/* * Copyright (C) 2019 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "libtimeinstate" #include "cputimeinstate.h" #include "timeinstate.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using android::base::StringPrintf; using android::base::unique_fd; namespace android { namespace bpf { static std::mutex gInitializedMutex; static bool gInitialized = false; static uint32_t gNPolicies = 0; static uint32_t gNCpus = 0; static std::vector> gPolicyFreqs; static std::vector> gPolicyCpus; static std::set gAllFreqs; static unique_fd gMapFd; static std::optional> readNumbersFromFile(const std::string &path) { std::string data; if (!android::base::ReadFileToString(path, &data)) return {}; auto strings = android::base::Split(data, " \n"); std::vector ret; for (const auto &s : strings) { if (s.empty()) continue; uint32_t n; if (!android::base::ParseUint(s, &n)) return {}; ret.emplace_back(n); } return ret; } static int isPolicyFile(const struct dirent *d) { return android::base::StartsWith(d->d_name, "policy"); } static int comparePolicyFiles(const struct dirent **d1, const struct dirent **d2) { uint32_t policyN1, policyN2; if (sscanf((*d1)->d_name, "policy%" SCNu32 "", &policyN1) != 1 || sscanf((*d2)->d_name, "policy%" SCNu32 "", &policyN2) != 1) return 0; return policyN1 - policyN2; } static bool initGlobals() { std::lock_guard guard(gInitializedMutex); if (gInitialized) return true; gNCpus = get_nprocs_conf(); struct dirent **dirlist; const char basepath[] = "/sys/devices/system/cpu/cpufreq"; int ret = scandir(basepath, &dirlist, isPolicyFile, comparePolicyFiles); if (ret == -1) return false; gNPolicies = ret; std::vector policyFileNames; for (uint32_t i = 0; i < gNPolicies; ++i) { policyFileNames.emplace_back(dirlist[i]->d_name); free(dirlist[i]); } free(dirlist); for (const auto &policy : policyFileNames) { std::vector freqs; for (const auto &name : {"available", "boost"}) { std::string path = StringPrintf("%s/%s/scaling_%s_frequencies", basepath, policy.c_str(), name); auto nums = readNumbersFromFile(path); if (!nums) return false; freqs.insert(freqs.end(), nums->begin(), nums->end()); } std::sort(freqs.begin(), freqs.end()); gPolicyFreqs.emplace_back(freqs); for (auto freq : freqs) gAllFreqs.insert(freq); std::string path = StringPrintf("%s/%s/%s", basepath, policy.c_str(), "related_cpus"); auto cpus = readNumbersFromFile(path); if (!cpus) return false; gPolicyCpus.emplace_back(*cpus); } gMapFd = unique_fd{bpf_obj_get(BPF_FS_PATH "map_time_in_state_uid_times_map")}; if (gMapFd < 0) return false; gInitialized = true; return true; } static bool attachTracepointProgram(const std::string &eventType, const std::string &eventName) { std::string path = StringPrintf(BPF_FS_PATH "prog_time_in_state_tracepoint_%s_%s", eventType.c_str(), eventName.c_str()); int prog_fd = bpf_obj_get(path.c_str()); if (prog_fd < 0) return false; return bpf_attach_tracepoint(prog_fd, eventType.c_str(), eventName.c_str()) >= 0; } // Start tracking and aggregating data to be reported by getUidCpuFreqTimes and getUidsCpuFreqTimes. // Returns true on success, false otherwise. // Tracking is active only once a live process has successfully called this function; if the calling // process dies then it must be called again to resume tracking. // This function should *not* be called while tracking is already active; doing so is unnecessary // and can lead to accounting errors. bool startTrackingUidCpuFreqTimes() { if (!initGlobals()) return false; unique_fd fd(bpf_obj_get(BPF_FS_PATH "map_time_in_state_cpu_policy_map")); if (fd < 0) return false; for (uint32_t i = 0; i < gPolicyCpus.size(); ++i) { for (auto &cpu : gPolicyCpus[i]) { if (writeToMapEntry(fd, &cpu, &i, BPF_ANY)) return false; } } unique_fd fd2(bpf_obj_get(BPF_FS_PATH "map_time_in_state_freq_to_idx_map")); if (fd2 < 0) return false; freq_idx_key_t key; for (uint32_t i = 0; i < gNPolicies; ++i) { key.policy = i; for (uint32_t j = 0; j < gPolicyFreqs[i].size(); ++j) { key.freq = gPolicyFreqs[i][j]; // Start indexes at 1 so that uninitialized state is distinguishable from lowest freq. // The uid_times map still uses 0-based indexes, and the sched_switch program handles // conversion between them, so this does not affect our map reading code. uint32_t idx = j + 1; if (writeToMapEntry(fd2, &key, &idx, BPF_ANY)) return false; } } return attachTracepointProgram("sched", "sched_switch") && attachTracepointProgram("power", "cpu_frequency"); } // Retrieve the times in ns that uid spent running at each CPU frequency and store in freqTimes. // Return contains no value on error, otherwise it contains a vector of vectors using the format: // [[t0_0, t0_1, ...], // [t1_0, t1_1, ...], ...] // where ti_j is the ns that uid spent running on the ith cluster at that cluster's jth lowest freq. std::optional>> getUidCpuFreqTimes(uint32_t uid) { if (!gInitialized && !initGlobals()) return {}; std::vector> out; uint32_t maxFreqCount = 0; for (const auto &freqList : gPolicyFreqs) { if (freqList.size() > maxFreqCount) maxFreqCount = freqList.size(); out.emplace_back(freqList.size(), 0); } std::vector vals(gNCpus); time_key_t key = {.uid = uid}; for (uint32_t i = 0; i <= (maxFreqCount - 1) / FREQS_PER_ENTRY; ++i) { key.bucket = i; if (findMapEntry(gMapFd, &key, vals.data())) { if (errno != ENOENT) return {}; continue; } auto offset = i * FREQS_PER_ENTRY; auto nextOffset = (i + 1) * FREQS_PER_ENTRY; for (uint32_t j = 0; j < gNPolicies; ++j) { if (offset >= gPolicyFreqs[j].size()) continue; auto begin = out[j].begin() + offset; auto end = nextOffset < gPolicyFreqs[j].size() ? begin + FREQS_PER_ENTRY : out[j].end(); for (const auto &cpu : gPolicyCpus[j]) { std::transform(begin, end, std::begin(vals[cpu].ar), begin, std::plus()); } } } return out; } // Retrieve the times in ns that each uid spent running at each CPU freq and store in freqTimeMap. // Return contains no value on error, otherwise it contains a map from uids to vectors of vectors // using the format: // { uid0 -> [[t0_0_0, t0_0_1, ...], [t0_1_0, t0_1_1, ...], ...], // uid1 -> [[t1_0_0, t1_0_1, ...], [t1_1_0, t1_1_1, ...], ...], ... } // where ti_j_k is the ns uid i spent running on the jth cluster at the cluster's kth lowest freq. std::optional>>> getUidsCpuFreqTimes() { if (!gInitialized && !initGlobals()) return {}; time_key_t key, prevKey; std::unordered_map>> map; if (getFirstMapKey(gMapFd, &key)) { if (errno == ENOENT) return map; return std::nullopt; } std::vector> mapFormat; for (const auto &freqList : gPolicyFreqs) mapFormat.emplace_back(freqList.size(), 0); std::vector vals(gNCpus); do { if (findMapEntry(gMapFd, &key, vals.data())) return {}; if (map.find(key.uid) == map.end()) map.emplace(key.uid, mapFormat); auto offset = key.bucket * FREQS_PER_ENTRY; auto nextOffset = (key.bucket + 1) * FREQS_PER_ENTRY; for (uint32_t i = 0; i < gNPolicies; ++i) { if (offset >= gPolicyFreqs[i].size()) continue; auto begin = map[key.uid][i].begin() + offset; auto end = nextOffset < gPolicyFreqs[i].size() ? begin + FREQS_PER_ENTRY : map[key.uid][i].end(); for (const auto &cpu : gPolicyCpus[i]) { std::transform(begin, end, std::begin(vals[cpu].ar), begin, std::plus()); } } prevKey = key; } while (!getNextMapKey(gMapFd, &prevKey, &key)); if (errno != ENOENT) return {}; return map; } // Clear all time in state data for a given uid. Returns false on error, true otherwise. bool clearUidCpuFreqTimes(uint32_t uid) { if (!gInitialized && !initGlobals()) return false; time_key_t key = {.uid = uid}; uint32_t maxFreqCount = 0; for (const auto &freqList : gPolicyFreqs) { if (freqList.size() > maxFreqCount) maxFreqCount = freqList.size(); } val_t zeros = {0}; std::vector vals(gNCpus, zeros); for (key.bucket = 0; key.bucket <= (maxFreqCount - 1) / FREQS_PER_ENTRY; ++key.bucket) { if (writeToMapEntry(gMapFd, &key, vals.data(), BPF_EXIST) && errno != ENOENT) return false; if (deleteMapEntry(gMapFd, &key) && errno != ENOENT) return false; } return true; } } // namespace bpf } // namespace android