/* * Copyright (C) 2020 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "RpcState" #include "RpcState.h" #include #include #include #include #include "Debug.h" #include "RpcWireFormat.h" #include namespace android { using base::ScopeGuard; RpcState::RpcState() {} RpcState::~RpcState() {} status_t RpcState::onBinderLeaving(const sp& session, const sp& binder, RpcAddress* outAddress) { bool isRemote = binder->remoteBinder(); bool isRpc = isRemote && binder->remoteBinder()->isRpcBinder(); if (isRpc && binder->remoteBinder()->getPrivateAccessorForId().rpcSession() != session) { // We need to be able to send instructions over the socket for how to // connect to a different server, and we also need to let the host // process know that this is happening. ALOGE("Cannot send binder from unrelated binder RPC session."); return INVALID_OPERATION; } if (isRemote && !isRpc) { // Without additional work, this would have the effect of using this // process to proxy calls from the socket over to the other process, and // it would make those calls look like they come from us (not over the // sockets). In order to make this work transparently like binder, we // would instead need to send instructions over the socket for how to // connect to the host process, and we also need to let the host process // know this was happening. ALOGE("Cannot send binder proxy %p over sockets", binder.get()); return INVALID_OPERATION; } std::lock_guard _l(mNodeMutex); if (mTerminated) return DEAD_OBJECT; // TODO(b/182939933): maybe move address out of BpBinder, and keep binder->address map // in RpcState for (auto& [addr, node] : mNodeForAddress) { if (binder == node.binder) { if (isRpc) { const RpcAddress& actualAddr = binder->remoteBinder()->getPrivateAccessorForId().rpcAddress(); // TODO(b/182939933): this is only checking integrity of data structure // a different data structure doesn't need this LOG_ALWAYS_FATAL_IF(addr < actualAddr, "Address mismatch"); LOG_ALWAYS_FATAL_IF(actualAddr < addr, "Address mismatch"); } node.timesSent++; node.sentRef = binder; // might already be set *outAddress = addr; return OK; } } LOG_ALWAYS_FATAL_IF(isRpc, "RPC binder must have known address at this point"); auto&& [it, inserted] = mNodeForAddress.insert({RpcAddress::unique(), BinderNode{ .binder = binder, .timesSent = 1, .sentRef = binder, }}); // TODO(b/182939933): better organization could avoid needing this log LOG_ALWAYS_FATAL_IF(!inserted); *outAddress = it->first; return OK; } status_t RpcState::onBinderEntering(const sp& session, const RpcAddress& address, sp* out) { std::unique_lock _l(mNodeMutex); if (mTerminated) return DEAD_OBJECT; if (auto it = mNodeForAddress.find(address); it != mNodeForAddress.end()) { *out = it->second.binder.promote(); // implicitly have strong RPC refcount, since we received this binder it->second.timesRecd++; _l.unlock(); // We have timesRecd RPC refcounts, but we only need to hold on to one // when we keep the object. All additional dec strongs are sent // immediately, we wait to send the last one in BpBinder::onLastDecStrong. (void)session->sendDecStrong(address); return OK; } auto&& [it, inserted] = mNodeForAddress.insert({address, BinderNode{}}); LOG_ALWAYS_FATAL_IF(!inserted, "Failed to insert binder when creating proxy"); // Currently, all binders are assumed to be part of the same session (no // device global binders in the RPC world). it->second.binder = *out = BpBinder::create(session, it->first); it->second.timesRecd = 1; return OK; } size_t RpcState::countBinders() { std::lock_guard _l(mNodeMutex); return mNodeForAddress.size(); } void RpcState::dump() { std::lock_guard _l(mNodeMutex); dumpLocked(); } void RpcState::clear() { std::unique_lock _l(mNodeMutex); if (mTerminated) { LOG_ALWAYS_FATAL_IF(!mNodeForAddress.empty(), "New state should be impossible after terminating!"); return; } if (SHOULD_LOG_RPC_DETAIL) { ALOGE("RpcState::clear()"); dumpLocked(); } // if the destructor of a binder object makes another RPC call, then calling // decStrong could deadlock. So, we must hold onto these binders until // mNodeMutex is no longer taken. std::vector> tempHoldBinder; mTerminated = true; for (auto& [address, node] : mNodeForAddress) { sp binder = node.binder.promote(); LOG_ALWAYS_FATAL_IF(binder == nullptr, "Binder %p expected to be owned.", binder.get()); if (node.sentRef != nullptr) { tempHoldBinder.push_back(node.sentRef); } } mNodeForAddress.clear(); _l.unlock(); tempHoldBinder.clear(); // explicit } void RpcState::dumpLocked() { ALOGE("DUMP OF RpcState %p", this); ALOGE("DUMP OF RpcState (%zu nodes)", mNodeForAddress.size()); for (const auto& [address, node] : mNodeForAddress) { sp binder = node.binder.promote(); const char* desc; if (binder) { if (binder->remoteBinder()) { if (binder->remoteBinder()->isRpcBinder()) { desc = "(rpc binder proxy)"; } else { desc = "(binder proxy)"; } } else { desc = "(local binder)"; } } else { desc = "(null)"; } ALOGE("- BINDER NODE: %p times sent:%zu times recd: %zu a:%s type:%s", node.binder.unsafe_get(), node.timesSent, node.timesRecd, address.toString().c_str(), desc); } ALOGE("END DUMP OF RpcState"); } RpcState::CommandData::CommandData(size_t size) : mSize(size) { // The maximum size for regular binder is 1MB for all concurrent // transactions. A very small proportion of transactions are even // larger than a page, but we need to avoid allocating too much // data on behalf of an arbitrary client, or we could risk being in // a position where a single additional allocation could run out of // memory. // // Note, this limit may not reflect the total amount of data allocated for a // transaction (in some cases, additional fixed size amounts are added), // though for rough consistency, we should avoid cases where this data type // is used for multiple dynamic allocations for a single transaction. constexpr size_t kMaxTransactionAllocation = 100 * 1000; if (size == 0) return; if (size > kMaxTransactionAllocation) { ALOGW("Transaction requested too much data allocation %zu", size); return; } mData.reset(new (std::nothrow) uint8_t[size]); } status_t RpcState::rpcSend(const base::unique_fd& fd, const sp& session, const char* what, const void* data, size_t size) { LOG_RPC_DETAIL("Sending %s on fd %d: %s", what, fd.get(), hexString(data, size).c_str()); if (size > std::numeric_limits::max()) { ALOGE("Cannot send %s at size %zu (too big)", what, size); (void)session->shutdownAndWait(false); return BAD_VALUE; } ssize_t sent = TEMP_FAILURE_RETRY(send(fd.get(), data, size, MSG_NOSIGNAL)); if (sent < 0 || sent != static_cast(size)) { int savedErrno = errno; LOG_RPC_DETAIL("Failed to send %s (sent %zd of %zu bytes) on fd %d, error: %s", what, sent, size, fd.get(), strerror(savedErrno)); (void)session->shutdownAndWait(false); return -savedErrno; } return OK; } status_t RpcState::rpcRec(const base::unique_fd& fd, const sp& session, const char* what, void* data, size_t size) { if (size > std::numeric_limits::max()) { ALOGE("Cannot rec %s at size %zu (too big)", what, size); (void)session->shutdownAndWait(false); return BAD_VALUE; } if (status_t status = session->mShutdownTrigger->interruptableReadFully(fd.get(), data, size); status != OK) { LOG_RPC_DETAIL("Failed to read %s (%zu bytes) on fd %d, error: %s", what, size, fd.get(), statusToString(status).c_str()); return status; } LOG_RPC_DETAIL("Received %s on fd %d: %s", what, fd.get(), hexString(data, size).c_str()); return OK; } sp RpcState::getRootObject(const base::unique_fd& fd, const sp& session) { Parcel data; data.markForRpc(session); Parcel reply; status_t status = transactAddress(fd, RpcAddress::zero(), RPC_SPECIAL_TRANSACT_GET_ROOT, data, session, &reply, 0); if (status != OK) { ALOGE("Error getting root object: %s", statusToString(status).c_str()); return nullptr; } return reply.readStrongBinder(); } status_t RpcState::getMaxThreads(const base::unique_fd& fd, const sp& session, size_t* maxThreadsOut) { Parcel data; data.markForRpc(session); Parcel reply; status_t status = transactAddress(fd, RpcAddress::zero(), RPC_SPECIAL_TRANSACT_GET_MAX_THREADS, data, session, &reply, 0); if (status != OK) { ALOGE("Error getting max threads: %s", statusToString(status).c_str()); return status; } int32_t maxThreads; status = reply.readInt32(&maxThreads); if (status != OK) return status; if (maxThreads <= 0) { ALOGE("Error invalid max maxThreads: %d", maxThreads); return BAD_VALUE; } *maxThreadsOut = maxThreads; return OK; } status_t RpcState::getSessionId(const base::unique_fd& fd, const sp& session, int32_t* sessionIdOut) { Parcel data; data.markForRpc(session); Parcel reply; status_t status = transactAddress(fd, RpcAddress::zero(), RPC_SPECIAL_TRANSACT_GET_SESSION_ID, data, session, &reply, 0); if (status != OK) { ALOGE("Error getting session ID: %s", statusToString(status).c_str()); return status; } int32_t sessionId; status = reply.readInt32(&sessionId); if (status != OK) return status; *sessionIdOut = sessionId; return OK; } status_t RpcState::transact(const base::unique_fd& fd, const sp& binder, uint32_t code, const Parcel& data, const sp& session, Parcel* reply, uint32_t flags) { if (!data.isForRpc()) { ALOGE("Refusing to send RPC with parcel not crafted for RPC"); return BAD_TYPE; } if (data.objectsCount() != 0) { ALOGE("Parcel at %p has attached objects but is being used in an RPC call", &data); return BAD_TYPE; } RpcAddress address = RpcAddress::zero(); if (status_t status = onBinderLeaving(session, binder, &address); status != OK) return status; return transactAddress(fd, address, code, data, session, reply, flags); } status_t RpcState::transactAddress(const base::unique_fd& fd, const RpcAddress& address, uint32_t code, const Parcel& data, const sp& session, Parcel* reply, uint32_t flags) { LOG_ALWAYS_FATAL_IF(!data.isForRpc()); LOG_ALWAYS_FATAL_IF(data.objectsCount() != 0); uint64_t asyncNumber = 0; if (!address.isZero()) { std::unique_lock _l(mNodeMutex); if (mTerminated) return DEAD_OBJECT; // avoid fatal only, otherwise races auto it = mNodeForAddress.find(address); LOG_ALWAYS_FATAL_IF(it == mNodeForAddress.end(), "Sending transact on unknown address %s", address.toString().c_str()); if (flags & IBinder::FLAG_ONEWAY) { asyncNumber = it->second.asyncNumber; if (!nodeProgressAsyncNumber(&it->second)) { _l.unlock(); (void)session->shutdownAndWait(false); return DEAD_OBJECT; } } } LOG_ALWAYS_FATAL_IF(std::numeric_limits::max() - sizeof(RpcWireHeader) - sizeof(RpcWireTransaction) < data.dataSize(), "Too much data %zu", data.dataSize()); RpcWireHeader command{ .command = RPC_COMMAND_TRANSACT, .bodySize = static_cast(sizeof(RpcWireTransaction) + data.dataSize()), }; RpcWireTransaction transaction{ .address = address.viewRawEmbedded(), .code = code, .flags = flags, .asyncNumber = asyncNumber, }; CommandData transactionData(sizeof(RpcWireHeader) + sizeof(RpcWireTransaction) + data.dataSize()); if (!transactionData.valid()) { return NO_MEMORY; } memcpy(transactionData.data() + 0, &command, sizeof(RpcWireHeader)); memcpy(transactionData.data() + sizeof(RpcWireHeader), &transaction, sizeof(RpcWireTransaction)); memcpy(transactionData.data() + sizeof(RpcWireHeader) + sizeof(RpcWireTransaction), data.data(), data.dataSize()); if (status_t status = rpcSend(fd, session, "transaction", transactionData.data(), transactionData.size()); status != OK) return status; if (flags & IBinder::FLAG_ONEWAY) { LOG_RPC_DETAIL("Oneway command, so no longer waiting on %d", fd.get()); // Do not wait on result. // However, too many oneway calls may cause refcounts to build up and fill up the socket, // so process those. return drainCommands(fd, session, CommandType::CONTROL_ONLY); } LOG_ALWAYS_FATAL_IF(reply == nullptr, "Reply parcel must be used for synchronous transaction."); return waitForReply(fd, session, reply); } static void cleanup_reply_data(Parcel* p, const uint8_t* data, size_t dataSize, const binder_size_t* objects, size_t objectsCount) { (void)p; delete[] const_cast(data - offsetof(RpcWireReply, data)); (void)dataSize; LOG_ALWAYS_FATAL_IF(objects != nullptr); LOG_ALWAYS_FATAL_IF(objectsCount, 0); } status_t RpcState::waitForReply(const base::unique_fd& fd, const sp& session, Parcel* reply) { RpcWireHeader command; while (true) { if (status_t status = rpcRec(fd, session, "command header", &command, sizeof(command)); status != OK) return status; if (command.command == RPC_COMMAND_REPLY) break; if (status_t status = processServerCommand(fd, session, command, CommandType::ANY); status != OK) return status; } CommandData data(command.bodySize); if (!data.valid()) return NO_MEMORY; if (status_t status = rpcRec(fd, session, "reply body", data.data(), command.bodySize); status != OK) return status; if (command.bodySize < sizeof(RpcWireReply)) { ALOGE("Expecting %zu but got %" PRId32 " bytes for RpcWireReply. Terminating!", sizeof(RpcWireReply), command.bodySize); (void)session->shutdownAndWait(false); return BAD_VALUE; } RpcWireReply* rpcReply = reinterpret_cast(data.data()); if (rpcReply->status != OK) return rpcReply->status; data.release(); reply->ipcSetDataReference(rpcReply->data, command.bodySize - offsetof(RpcWireReply, data), nullptr, 0, cleanup_reply_data); reply->markForRpc(session); return OK; } status_t RpcState::sendDecStrong(const base::unique_fd& fd, const sp& session, const RpcAddress& addr) { { std::lock_guard _l(mNodeMutex); if (mTerminated) return DEAD_OBJECT; // avoid fatal only, otherwise races auto it = mNodeForAddress.find(addr); LOG_ALWAYS_FATAL_IF(it == mNodeForAddress.end(), "Sending dec strong on unknown address %s", addr.toString().c_str()); LOG_ALWAYS_FATAL_IF(it->second.timesRecd <= 0, "Bad dec strong %s", addr.toString().c_str()); it->second.timesRecd--; LOG_ALWAYS_FATAL_IF(nullptr != tryEraseNode(it), "Bad state. RpcState shouldn't own received binder"); } RpcWireHeader cmd = { .command = RPC_COMMAND_DEC_STRONG, .bodySize = sizeof(RpcWireAddress), }; if (status_t status = rpcSend(fd, session, "dec ref header", &cmd, sizeof(cmd)); status != OK) return status; if (status_t status = rpcSend(fd, session, "dec ref body", &addr.viewRawEmbedded(), sizeof(RpcWireAddress)); status != OK) return status; return OK; } status_t RpcState::getAndExecuteCommand(const base::unique_fd& fd, const sp& session, CommandType type) { LOG_RPC_DETAIL("getAndExecuteCommand on fd %d", fd.get()); RpcWireHeader command; if (status_t status = rpcRec(fd, session, "command header", &command, sizeof(command)); status != OK) return status; return processServerCommand(fd, session, command, type); } status_t RpcState::drainCommands(const base::unique_fd& fd, const sp& session, CommandType type) { uint8_t buf; while (0 < TEMP_FAILURE_RETRY(recv(fd.get(), &buf, sizeof(buf), MSG_PEEK | MSG_DONTWAIT))) { status_t status = getAndExecuteCommand(fd, session, type); if (status != OK) return status; } return OK; } status_t RpcState::processServerCommand(const base::unique_fd& fd, const sp& session, const RpcWireHeader& command, CommandType type) { IPCThreadState* kernelBinderState = IPCThreadState::selfOrNull(); IPCThreadState::SpGuard spGuard{ .address = __builtin_frame_address(0), .context = "processing binder RPC command", }; const IPCThreadState::SpGuard* origGuard; if (kernelBinderState != nullptr) { origGuard = kernelBinderState->pushGetCallingSpGuard(&spGuard); } ScopeGuard guardUnguard = [&]() { if (kernelBinderState != nullptr) { kernelBinderState->restoreGetCallingSpGuard(origGuard); } }; switch (command.command) { case RPC_COMMAND_TRANSACT: if (type != CommandType::ANY) return BAD_TYPE; return processTransact(fd, session, command); case RPC_COMMAND_DEC_STRONG: return processDecStrong(fd, session, command); } // We should always know the version of the opposing side, and since the // RPC-binder-level wire protocol is not self synchronizing, we have no way // to understand where the current command ends and the next one begins. We // also can't consider it a fatal error because this would allow any client // to kill us, so ending the session for misbehaving client. ALOGE("Unknown RPC command %d - terminating session", command.command); (void)session->shutdownAndWait(false); return DEAD_OBJECT; } status_t RpcState::processTransact(const base::unique_fd& fd, const sp& session, const RpcWireHeader& command) { LOG_ALWAYS_FATAL_IF(command.command != RPC_COMMAND_TRANSACT, "command: %d", command.command); CommandData transactionData(command.bodySize); if (!transactionData.valid()) { return NO_MEMORY; } if (status_t status = rpcRec(fd, session, "transaction body", transactionData.data(), transactionData.size()); status != OK) return status; return processTransactInternal(fd, session, std::move(transactionData), nullptr /*targetRef*/); } static void do_nothing_to_transact_data(Parcel* p, const uint8_t* data, size_t dataSize, const binder_size_t* objects, size_t objectsCount) { (void)p; (void)data; (void)dataSize; (void)objects; (void)objectsCount; } status_t RpcState::processTransactInternal(const base::unique_fd& fd, const sp& session, CommandData transactionData, sp&& targetRef) { if (transactionData.size() < sizeof(RpcWireTransaction)) { ALOGE("Expecting %zu but got %zu bytes for RpcWireTransaction. Terminating!", sizeof(RpcWireTransaction), transactionData.size()); (void)session->shutdownAndWait(false); return BAD_VALUE; } RpcWireTransaction* transaction = reinterpret_cast(transactionData.data()); // TODO(b/182939933): heap allocation just for lookup in mNodeForAddress, // maybe add an RpcAddress 'view' if the type remains 'heavy' auto addr = RpcAddress::fromRawEmbedded(&transaction->address); status_t replyStatus = OK; sp target; if (!addr.isZero()) { if (!targetRef) { replyStatus = onBinderEntering(session, addr, &target); } else { target = targetRef; } if (replyStatus != OK) { // do nothing } else if (target == nullptr) { // This can happen if the binder is remote in this process, and // another thread has called the last decStrong on this binder. // However, for local binders, it indicates a misbehaving client // (any binder which is being transacted on should be holding a // strong ref count), so in either case, terminating the // session. ALOGE("While transacting, binder has been deleted at address %s. Terminating!", addr.toString().c_str()); (void)session->shutdownAndWait(false); replyStatus = BAD_VALUE; } else if (target->localBinder() == nullptr) { ALOGE("Unknown binder address or non-local binder, not address %s. Terminating!", addr.toString().c_str()); (void)session->shutdownAndWait(false); replyStatus = BAD_VALUE; } else if (transaction->flags & IBinder::FLAG_ONEWAY) { std::unique_lock _l(mNodeMutex); auto it = mNodeForAddress.find(addr); if (it->second.binder.promote() != target) { ALOGE("Binder became invalid during transaction. Bad client? %s", addr.toString().c_str()); replyStatus = BAD_VALUE; } else if (transaction->asyncNumber != it->second.asyncNumber) { // we need to process some other asynchronous transaction // first it->second.asyncTodo.push(BinderNode::AsyncTodo{ .ref = target, .data = std::move(transactionData), .asyncNumber = transaction->asyncNumber, }); size_t numPending = it->second.asyncTodo.size(); LOG_RPC_DETAIL("Enqueuing %" PRId64 " on %s (%zu pending)", transaction->asyncNumber, addr.toString().c_str(), numPending); constexpr size_t kArbitraryOnewayCallTerminateLevel = 10000; constexpr size_t kArbitraryOnewayCallWarnLevel = 1000; constexpr size_t kArbitraryOnewayCallWarnPer = 1000; if (numPending >= kArbitraryOnewayCallWarnLevel) { if (numPending >= kArbitraryOnewayCallTerminateLevel) { ALOGE("WARNING: %zu pending oneway transactions. Terminating!", numPending); _l.unlock(); (void)session->shutdownAndWait(false); return FAILED_TRANSACTION; } if (numPending % kArbitraryOnewayCallWarnPer == 0) { ALOGW("Warning: many oneway transactions built up on %p (%zu)", target.get(), numPending); } } return OK; } } } Parcel reply; reply.markForRpc(session); if (replyStatus == OK) { Parcel data; // transaction->data is owned by this function. Parcel borrows this data and // only holds onto it for the duration of this function call. Parcel will be // deleted before the 'transactionData' object. data.ipcSetDataReference(transaction->data, transactionData.size() - offsetof(RpcWireTransaction, data), nullptr /*object*/, 0 /*objectCount*/, do_nothing_to_transact_data); data.markForRpc(session); if (target) { replyStatus = target->transact(transaction->code, data, &reply, transaction->flags); } else { LOG_RPC_DETAIL("Got special transaction %u", transaction->code); switch (transaction->code) { case RPC_SPECIAL_TRANSACT_GET_MAX_THREADS: { replyStatus = reply.writeInt32(session->getMaxThreads()); break; } case RPC_SPECIAL_TRANSACT_GET_SESSION_ID: { // for client connections, this should always report the value // originally returned from the server int32_t id = session->mId.value(); replyStatus = reply.writeInt32(id); break; } default: { sp server = session->server().promote(); if (server) { switch (transaction->code) { case RPC_SPECIAL_TRANSACT_GET_ROOT: { replyStatus = reply.writeStrongBinder(server->getRootObject()); break; } default: { replyStatus = UNKNOWN_TRANSACTION; } } } else { ALOGE("Special command sent, but no server object attached."); } } } } } if (transaction->flags & IBinder::FLAG_ONEWAY) { if (replyStatus != OK) { ALOGW("Oneway call failed with error: %d", replyStatus); } LOG_RPC_DETAIL("Processed async transaction %" PRId64 " on %s", transaction->asyncNumber, addr.toString().c_str()); // Check to see if there is another asynchronous transaction to process. // This behavior differs from binder behavior, since in the binder // driver, asynchronous transactions will be processed after existing // pending binder transactions on the queue. The downside of this is // that asynchronous transactions can be drowned out by synchronous // transactions. However, we have no easy way to queue these // transactions after the synchronous transactions we may want to read // from the wire. So, in socket binder here, we have the opposite // downside: asynchronous transactions may drown out synchronous // transactions. { std::unique_lock _l(mNodeMutex); auto it = mNodeForAddress.find(addr); // last refcount dropped after this transaction happened if (it == mNodeForAddress.end()) return OK; if (!nodeProgressAsyncNumber(&it->second)) { _l.unlock(); (void)session->shutdownAndWait(false); return DEAD_OBJECT; } if (it->second.asyncTodo.size() == 0) return OK; if (it->second.asyncTodo.top().asyncNumber == it->second.asyncNumber) { LOG_RPC_DETAIL("Found next async transaction %" PRId64 " on %s", it->second.asyncNumber, addr.toString().c_str()); // justification for const_cast (consider avoiding priority_queue): // - AsyncTodo operator< doesn't depend on 'data' or 'ref' objects // - gotta go fast auto& todo = const_cast(it->second.asyncTodo.top()); CommandData nextData = std::move(todo.data); sp nextRef = std::move(todo.ref); it->second.asyncTodo.pop(); _l.unlock(); return processTransactInternal(fd, session, std::move(nextData), std::move(nextRef)); } } return OK; } LOG_ALWAYS_FATAL_IF(std::numeric_limits::max() - sizeof(RpcWireHeader) - sizeof(RpcWireReply) < reply.dataSize(), "Too much data for reply %zu", reply.dataSize()); RpcWireHeader cmdReply{ .command = RPC_COMMAND_REPLY, .bodySize = static_cast(sizeof(RpcWireReply) + reply.dataSize()), }; RpcWireReply rpcReply{ .status = replyStatus, }; CommandData replyData(sizeof(RpcWireHeader) + sizeof(RpcWireReply) + reply.dataSize()); if (!replyData.valid()) { return NO_MEMORY; } memcpy(replyData.data() + 0, &cmdReply, sizeof(RpcWireHeader)); memcpy(replyData.data() + sizeof(RpcWireHeader), &rpcReply, sizeof(RpcWireReply)); memcpy(replyData.data() + sizeof(RpcWireHeader) + sizeof(RpcWireReply), reply.data(), reply.dataSize()); return rpcSend(fd, session, "reply", replyData.data(), replyData.size()); } status_t RpcState::processDecStrong(const base::unique_fd& fd, const sp& session, const RpcWireHeader& command) { LOG_ALWAYS_FATAL_IF(command.command != RPC_COMMAND_DEC_STRONG, "command: %d", command.command); CommandData commandData(command.bodySize); if (!commandData.valid()) { return NO_MEMORY; } if (status_t status = rpcRec(fd, session, "dec ref body", commandData.data(), commandData.size()); status != OK) return status; if (command.bodySize < sizeof(RpcWireAddress)) { ALOGE("Expecting %zu but got %" PRId32 " bytes for RpcWireAddress. Terminating!", sizeof(RpcWireAddress), command.bodySize); (void)session->shutdownAndWait(false); return BAD_VALUE; } RpcWireAddress* address = reinterpret_cast(commandData.data()); // TODO(b/182939933): heap allocation just for lookup auto addr = RpcAddress::fromRawEmbedded(address); std::unique_lock _l(mNodeMutex); auto it = mNodeForAddress.find(addr); if (it == mNodeForAddress.end()) { ALOGE("Unknown binder address %s for dec strong.", addr.toString().c_str()); return OK; } sp target = it->second.binder.promote(); if (target == nullptr) { ALOGE("While requesting dec strong, binder has been deleted at address %s. Terminating!", addr.toString().c_str()); _l.unlock(); (void)session->shutdownAndWait(false); return BAD_VALUE; } if (it->second.timesSent == 0) { ALOGE("No record of sending binder, but requested decStrong: %s", addr.toString().c_str()); return OK; } LOG_ALWAYS_FATAL_IF(it->second.sentRef == nullptr, "Inconsistent state, lost ref for %s", addr.toString().c_str()); it->second.timesSent--; sp tempHold = tryEraseNode(it); _l.unlock(); tempHold = nullptr; // destructor may make binder calls on this session return OK; } sp RpcState::tryEraseNode(std::map::iterator& it) { sp ref; if (it->second.timesSent == 0) { ref = std::move(it->second.sentRef); if (it->second.timesRecd == 0) { LOG_ALWAYS_FATAL_IF(!it->second.asyncTodo.empty(), "Can't delete binder w/ pending async transactions"); mNodeForAddress.erase(it); } } return ref; } bool RpcState::nodeProgressAsyncNumber(BinderNode* node) { // 2**64 =~ 10**19 =~ 1000 transactions per second for 585 million years to // a single binder if (node->asyncNumber >= std::numeric_limitsasyncNumber)>::max()) { ALOGE("Out of async transaction IDs. Terminating"); return false; } node->asyncNumber++; return true; } } // namespace android