; } jpeg_set_defaults(cinfo); jpeg_set_quality(cinfo, quality, TRUE); jpeg_set_colorspace(cinfo, isSingleChannel ? JCS_GRAYSCALE : JCS_YCbCr); cinfo->raw_data_in = TRUE; cinfo->dct_method = JDCT_IFAST; if (!isSingleChannel) { // Configure sampling factors. The sampling factor is JPEG subsampling 420 because the // source format is YUV420. cinfo->comp_info[0].h_samp_factor = 2; cinfo->comp_info[0].v_samp_factor = 2; cinfo->comp_info[1].h_samp_factor = 1; cinfo->comp_info[1].v_samp_factor = 1; cinfo->comp_info[2].h_samp_factor = 1; cinfo->comp_info[2].v_samp_factor = 1; } } bool JpegEncoderHelper::compress( jpeg_compress_struct* cinfo, const uint8_t* image, bool isSingleChannel) { if (isSingleChannel) { return compressSingleChannel(cinfo, image); } return compressYuv(cinfo, image); } bool JpegEncoderHelper::compressYuv(jpeg_compress_struct* cinfo, const uint8_t* yuv) { JSAMPROW y[kCompressBatchSize]; JSAMPROW cb[kCompressBatchSize / 2]; JSAMPROW cr[kCompressBatchSize / 2]; JSAMPARRAY planes[3] {y, cb, cr}; size_t y_plane_size = cinfo->image_width * cinfo->image_height; size_t uv_plane_size = y_plane_size / 4; uint8_t* y_plane = const_cast(yuv); uint8_t* u_plane = const_cast(yuv + y_plane_size); uint8_t* v_plane = const_cast(yuv + y_plane_size + uv_plane_size); std::unique_ptr empty = std::make_unique(cinfo->image_width); memset(empty.get(), 0, cinfo->image_width); const int aligned_width = ALIGNM(cinfo->image_width, kCompressBatchSize); const bool is_width_aligned = (aligned_width == cinfo->image_width); std::unique_ptr buffer_intrm = nullptr; uint8_t* y_plane_intrm = nullptr; uint8_t* u_plane_intrm = nullptr; uint8_t* v_plane_intrm = nullptr; JSAMPROW y_intrm[kCompressBatchSize]; JSAMPROW cb_intrm[kCompressBatchSize / 2]; JSAMPROW cr_intrm[kCompressBatchSize / 2]; JSAMPARRAY planes_intrm[3]{y_intrm, cb_intrm, cr_intrm}; if (!is_width_aligned) { size_t mcu_row_size = aligned_width * kCompressBatchSize * 3 / 2; buffer_intrm = std::make_unique(mcu_row_size); y_plane_intrm = buffer_intrm.get(); u_plane_intrm = y_plane_intrm + (aligned_width * kCompressBatchSize); v_plane_intrm = u_plane_intrm + (aligned_width * kCompressBatchSize) / 4; for (int i = 0; i < kCompressBatchSize; ++i) { y_intrm[i] = y_plane_intrm + i * aligned_width; memset(y_intrm[i] + cinfo->image_width, 0, aligned_width - cinfo->image_width); } for (int i = 0; i < kCompressBatchSize / 2; ++i) { int offset_intrm = i * (aligned_width / 2); cb_intrm[i] = u_plane_intrm + offset_intrm; cr_intrm[i] = v_plane_intrm + offset_intrm; memset(cb_intrm[i] + cinfo->image_width / 2, 0, (aligned_width - cinfo->image_width) / 2); memset(cr_intrm[i] + cinfo->image_width / 2, 0, (aligned_width - cinfo->image_width) / 2); } } while (cinfo->next_scanline < cinfo->image_height) { for (int i = 0; i < kCompressBatchSize; ++i) { size_t scanline = cinfo->next_scanline + i; if (scanline < cinfo->image_height) { y[i] = y_plane + scanline * cinfo->image_width; } else { y[i] = empty.get(); } if (!is_width_aligned) { memcpy(y_intrm[i], y[i], cinfo->image_width); } } // cb, cr only have half scanlines for (int i = 0; i < kCompressBatchSize / 2; ++i) { size_t scanline = cinfo->next_scanline / 2 + i; if (scanline < cinfo->image_height / 2) { int offset = scanline * (cinfo->image_width / 2); cb[i] = u_plane + offset; cr[i] = v_plane + offset; } else { cb[i] = cr[i] = empty.get(); } if (!is_width_aligned) { memcpy(cb_intrm[i], cb[i], cinfo->image_width / 2); memcpy(cr_intrm[i], cr[i], cinfo->image_width / 2); } } int processed = jpeg_write_raw_data(cinfo, is_width_aligned ? planes : planes_intrm, kCompressBatchSize); if (processed != kCompressBatchSize) { ALOGE("Number of processed lines does not equal input lines."); return false; } } return true; } bool JpegEncoderHelper::compressSingleChannel(jpeg_compress_struct* cinfo, const uint8_t* image) { JSAMPROW y[kCompressBatchSize]; JSAMPARRAY planes[1] {y}; uint8_t* y_plane = const_cast(image); std::unique_ptr empty = std::make_unique(cinfo->image_width); memset(empty.get(), 0, cinfo->image_width); const int aligned_width = ALIGNM(cinfo->image_width, kCompressBatchSize); bool is_width_aligned = (aligned_width == cinfo->image_width); std::unique_ptr buffer_intrm = nullptr; uint8_t* y_plane_intrm = nullptr; uint8_t* u_plane_intrm = nullptr; JSAMPROW y_intrm[kCompressBatchSize]; JSAMPARRAY planes_intrm[]{y_intrm}; if (!is_width_aligned) { size_t mcu_row_size = aligned_width * kCompressBatchSize; buffer_intrm = std::make_unique(mcu_row_size); y_plane_intrm = buffer_intrm.get(); for (int i = 0; i < kCompressBatchSize; ++i) { y_intrm[i] = y_plane_intrm + i * aligned_width; memset(y_intrm[i] + cinfo->image_width, 0, aligned_width - cinfo->image_width); } } while (cinfo->next_scanline < cinfo->image_height) { for (int i = 0; i < kCompressBatchSize; ++i) { size_t scanline = cinfo->next_scanline + i; if (scanline < cinfo->image_height) { y[i] = y_plane + scanline * cinfo->image_width; } else { y[i] = empty.get(); } if (!is_width_aligned) { memcpy(y_intrm[i], y[i], cinfo->image_width); } } int processed = jpeg_write_raw_data(cinfo, is_width_aligned ? planes : planes_intrm, kCompressBatchSize); if (processed != kCompressBatchSize / 2) { ALOGE("Number of processed lines does not equal input lines."); return false; } } return true; } } // namespace ultrahdr