#include "timeinstate.h" #include #include #include #include #include #include #include #include namespace android { namespace bpf { static constexpr uint64_t NSEC_PER_SEC = 1000000000; static constexpr uint64_t NSEC_PER_YEAR = NSEC_PER_SEC * 60 * 60 * 24 * 365; using std::vector; TEST(TimeInStateTest, SingleUid) { auto times = getUidCpuFreqTimes(0); ASSERT_TRUE(times.has_value()); EXPECT_FALSE(times->empty()); } TEST(TimeInStateTest, AllUid) { vector sizes; auto map = getUidsCpuFreqTimes(); ASSERT_TRUE(map.has_value()); ASSERT_FALSE(map->empty()); auto firstEntry = map->begin()->second; for (const auto &subEntry : firstEntry) sizes.emplace_back(subEntry.size()); for (const auto &vec : *map) { ASSERT_EQ(vec.second.size(), sizes.size()); for (size_t i = 0; i < vec.second.size(); ++i) ASSERT_EQ(vec.second[i].size(), sizes[i]); } } TEST(TimeInStateTest, SingleAndAllUidConsistent) { auto map = getUidsCpuFreqTimes(); ASSERT_TRUE(map.has_value()); ASSERT_FALSE(map->empty()); for (const auto &kv : *map) { uint32_t uid = kv.first; auto times1 = kv.second; auto times2 = getUidCpuFreqTimes(uid); ASSERT_TRUE(times2.has_value()); ASSERT_EQ(times1.size(), times2->size()); for (uint32_t i = 0; i < times1.size(); ++i) { ASSERT_EQ(times1[i].size(), (*times2)[i].size()); for (uint32_t j = 0; j < times1[i].size(); ++j) { ASSERT_LE((*times2)[i][j] - times1[i][j], NSEC_PER_SEC); } } } } void TestCheckDelta(uint64_t before, uint64_t after) { // Times should never decrease ASSERT_LE(before, after); // UID can't have run for more than ~1s on each CPU ASSERT_LE(after - before, NSEC_PER_SEC * 2 * get_nprocs_conf()); } TEST(TimeInStateTest, AllUidMonotonic) { auto map1 = getUidsCpuFreqTimes(); ASSERT_TRUE(map1.has_value()); sleep(1); auto map2 = getUidsCpuFreqTimes(); ASSERT_TRUE(map2.has_value()); for (const auto &kv : *map1) { uint32_t uid = kv.first; auto times = kv.second; ASSERT_NE(map2->find(uid), map2->end()); for (uint32_t policy = 0; policy < times.size(); ++policy) { for (uint32_t freqIdx = 0; freqIdx < times[policy].size(); ++freqIdx) { auto before = times[policy][freqIdx]; auto after = (*map2)[uid][policy][freqIdx]; ASSERT_NO_FATAL_FAILURE(TestCheckDelta(before, after)); } } } } TEST(TimeInStateTest, AllUidSanityCheck) { auto map = getUidsCpuFreqTimes(); ASSERT_TRUE(map.has_value()); bool foundLargeValue = false; for (const auto &kv : *map) { for (const auto &timeVec : kv.second) { for (const auto &time : timeVec) { ASSERT_LE(time, NSEC_PER_YEAR); if (time > UINT32_MAX) foundLargeValue = true; } } } // UINT32_MAX nanoseconds is less than 5 seconds, so if every part of our pipeline is using // uint64_t as expected, we should have some times higher than that. ASSERT_TRUE(foundLargeValue); } TEST(TimeInStateTest, RemoveUid) { uint32_t uid = 0; { // Find an unused UID auto times = getUidsCpuFreqTimes(); ASSERT_TRUE(times.has_value()); ASSERT_FALSE(times->empty()); for (const auto &kv : *times) uid = std::max(uid, kv.first); ++uid; } { // Add a map entry for our fake UID by copying a real map entry android::base::unique_fd fd{bpf_obj_get(BPF_FS_PATH "map_time_in_state_uid_times_map")}; ASSERT_GE(fd, 0); time_key_t k; ASSERT_FALSE(getFirstMapKey(fd, &k)); std::vector vals(get_nprocs_conf()); ASSERT_FALSE(findMapEntry(fd, &k, vals.data())); k.uid = uid; ASSERT_FALSE(writeToMapEntry(fd, &k, vals.data(), BPF_NOEXIST)); } auto times = getUidCpuFreqTimes(uid); ASSERT_TRUE(times.has_value()); ASSERT_FALSE(times->empty()); uint64_t sum = 0; for (size_t i = 0; i < times->size(); ++i) { for (auto x : (*times)[i]) sum += x; } ASSERT_GT(sum, (uint64_t)0); ASSERT_TRUE(clearUidCpuFreqTimes(uid)); auto allTimes = getUidsCpuFreqTimes(); ASSERT_TRUE(allTimes.has_value()); ASSERT_FALSE(allTimes->empty()); ASSERT_EQ(allTimes->find(uid), allTimes->end()); } } // namespace bpf } // namespace android