/* * Copyright 2022 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include namespace android::recoverymap { //////////////////////////////////////////////////////////////////////////////// // sRGB transformations static const float kSrgbR = 0.299f, kSrgbG = 0.587f, kSrgbB = 0.114f; float srgbLuminance(Color e) { return kSrgbR * e.r + kSrgbG * e.g + kSrgbB * e.b; } static const float kSrgbRCr = 1.402f, kSrgbGCb = 0.34414f, kSrgbGCr = 0.71414f, kSrgbBCb = 1.772f; Color srgbYuvToRgb(Color e_gamma) { return {{{ e_gamma.y + kSrgbRCr * e_gamma.v, e_gamma.y - kSrgbGCb * e_gamma.u - kSrgbGCr * e_gamma.v, e_gamma.y + kSrgbBCb * e_gamma.u }}}; } static const float kSrgbUR = -0.1687f, kSrgbUG = -0.3313f, kSrgbUB = 0.5f; static const float kSrgbVR = 0.5f, kSrgbVG = -0.4187f, kSrgbVB = -0.0813f; Color srgbRgbToYuv(Color e_gamma) { return {{{ kSrgbR * e_gamma.r + kSrgbG * e_gamma.g + kSrgbB * e_gamma.b, kSrgbUR * e_gamma.r + kSrgbUG * e_gamma.g + kSrgbUB * e_gamma.b, kSrgbVR * e_gamma.r + kSrgbVG * e_gamma.g + kSrgbVB * e_gamma.b }}}; } float srgbInvOetf(float e_gamma) { if (e_gamma <= 0.04045f) { return e_gamma / 12.92f; } else { return pow((e_gamma + 0.055f) / 1.055f, 2.4); } } Color srgbInvOetf(Color e_gamma) { return {{{ srgbInvOetf(e_gamma.r), srgbInvOetf(e_gamma.g), srgbInvOetf(e_gamma.b) }}}; } //////////////////////////////////////////////////////////////////////////////// // Display-P3 transformations static const float kP3R = 0.22897f, kP3G = 0.69174f, kP3B = 0.07929f; float p3Luminance(Color e) { return kP3R * e.r + kP3G * e.g + kP3B * e.b; } //////////////////////////////////////////////////////////////////////////////// // BT.2100 transformations - according to ITU-R BT.2100-2 static const float kBt2100R = 0.2627f, kBt2100G = 0.6780f, kBt2100B = 0.0593f; float bt2100Luminance(Color e) { return kBt2100R * e.r + kBt2100G * e.g + kBt2100B * e.b; } static const float kBt2100Cb = 1.8814f, kBt2100Cr = 1.4746f; Color bt2100RgbToYuv(Color e_gamma) { float y_gamma = bt2100Luminance(e_gamma); return {{{ y_gamma, (e_gamma.b - y_gamma) / kBt2100Cb, (e_gamma.r - y_gamma) / kBt2100Cr }}}; } // Derived from the reverse of bt2100RgbToYuv. The derivation for R and B are // pretty straight forward; we just reverse the formulas for U and V above. But // deriving the formula for G is a bit more complicated: // // Start with equation for luminance: // Y = kBt2100R * R + kBt2100G * G + kBt2100B * B // Solve for G: // G = (Y - kBt2100R * R - kBt2100B * B) / kBt2100B // Substitute equations for R and B in terms YUV: // G = (Y - kBt2100R * (Y + kBt2100Cr * V) - kBt2100B * (Y + kBt2100Cb * U)) / kBt2100B // Simplify: // G = Y * ((1 - kBt2100R - kBt2100B) / kBt2100G) // + U * (kBt2100B * kBt2100Cb / kBt2100G) // + V * (kBt2100R * kBt2100Cr / kBt2100G) // // We then get the following coeficients for calculating G from YUV: // // Coef for Y = (1 - kBt2100R - kBt2100B) / kBt2100G = 1 // Coef for U = kBt2100B * kBt2100Cb / kBt2100G = kBt2100GCb = ~0.1645 // Coef for V = kBt2100R * kBt2100Cr / kBt2100G = kBt2100GCr = ~0.5713 static const float kBt2100GCb = kBt2100B * kBt2100Cb / kBt2100G; static const float kBt2100GCr = kBt2100R * kBt2100Cr / kBt2100G; Color bt2100YuvToRgb(Color e_gamma) { return {{{ e_gamma.y + kBt2100Cr * e_gamma.v, e_gamma.y - kBt2100GCb * e_gamma.u - kBt2100GCr * e_gamma.v, e_gamma.y + kBt2100Cb * e_gamma.u }}}; } static const float kHlgA = 0.17883277f, kHlgB = 0.28466892f, kHlgC = 0.55991073; static float hlgOetf(float e) { if (e <= 1.0f/12.0f) { return sqrt(3.0f * e); } else { return kHlgA * log(12.0f * e - kHlgB) + kHlgC; } } Color hlgOetf(Color e) { return {{{ hlgOetf(e.r), hlgOetf(e.g), hlgOetf(e.b) }}}; } static float hlgInvOetf(float e_gamma) { if (e_gamma <= 0.5f) { return pow(e_gamma, 2.0f) / 3.0f; } else { return (exp((e_gamma - kHlgC) / kHlgA) + kHlgB) / 12.0f; } } Color hlgInvOetf(Color e_gamma) { return {{{ hlgInvOetf(e_gamma.r), hlgInvOetf(e_gamma.g), hlgInvOetf(e_gamma.b) }}}; } static const float kPqM1 = 2610.0f / 16384.0f, kPqM2 = 2523.0f / 4096.0f * 128.0f; static const float kPqC1 = 3424.0f / 4096.0f, kPqC2 = 2413.0f / 4096.0f * 32.0f, kPqC3 = 2392.0f / 4096.0f * 32.0f; static float pqOetf(float e) { if (e < 0.0f) e = 0.0f; return pow((kPqC1 + kPqC2 * pow(e / 10000.0f, kPqM1)) / (1 + kPqC3 * pow(e / 10000.0f, kPqM1)), kPqM2); } Color pqOetf(Color e) { return {{{ pqOetf(e.r), pqOetf(e.g), pqOetf(e.b) }}}; } static float pqInvOetf(float e_gamma) { static const float kPqInvOetfCoef = log2(-(pow(kPqM1, 1.0f / kPqM2) - kPqC1) / (kPqC3 * pow(kPqM1, 1.0f / kPqM2) - kPqC2)); return kPqInvOetfCoef / log2(e_gamma * 10000.0f); } Color pqInvOetf(Color e_gamma) { return {{{ pqInvOetf(e_gamma.r), pqInvOetf(e_gamma.g), pqInvOetf(e_gamma.b) }}}; } //////////////////////////////////////////////////////////////////////////////// // Color conversions Color bt709ToP3(Color e) { return {{{ 0.82254f * e.r + 0.17755f * e.g + 0.00006f * e.b, 0.03312f * e.r + 0.96684f * e.g + -0.00001f * e.b, 0.01706f * e.r + 0.07240f * e.g + 0.91049f * e.b }}}; } Color bt709ToBt2100(Color e) { return {{{ 0.62740f * e.r + 0.32930f * e.g + 0.04332f * e.b, 0.06904f * e.r + 0.91958f * e.g + 0.01138f * e.b, 0.01636f * e.r + 0.08799f * e.g + 0.89555f * e.b }}}; } Color p3ToBt709(Color e) { return {{{ 1.22482f * e.r + -0.22490f * e.g + -0.00007f * e.b, -0.04196f * e.r + 1.04199f * e.g + 0.00001f * e.b, -0.01961f * e.r + -0.07865f * e.g + 1.09831f * e.b }}}; } Color p3ToBt2100(Color e) { return {{{ 0.75378f * e.r + 0.19862f * e.g + 0.04754f * e.b, 0.04576f * e.r + 0.94177f * e.g + 0.01250f * e.b, -0.00121f * e.r + 0.01757f * e.g + 0.98359f * e.b }}}; } Color bt2100ToBt709(Color e) { return {{{ 1.66045f * e.r + -0.58764f * e.g + -0.07286f * e.b, -0.12445f * e.r + 1.13282f * e.g + -0.00837f * e.b, -0.01811f * e.r + -0.10057f * e.g + 1.11878f * e.b }}}; } Color bt2100ToP3(Color e) { return {{{ 1.34369f * e.r + -0.28223f * e.g + -0.06135f * e.b, -0.06533f * e.r + 1.07580f * e.g + -0.01051f * e.b, 0.00283f * e.r + -0.01957f * e.g + 1.01679f * e.b }}}; } // TODO: confirm we always want to convert like this before calculating // luminance. ColorTransformFn getHdrConversionFn(jpegr_color_gamut sdr_gamut, jpegr_color_gamut hdr_gamut) { switch (sdr_gamut) { case JPEGR_COLORGAMUT_BT709: switch (hdr_gamut) { case JPEGR_COLORGAMUT_BT709: return identityConversion; case JPEGR_COLORGAMUT_P3: return p3ToBt709; case JPEGR_COLORGAMUT_BT2100: return bt2100ToBt709; case JPEGR_COLORGAMUT_UNSPECIFIED: return nullptr; } break; case JPEGR_COLORGAMUT_P3: switch (hdr_gamut) { case JPEGR_COLORGAMUT_BT709: return bt709ToP3; case JPEGR_COLORGAMUT_P3: return identityConversion; case JPEGR_COLORGAMUT_BT2100: return bt2100ToP3; case JPEGR_COLORGAMUT_UNSPECIFIED: return nullptr; } break; case JPEGR_COLORGAMUT_BT2100: switch (hdr_gamut) { case JPEGR_COLORGAMUT_BT709: return bt709ToBt2100; case JPEGR_COLORGAMUT_P3: return p3ToBt2100; case JPEGR_COLORGAMUT_BT2100: return identityConversion; case JPEGR_COLORGAMUT_UNSPECIFIED: return nullptr; } break; case JPEGR_COLORGAMUT_UNSPECIFIED: return nullptr; } } //////////////////////////////////////////////////////////////////////////////// // Recovery map calculations uint8_t encodeRecovery(float y_sdr, float y_hdr, float hdr_ratio) { float gain = 1.0f; if (y_sdr > 0.0f) { gain = y_hdr / y_sdr; } if (gain < -hdr_ratio) gain = -hdr_ratio; if (gain > hdr_ratio) gain = hdr_ratio; return static_cast(log2(gain) / log2(hdr_ratio) * 127.5f + 127.5f); } static float applyRecovery(float e, float recovery, float hdr_ratio) { return exp2(log2(e) + recovery * log2(hdr_ratio)); } Color applyRecovery(Color e, float recovery, float hdr_ratio) { return {{{ applyRecovery(e.r, recovery, hdr_ratio), applyRecovery(e.g, recovery, hdr_ratio), applyRecovery(e.b, recovery, hdr_ratio) }}}; } // TODO: do we need something more clever for filtering either the map or images // to generate the map? static size_t clamp(const size_t& val, const size_t& low, const size_t& high) { return val < low ? low : (high < val ? high : val); } static float mapUintToFloat(uint8_t map_uint) { return (static_cast(map_uint) - 127.5f) / 127.5f; } float sampleMap(jr_uncompressed_ptr map, size_t map_scale_factor, size_t x, size_t y) { float x_map = static_cast(x) / static_cast(map_scale_factor); float y_map = static_cast(y) / static_cast(map_scale_factor); size_t x_lower = static_cast(floor(x_map)); size_t x_upper = x_lower + 1; size_t y_lower = static_cast(floor(y_map)); size_t y_upper = y_lower + 1; x_lower = clamp(x_lower, 0, map->width - 1); x_upper = clamp(x_upper, 0, map->width - 1); y_lower = clamp(y_lower, 0, map->height - 1); y_upper = clamp(y_upper, 0, map->height - 1); float x_influence = x_map - static_cast(x_lower); float y_influence = y_map - static_cast(y_lower); float e1 = mapUintToFloat(reinterpret_cast(map->data)[x_lower + y_lower * map->width]); float e2 = mapUintToFloat(reinterpret_cast(map->data)[x_lower + y_upper * map->width]); float e3 = mapUintToFloat(reinterpret_cast(map->data)[x_upper + y_lower * map->width]); float e4 = mapUintToFloat(reinterpret_cast(map->data)[x_upper + y_upper * map->width]); return e1 * (x_influence + y_influence) / 2.0f + e2 * (x_influence + 1.0f - y_influence) / 2.0f + e3 * (1.0f - x_influence + y_influence) / 2.0f + e4 * (1.0f - x_influence + 1.0f - y_influence) / 2.0f; } Color getYuv420Pixel(jr_uncompressed_ptr image, size_t x, size_t y) { size_t pixel_count = image->width * image->height; size_t pixel_y_idx = x + y * image->width; size_t pixel_uv_idx = x / 2 + (y / 2) * (image->width / 2); uint8_t y_uint = reinterpret_cast(image->data)[pixel_y_idx]; uint8_t u_uint = reinterpret_cast(image->data)[pixel_count + pixel_uv_idx]; uint8_t v_uint = reinterpret_cast(image->data)[pixel_count * 5 / 4 + pixel_uv_idx]; // 128 bias for UV given we are using jpeglib; see: // https://github.com/kornelski/libjpeg/blob/master/structure.doc return {{{ static_cast(y_uint) / 255.0f, (static_cast(u_uint) - 128.0f) / 255.0f, (static_cast(v_uint) - 128.0f) / 255.0f }}}; } Color getP010Pixel(jr_uncompressed_ptr image, size_t x, size_t y) { size_t pixel_count = image->width * image->height; size_t pixel_y_idx = x + y * image->width; size_t pixel_uv_idx = x / 2 + (y / 2) * (image->width / 2); uint16_t y_uint = reinterpret_cast(image->data)[pixel_y_idx] >> 6; uint16_t u_uint = reinterpret_cast(image->data)[pixel_count + pixel_uv_idx * 2] >> 6; uint16_t v_uint = reinterpret_cast(image->data)[pixel_count + pixel_uv_idx * 2 + 1] >> 6; // Conversions include taking narrow-range into account. return {{{ static_cast(y_uint) / 940.0f, (static_cast(u_uint) - 64.0f) / 940.0f - 0.5f, (static_cast(v_uint) - 64.0f) / 940.0f - 0.5f }}}; } typedef Color (*getPixelFn)(jr_uncompressed_ptr, size_t, size_t); static Color samplePixels(jr_uncompressed_ptr image, size_t map_scale_factor, size_t x, size_t y, getPixelFn get_pixel_fn) { Color e = {{{ 0.0f, 0.0f, 0.0f }}}; for (size_t dy = 0; dy < map_scale_factor; ++dy) { for (size_t dx = 0; dx < map_scale_factor; ++dx) { e += get_pixel_fn(image, x * map_scale_factor + dx, y * map_scale_factor + dy); } } return e / static_cast(map_scale_factor * map_scale_factor); } Color sampleYuv420(jr_uncompressed_ptr image, size_t map_scale_factor, size_t x, size_t y) { return samplePixels(image, map_scale_factor, x, y, getYuv420Pixel); } Color sampleP010(jr_uncompressed_ptr image, size_t map_scale_factor, size_t x, size_t y) { return samplePixels(image, map_scale_factor, x, y, getP010Pixel); } uint32_t colorToRgba1010102(Color e_gamma) { return (0x3ff & static_cast(e_gamma.r * 1023.0f)) | ((0x3ff & static_cast(e_gamma.g * 1023.0f)) << 10) | ((0x3ff & static_cast(e_gamma.b * 1023.0f)) << 20) | (0x3 << 30); // Set alpha to 1.0 } } // namespace android::recoverymap