summaryrefslogtreecommitdiff
path: root/services/surfaceflinger/Layer.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'services/surfaceflinger/Layer.cpp')
-rw-r--r--[-rwxr-xr-x]services/surfaceflinger/Layer.cpp1981
1 files changed, 590 insertions, 1391 deletions
diff --git a/services/surfaceflinger/Layer.cpp b/services/surfaceflinger/Layer.cpp
index 97c56b3542..2595ec1a05 100755..100644
--- a/services/surfaceflinger/Layer.cpp
+++ b/services/surfaceflinger/Layer.cpp
@@ -19,10 +19,11 @@
#define LOG_TAG "Layer"
#define ATRACE_TAG ATRACE_TAG_GRAPHICS
-#include <stdlib.h>
+#include <math.h>
#include <stdint.h>
+#include <stdlib.h>
#include <sys/types.h>
-#include <math.h>
+#include <algorithm>
#include <cutils/compiler.h>
#include <cutils/native_handle.h>
@@ -39,41 +40,43 @@
#include <ui/PixelFormat.h>
#include <gui/BufferItem.h>
-#include <gui/BufferQueue.h>
#include <gui/LayerDebugInfo.h>
#include <gui/Surface.h>
-#include "clz.h"
+#include "BufferLayer.h"
#include "Colorizer.h"
#include "DisplayDevice.h"
#include "Layer.h"
#include "LayerRejecter.h"
#include "MonitoredProducer.h"
#include "SurfaceFlinger.h"
+#include "clz.h"
#include "DisplayHardware/HWComposer.h"
#include "RenderEngine/RenderEngine.h"
#include <mutex>
+#include "LayerProtoHelper.h"
-#define DEBUG_RESIZE 0
+#define DEBUG_RESIZE 0
namespace android {
-// ---------------------------------------------------------------------------
+LayerBE::LayerBE()
+ : mMesh(Mesh::TRIANGLE_FAN, 4, 2, 2) {
+}
+
int32_t Layer::sSequence = 1;
-Layer::Layer(SurfaceFlinger* flinger, const sp<Client>& client,
- const String8& name, uint32_t w, uint32_t h, uint32_t flags)
- : contentDirty(false),
+Layer::Layer(SurfaceFlinger* flinger, const sp<Client>& client, const String8& name, uint32_t w,
+ uint32_t h, uint32_t flags)
+ : contentDirty(false),
sequence(uint32_t(android_atomic_inc(&sSequence))),
mFlinger(flinger),
- mTextureName(UINT32_MAX),
mPremultipliedAlpha(true),
- mName("unnamed"),
- mFormat(PIXEL_FORMAT_NONE),
+ mName(name),
mTransactionFlags(0),
mPendingStateMutex(),
mPendingStates(),
@@ -81,86 +84,55 @@ Layer::Layer(SurfaceFlinger* flinger, const sp<Client>& client,
mSidebandStreamChanged(false),
mActiveBufferSlot(BufferQueue::INVALID_BUFFER_SLOT),
mCurrentTransform(0),
- mCurrentScalingMode(NATIVE_WINDOW_SCALING_MODE_FREEZE),
mOverrideScalingMode(-1),
mCurrentOpacity(true),
- mBufferLatched(false),
mCurrentFrameNumber(0),
- mPreviousFrameNumber(0),
- mRefreshPending(false),
mFrameLatencyNeeded(false),
mFiltering(false),
mNeedsFiltering(false),
- mMesh(Mesh::TRIANGLE_FAN, 4, 2, 2),
-#ifndef USE_HWC2
- mIsGlesComposition(false),
-#endif
mProtectedByApp(false),
- mHasSurface(false),
mClientRef(client),
mPotentialCursor(false),
mQueueItemLock(),
mQueueItemCondition(),
mQueueItems(),
mLastFrameNumberReceived(0),
- mUpdateTexImageFailed(false),
mAutoRefresh(false),
- mFreezeGeometryUpdates(false)
-{
-#ifdef USE_HWC2
- ALOGV("Creating Layer %s", name.string());
-#endif
-
+ mFreezeGeometryUpdates(false),
+ mCurrentChildren(LayerVector::StateSet::Current),
+ mDrawingChildren(LayerVector::StateSet::Drawing) {
mCurrentCrop.makeInvalid();
- mFlinger->getRenderEngine().genTextures(1, &mTextureName);
- mTexture.init(Texture::TEXTURE_EXTERNAL, mTextureName);
uint32_t layerFlags = 0;
- if (flags & ISurfaceComposerClient::eHidden)
- layerFlags |= layer_state_t::eLayerHidden;
- if (flags & ISurfaceComposerClient::eOpaque)
- layerFlags |= layer_state_t::eLayerOpaque;
- if (flags & ISurfaceComposerClient::eSecure)
- layerFlags |= layer_state_t::eLayerSecure;
-
- if (flags & ISurfaceComposerClient::eNonPremultiplied)
- mPremultipliedAlpha = false;
+ if (flags & ISurfaceComposerClient::eHidden) layerFlags |= layer_state_t::eLayerHidden;
+ if (flags & ISurfaceComposerClient::eOpaque) layerFlags |= layer_state_t::eLayerOpaque;
+ if (flags & ISurfaceComposerClient::eSecure) layerFlags |= layer_state_t::eLayerSecure;
mName = name;
mTransactionName = String8("TX - ") + mName;
mCurrentState.active.w = w;
mCurrentState.active.h = h;
+ mCurrentState.flags = layerFlags;
mCurrentState.active.transform.set(0, 0);
mCurrentState.crop.makeInvalid();
mCurrentState.finalCrop.makeInvalid();
mCurrentState.requestedFinalCrop = mCurrentState.finalCrop;
mCurrentState.requestedCrop = mCurrentState.crop;
mCurrentState.z = 0;
-#ifdef USE_HWC2
- mCurrentState.alpha = 1.0f;
-#else
- mCurrentState.alpha = 0xFF;
-#endif
+ mCurrentState.color.a = 1.0f;
mCurrentState.layerStack = 0;
- mCurrentState.flags = layerFlags;
mCurrentState.sequence = 0;
mCurrentState.requested = mCurrentState.active;
- mCurrentState.dataSpace = HAL_DATASPACE_UNKNOWN;
mCurrentState.appId = 0;
mCurrentState.type = 0;
// drawing state & current state are identical
mDrawingState = mCurrentState;
-#ifdef USE_HWC2
const auto& hwc = flinger->getHwComposer();
const auto& activeConfig = hwc.getActiveConfig(HWC_DISPLAY_PRIMARY);
nsecs_t displayPeriod = activeConfig->getVsyncPeriod();
-#else
- nsecs_t displayPeriod =
- flinger->getHwComposer().getRefreshPeriod(HWC_DISPLAY_PRIMARY);
-#endif
mFrameTracker.setDisplayRefreshPeriod(displayPeriod);
CompositorTiming compositorTiming;
@@ -168,27 +140,10 @@ Layer::Layer(SurfaceFlinger* flinger, const sp<Client>& client,
mFrameEventHistory.initializeCompositorTiming(compositorTiming);
}
-void Layer::onFirstRef() {
- // Creates a custom BufferQueue for SurfaceFlingerConsumer to use
- sp<IGraphicBufferProducer> producer;
- sp<IGraphicBufferConsumer> consumer;
- BufferQueue::createBufferQueue(&producer, &consumer, true);
- mProducer = new MonitoredProducer(producer, mFlinger, this);
- mSurfaceFlingerConsumer = new SurfaceFlingerConsumer(consumer, mTextureName, this);
- mSurfaceFlingerConsumer->setConsumerUsageBits(getEffectiveUsage(0));
- mSurfaceFlingerConsumer->setContentsChangedListener(this);
- mSurfaceFlingerConsumer->setName(mName);
-
- if (mFlinger->isLayerTripleBufferingDisabled()) {
- mProducer->setMaxDequeuedBufferCount(2);
- }
-
- const sp<const DisplayDevice> hw(mFlinger->getDefaultDisplayDevice());
- updateTransformHint(hw);
-}
+void Layer::onFirstRef() {}
Layer::~Layer() {
- sp<Client> c(mClientRef.promote());
+ sp<Client> c(mClientRef.promote());
if (c != 0) {
c->detachLayer(this);
}
@@ -199,103 +154,25 @@ Layer::~Layer() {
for (auto& point : mLocalSyncPoints) {
point->setFrameAvailable();
}
- mFlinger->deleteTextureAsync(mTextureName);
mFrameTracker.logAndResetStats(mName);
-
-#ifdef USE_HWC2
- if (!mHwcLayers.empty()) {
- ALOGE("Found stale hardware composer layers when destroying "
- "surface flinger layer %s", mName.string());
- destroyAllHwcLayers();
- }
-#endif
}
// ---------------------------------------------------------------------------
// callbacks
// ---------------------------------------------------------------------------
-#ifdef USE_HWC2
-void Layer::onLayerDisplayed(const sp<Fence>& releaseFence) {
- mSurfaceFlingerConsumer->setReleaseFence(releaseFence);
-}
-#else
-void Layer::onLayerDisplayed(const sp<const DisplayDevice>& /* hw */,
- HWComposer::HWCLayerInterface* layer) {
- if (layer) {
- layer->onDisplayed();
- mSurfaceFlingerConsumer->setReleaseFence(layer->getAndResetReleaseFence());
- }
-}
-#endif
-
-void Layer::onFrameAvailable(const BufferItem& item) {
- // Add this buffer from our internal queue tracker
- { // Autolock scope
- Mutex::Autolock lock(mQueueItemLock);
- mFlinger->mInterceptor.saveBufferUpdate(this, item.mGraphicBuffer->getWidth(),
- item.mGraphicBuffer->getHeight(), item.mFrameNumber);
- // Reset the frame number tracker when we receive the first buffer after
- // a frame number reset
- if (item.mFrameNumber == 1) {
- mLastFrameNumberReceived = 0;
- }
-
- // Ensure that callbacks are handled in order
- while (item.mFrameNumber != mLastFrameNumberReceived + 1) {
- status_t result = mQueueItemCondition.waitRelative(mQueueItemLock,
- ms2ns(500));
- if (result != NO_ERROR) {
- ALOGE("[%s] Timed out waiting on callback", mName.string());
- }
- }
-
- mQueueItems.push_back(item);
- android_atomic_inc(&mQueuedFrames);
-
- // Wake up any pending callbacks
- mLastFrameNumberReceived = item.mFrameNumber;
- mQueueItemCondition.broadcast();
- }
-
- mFlinger->signalLayerUpdate();
-}
-
-void Layer::onFrameReplaced(const BufferItem& item) {
- { // Autolock scope
- Mutex::Autolock lock(mQueueItemLock);
-
- // Ensure that callbacks are handled in order
- while (item.mFrameNumber != mLastFrameNumberReceived + 1) {
- status_t result = mQueueItemCondition.waitRelative(mQueueItemLock,
- ms2ns(500));
- if (result != NO_ERROR) {
- ALOGE("[%s] Timed out waiting on callback", mName.string());
- }
- }
-
- if (mQueueItems.empty()) {
- ALOGE("Can't replace a frame on an empty queue");
- return;
- }
- mQueueItems.editItemAt(mQueueItems.size() - 1) = item;
-
- // Wake up any pending callbacks
- mLastFrameNumberReceived = item.mFrameNumber;
- mQueueItemCondition.broadcast();
- }
-}
-
-void Layer::onSidebandStreamChanged() {
- if (android_atomic_release_cas(false, true, &mSidebandStreamChanged) == 0) {
- // mSidebandStreamChanged was false
- mFlinger->signalLayerUpdate();
- }
-}
+/*
+ * onLayerDisplayed is only meaningful for BufferLayer, but, is called through
+ * Layer. So, the implementation is done in BufferLayer. When called on a
+ * ColorLayer object, it's essentially a NOP.
+ */
+void Layer::onLayerDisplayed(const sp<Fence>& /*releaseFence*/) {}
void Layer::onRemovedFromCurrentState() {
// the layer is removed from SF mCurrentState to mLayersPendingRemoval
+ mPendingRemoval = true;
+
if (mCurrentState.zOrderRelativeOf != nullptr) {
sp<Layer> strongRelative = mCurrentState.zOrderRelativeOf.promote();
if (strongRelative != nullptr) {
@@ -312,11 +189,9 @@ void Layer::onRemovedFromCurrentState() {
void Layer::onRemoved() {
// the layer is removed from SF mLayersPendingRemoval
+ abandon();
- mSurfaceFlingerConsumer->abandon();
-#ifdef USE_HWC2
destroyAllHwcLayers();
-#endif
for (const auto& child : mCurrentChildren) {
child->onRemoved();
@@ -331,94 +206,58 @@ const String8& Layer::getName() const {
return mName;
}
-status_t Layer::setBuffers( uint32_t w, uint32_t h,
- PixelFormat format, uint32_t flags)
-{
- uint32_t const maxSurfaceDims = min(
- mFlinger->getMaxTextureSize(), mFlinger->getMaxViewportDims());
-
- // never allow a surface larger than what our underlying GL implementation
- // can handle.
- if ((uint32_t(w)>maxSurfaceDims) || (uint32_t(h)>maxSurfaceDims)) {
- ALOGE("dimensions too large %u x %u", uint32_t(w), uint32_t(h));
- return BAD_VALUE;
- }
-
- mFormat = format;
-
- mPotentialCursor = (flags & ISurfaceComposerClient::eCursorWindow) ? true : false;
- mProtectedByApp = (flags & ISurfaceComposerClient::eProtectedByApp) ? true : false;
- mCurrentOpacity = getOpacityForFormat(format);
-
- mSurfaceFlingerConsumer->setDefaultBufferSize(w, h);
- mSurfaceFlingerConsumer->setDefaultBufferFormat(format);
- mSurfaceFlingerConsumer->setConsumerUsageBits(getEffectiveUsage(0));
-
- return NO_ERROR;
+bool Layer::getPremultipledAlpha() const {
+ return mPremultipliedAlpha;
}
sp<IBinder> Layer::getHandle() {
Mutex::Autolock _l(mLock);
-
- LOG_ALWAYS_FATAL_IF(mHasSurface,
- "Layer::getHandle() has already been called");
-
- mHasSurface = true;
-
return new Handle(mFlinger, this);
}
-sp<IGraphicBufferProducer> Layer::getProducer() const {
- return mProducer;
-}
-
// ---------------------------------------------------------------------------
// h/w composer set-up
// ---------------------------------------------------------------------------
-#ifdef USE_HWC2
bool Layer::createHwcLayer(HWComposer* hwc, int32_t hwcId) {
- LOG_ALWAYS_FATAL_IF(mHwcLayers.count(hwcId) != 0,
- "Already have a layer for hwcId %d", hwcId);
+ LOG_ALWAYS_FATAL_IF(getBE().mHwcLayers.count(hwcId) != 0,
+ "Already have a layer for hwcId %d", hwcId);
HWC2::Layer* layer = hwc->createLayer(hwcId);
if (!layer) {
return false;
}
- HWCInfo& hwcInfo = mHwcLayers[hwcId];
+ LayerBE::HWCInfo& hwcInfo = getBE().mHwcLayers[hwcId];
hwcInfo.hwc = hwc;
hwcInfo.layer = layer;
layer->setLayerDestroyedListener(
- [this, hwcId] (HWC2::Layer* /*layer*/){mHwcLayers.erase(hwcId);});
+ [this, hwcId](HWC2::Layer* /*layer*/) { getBE().mHwcLayers.erase(hwcId); });
return true;
}
bool Layer::destroyHwcLayer(int32_t hwcId) {
- if (mHwcLayers.count(hwcId) == 0) {
+ if (getBE().mHwcLayers.count(hwcId) == 0) {
return false;
}
- auto& hwcInfo = mHwcLayers[hwcId];
- LOG_ALWAYS_FATAL_IF(hwcInfo.layer == nullptr,
- "Attempt to destroy null layer");
+ auto& hwcInfo = getBE().mHwcLayers[hwcId];
+ LOG_ALWAYS_FATAL_IF(hwcInfo.layer == nullptr, "Attempt to destroy null layer");
LOG_ALWAYS_FATAL_IF(hwcInfo.hwc == nullptr, "Missing HWComposer");
hwcInfo.hwc->destroyLayer(hwcId, hwcInfo.layer);
// The layer destroyed listener should have cleared the entry from
// mHwcLayers. Verify that.
- LOG_ALWAYS_FATAL_IF(mHwcLayers.count(hwcId) != 0,
- "Stale layer entry in mHwcLayers");
-
+ LOG_ALWAYS_FATAL_IF(getBE().mHwcLayers.count(hwcId) != 0,
+ "Stale layer entry in getBE().mHwcLayers");
return true;
}
void Layer::destroyAllHwcLayers() {
- size_t numLayers = mHwcLayers.size();
+ size_t numLayers = getBE().mHwcLayers.size();
for (size_t i = 0; i < numLayers; ++i) {
- LOG_ALWAYS_FATAL_IF(mHwcLayers.empty(), "destroyAllHwcLayers failed");
- destroyHwcLayer(mHwcLayers.begin()->first);
+ LOG_ALWAYS_FATAL_IF(getBE().mHwcLayers.empty(), "destroyAllHwcLayers failed");
+ destroyHwcLayer(getBE().mHwcLayers.begin()->first);
}
- LOG_ALWAYS_FATAL_IF(!mHwcLayers.empty(),
- "All hardware composer layers should have been destroyed");
+ LOG_ALWAYS_FATAL_IF(!getBE().mHwcLayers.empty(),
+ "All hardware composer layers should have been destroyed");
}
-#endif
Rect Layer::getContentCrop() const {
// this is the crop rectangle that applies to the buffer
@@ -427,9 +266,9 @@ Rect Layer::getContentCrop() const {
if (!mCurrentCrop.isEmpty()) {
// if the buffer crop is defined, we use that
crop = mCurrentCrop;
- } else if (mActiveBuffer != NULL) {
+ } else if (getBE().compositionInfo.mBuffer != nullptr) {
// otherwise we use the whole buffer
- crop = mActiveBuffer->getBounds();
+ crop = getBE().compositionInfo.mBuffer->getBounds();
} else {
// if we don't have a buffer yet, we use an empty/invalid crop
crop.makeInvalid();
@@ -550,10 +389,17 @@ Rect Layer::computeInitialCrop(const sp<const DisplayDevice>& hw) const {
activeCrop.clear();
}
if (!s.finalCrop.isEmpty()) {
- if(!activeCrop.intersect(s.finalCrop, &activeCrop)) {
+ if (!activeCrop.intersect(s.finalCrop, &activeCrop)) {
activeCrop.clear();
}
}
+
+ const auto& p = mDrawingParent.promote();
+ if (p != nullptr) {
+ auto parentCrop = p->computeInitialCrop(hw);
+ activeCrop.intersect(parentCrop, &activeCrop);
+ }
+
return activeCrop;
}
@@ -567,11 +413,6 @@ FloatRect Layer::computeCrop(const sp<const DisplayDevice>& hw) const {
// Screen space to make reduction to parent crop clearer.
Rect activeCrop = computeInitialCrop(hw);
- const auto& p = mDrawingParent.promote();
- if (p != nullptr) {
- auto parentCrop = p->computeInitialCrop(hw);
- activeCrop.intersect(parentCrop, &activeCrop);
- }
Transform t = getTransform();
// Back to layer space to work with the content crop.
activeCrop = t.inverse().transform(activeCrop);
@@ -598,16 +439,13 @@ FloatRect Layer::computeCrop(const sp<const DisplayDevice>& hw) const {
* the code below applies the primary display's inverse transform to the
* buffer
*/
- uint32_t invTransformOrient =
- DisplayDevice::getPrimaryDisplayOrientationTransform();
+ uint32_t invTransformOrient = DisplayDevice::getPrimaryDisplayOrientationTransform();
// calculate the inverse transform
if (invTransformOrient & NATIVE_WINDOW_TRANSFORM_ROT_90) {
- invTransformOrient ^= NATIVE_WINDOW_TRANSFORM_FLIP_V |
- NATIVE_WINDOW_TRANSFORM_FLIP_H;
+ invTransformOrient ^= NATIVE_WINDOW_TRANSFORM_FLIP_V | NATIVE_WINDOW_TRANSFORM_FLIP_H;
}
// and apply to the current transform
- invTransform = (Transform(invTransformOrient) * Transform(invTransform))
- .getOrientation();
+ invTransform = (Transform(invTransformOrient) * Transform(invTransform)).getOrientation();
}
int winWidth = s.active.w;
@@ -621,49 +459,36 @@ FloatRect Layer::computeCrop(const sp<const DisplayDevice>& hw) const {
bool is_h_flipped = (invTransform & NATIVE_WINDOW_TRANSFORM_FLIP_H) != 0;
bool is_v_flipped = (invTransform & NATIVE_WINDOW_TRANSFORM_FLIP_V) != 0;
if (is_h_flipped == is_v_flipped) {
- invTransform ^= NATIVE_WINDOW_TRANSFORM_FLIP_V |
- NATIVE_WINDOW_TRANSFORM_FLIP_H;
+ invTransform ^= NATIVE_WINDOW_TRANSFORM_FLIP_V | NATIVE_WINDOW_TRANSFORM_FLIP_H;
}
winWidth = s.active.h;
winHeight = s.active.w;
}
- const Rect winCrop = activeCrop.transform(
- invTransform, s.active.w, s.active.h);
+ const Rect winCrop = activeCrop.transform(invTransform, s.active.w, s.active.h);
// below, crop is intersected with winCrop expressed in crop's coordinate space
- float xScale = crop.getWidth() / float(winWidth);
+ float xScale = crop.getWidth() / float(winWidth);
float yScale = crop.getHeight() / float(winHeight);
- float insetL = winCrop.left * xScale;
- float insetT = winCrop.top * yScale;
- float insetR = (winWidth - winCrop.right ) * xScale;
+ float insetL = winCrop.left * xScale;
+ float insetT = winCrop.top * yScale;
+ float insetR = (winWidth - winCrop.right) * xScale;
float insetB = (winHeight - winCrop.bottom) * yScale;
- crop.left += insetL;
- crop.top += insetT;
- crop.right -= insetR;
+ crop.left += insetL;
+ crop.top += insetT;
+ crop.right -= insetR;
crop.bottom -= insetB;
return crop;
}
-#ifdef USE_HWC2
void Layer::setGeometry(const sp<const DisplayDevice>& displayDevice, uint32_t z)
-#else
-void Layer::setGeometry(
- const sp<const DisplayDevice>& hw,
- HWComposer::HWCLayerInterface& layer)
-#endif
{
-#ifdef USE_HWC2
const auto hwcId = displayDevice->getHwcDisplayId();
- auto& hwcInfo = mHwcLayers[hwcId];
-#else
- layer.setDefaultState();
-#endif
+ auto& hwcInfo = getBE().mHwcLayers[hwcId];
// enable this layer
-#ifdef USE_HWC2
hwcInfo.forceClientComposition = false;
if (isSecure() && !displayDevice->isSecure()) {
@@ -671,33 +496,20 @@ void Layer::setGeometry(
}
auto& hwcLayer = hwcInfo.layer;
-#else
- layer.setSkip(false);
-
- if (isSecure() && !hw->isSecure()) {
- layer.setSkip(true);
- }
-#endif
// this gives us only the "orientation" component of the transform
const State& s(getDrawingState());
-#ifdef USE_HWC2
auto blendMode = HWC2::BlendMode::None;
if (!isOpaque(s) || getAlpha() != 1.0f) {
- blendMode = mPremultipliedAlpha ?
- HWC2::BlendMode::Premultiplied : HWC2::BlendMode::Coverage;
+ blendMode =
+ mPremultipliedAlpha ? HWC2::BlendMode::Premultiplied : HWC2::BlendMode::Coverage;
}
auto error = hwcLayer->setBlendMode(blendMode);
- ALOGE_IF(error != HWC2::Error::None, "[%s] Failed to set blend mode %s:"
- " %s (%d)", mName.string(), to_string(blendMode).c_str(),
- to_string(error).c_str(), static_cast<int32_t>(error));
-#else
- if (!isOpaque(s) || getAlpha() != 0xFF) {
- layer.setBlending(mPremultipliedAlpha ?
- HWC_BLENDING_PREMULT :
- HWC_BLENDING_COVERAGE);
- }
-#endif
+ ALOGE_IF(error != HWC2::Error::None,
+ "[%s] Failed to set blend mode %s:"
+ " %s (%d)",
+ mName.string(), to_string(blendMode).c_str(), to_string(error).c_str(),
+ static_cast<int32_t>(error));
// apply the layer's transform, followed by the display's global transform
// here we're guaranteed that the layer's transform preserves rects
@@ -706,11 +518,7 @@ void Layer::setGeometry(
if (!s.crop.isEmpty()) {
Rect activeCrop(s.crop);
activeCrop = t.transform(activeCrop);
-#ifdef USE_HWC2
- if(!activeCrop.intersect(displayDevice->getViewport(), &activeCrop)) {
-#else
- if(!activeCrop.intersect(hw->getViewport(), &activeCrop)) {
-#endif
+ if (!activeCrop.intersect(displayDevice->getViewport(), &activeCrop)) {
activeCrop.clear();
}
activeCrop = t.inverse().transform(activeCrop, true);
@@ -720,28 +528,25 @@ void Layer::setGeometry(
// transform.inverse().transform(transform.transform(Rect)) != Rect
// in which case we need to make sure the final rect is clipped to the
// display bounds.
- if(!activeCrop.intersect(Rect(s.active.w, s.active.h), &activeCrop)) {
+ if (!activeCrop.intersect(Rect(s.active.w, s.active.h), &activeCrop)) {
activeCrop.clear();
}
// mark regions outside the crop as transparent
activeTransparentRegion.orSelf(Rect(0, 0, s.active.w, activeCrop.top));
- activeTransparentRegion.orSelf(Rect(0, activeCrop.bottom,
- s.active.w, s.active.h));
- activeTransparentRegion.orSelf(Rect(0, activeCrop.top,
- activeCrop.left, activeCrop.bottom));
- activeTransparentRegion.orSelf(Rect(activeCrop.right, activeCrop.top,
- s.active.w, activeCrop.bottom));
+ activeTransparentRegion.orSelf(Rect(0, activeCrop.bottom, s.active.w, s.active.h));
+ activeTransparentRegion.orSelf(Rect(0, activeCrop.top, activeCrop.left, activeCrop.bottom));
+ activeTransparentRegion.orSelf(
+ Rect(activeCrop.right, activeCrop.top, s.active.w, activeCrop.bottom));
}
// computeBounds returns a FloatRect to provide more accuracy during the
// transformation. We then round upon constructing 'frame'.
Rect frame{t.transform(computeBounds(activeTransparentRegion))};
if (!s.finalCrop.isEmpty()) {
- if(!frame.intersect(s.finalCrop, &frame)) {
+ if (!frame.intersect(s.finalCrop, &frame)) {
frame.clear();
}
}
-#ifdef USE_HWC2
if (!frame.intersect(displayDevice->getViewport(), &frame)) {
frame.clear();
}
@@ -749,10 +554,9 @@ void Layer::setGeometry(
Rect transformedFrame = tr.transform(frame);
error = hwcLayer->setDisplayFrame(transformedFrame);
if (error != HWC2::Error::None) {
- ALOGE("[%s] Failed to set display frame [%d, %d, %d, %d]: %s (%d)",
- mName.string(), transformedFrame.left, transformedFrame.top,
- transformedFrame.right, transformedFrame.bottom,
- to_string(error).c_str(), static_cast<int32_t>(error));
+ ALOGE("[%s] Failed to set display frame [%d, %d, %d, %d]: %s (%d)", mName.string(),
+ transformedFrame.left, transformedFrame.top, transformedFrame.right,
+ transformedFrame.bottom, to_string(error).c_str(), static_cast<int32_t>(error));
} else {
hwcInfo.displayFrame = transformedFrame;
}
@@ -761,45 +565,38 @@ void Layer::setGeometry(
error = hwcLayer->setSourceCrop(sourceCrop);
if (error != HWC2::Error::None) {
ALOGE("[%s] Failed to set source crop [%.3f, %.3f, %.3f, %.3f]: "
- "%s (%d)", mName.string(), sourceCrop.left, sourceCrop.top,
- sourceCrop.right, sourceCrop.bottom, to_string(error).c_str(),
- static_cast<int32_t>(error));
+ "%s (%d)",
+ mName.string(), sourceCrop.left, sourceCrop.top, sourceCrop.right, sourceCrop.bottom,
+ to_string(error).c_str(), static_cast<int32_t>(error));
} else {
hwcInfo.sourceCrop = sourceCrop;
}
- float alpha = getAlpha();
+ float alpha = static_cast<float>(getAlpha());
error = hwcLayer->setPlaneAlpha(alpha);
- ALOGE_IF(error != HWC2::Error::None, "[%s] Failed to set plane alpha %.3f: "
- "%s (%d)", mName.string(), alpha, to_string(error).c_str(),
- static_cast<int32_t>(error));
+ ALOGE_IF(error != HWC2::Error::None,
+ "[%s] Failed to set plane alpha %.3f: "
+ "%s (%d)",
+ mName.string(), alpha, to_string(error).c_str(), static_cast<int32_t>(error));
error = hwcLayer->setZOrder(z);
- ALOGE_IF(error != HWC2::Error::None, "[%s] Failed to set Z %u: %s (%d)",
- mName.string(), z, to_string(error).c_str(),
- static_cast<int32_t>(error));
+ ALOGE_IF(error != HWC2::Error::None, "[%s] Failed to set Z %u: %s (%d)", mName.string(), z,
+ to_string(error).c_str(), static_cast<int32_t>(error));
int type = s.type;
int appId = s.appId;
sp<Layer> parent = mDrawingParent.promote();
if (parent.get()) {
auto& parentState = parent->getDrawingState();
- type = parentState.type;
- appId = parentState.appId;
+ if (parentState.type >= 0 || parentState.appId >= 0) {
+ type = parentState.type;
+ appId = parentState.appId;
+ }
}
error = hwcLayer->setInfo(type, appId);
- ALOGE_IF(error != HWC2::Error::None, "[%s] Failed to set info (%d)",
- mName.string(), static_cast<int32_t>(error));
-#else
- if (!frame.intersect(hw->getViewport(), &frame)) {
- frame.clear();
- }
- const Transform& tr(hw->getTransform());
- layer.setFrame(tr.transform(frame));
- layer.setCrop(computeCrop(hw));
- layer.setPlaneAlpha(getAlpha());
-#endif
+ ALOGE_IF(error != HWC2::Error::None, "[%s] Failed to set info (%d)", mName.string(),
+ static_cast<int32_t>(error));
/*
* Transformations are applied in this order:
@@ -817,12 +614,10 @@ void Layer::setGeometry(
* the code below applies the primary display's inverse transform to the
* buffer
*/
- uint32_t invTransform =
- DisplayDevice::getPrimaryDisplayOrientationTransform();
+ uint32_t invTransform = DisplayDevice::getPrimaryDisplayOrientationTransform();
// calculate the inverse transform
if (invTransform & NATIVE_WINDOW_TRANSFORM_ROT_90) {
- invTransform ^= NATIVE_WINDOW_TRANSFORM_FLIP_V |
- NATIVE_WINDOW_TRANSFORM_FLIP_H;
+ invTransform ^= NATIVE_WINDOW_TRANSFORM_FLIP_V | NATIVE_WINDOW_TRANSFORM_FLIP_H;
}
/*
@@ -836,163 +631,43 @@ void Layer::setGeometry(
// this gives us only the "orientation" component of the transform
const uint32_t orientation = transform.getOrientation();
-#ifdef USE_HWC2
if (orientation & Transform::ROT_INVALID) {
// we can only handle simple transformation
hwcInfo.forceClientComposition = true;
} else {
auto transform = static_cast<HWC2::Transform>(orientation);
+ hwcInfo.transform = transform;
auto error = hwcLayer->setTransform(transform);
- ALOGE_IF(error != HWC2::Error::None, "[%s] Failed to set transform %s: "
- "%s (%d)", mName.string(), to_string(transform).c_str(),
- to_string(error).c_str(), static_cast<int32_t>(error));
+ ALOGE_IF(error != HWC2::Error::None,
+ "[%s] Failed to set transform %s: "
+ "%s (%d)",
+ mName.string(), to_string(transform).c_str(), to_string(error).c_str(),
+ static_cast<int32_t>(error));
}
-#else
- if (orientation & Transform::ROT_INVALID) {
- // we can only handle simple transformation
- layer.setSkip(true);
- } else {
- layer.setTransform(orientation);
- }
-#endif
}
-#ifdef USE_HWC2
void Layer::forceClientComposition(int32_t hwcId) {
- if (mHwcLayers.count(hwcId) == 0) {
+ if (getBE().mHwcLayers.count(hwcId) == 0) {
ALOGE("forceClientComposition: no HWC layer found (%d)", hwcId);
return;
}
- mHwcLayers[hwcId].forceClientComposition = true;
+ getBE().mHwcLayers[hwcId].forceClientComposition = true;
}
-void Layer::setPerFrameData(const sp<const DisplayDevice>& displayDevice) {
- // Apply this display's projection's viewport to the visible region
- // before giving it to the HWC HAL.
- const Transform& tr = displayDevice->getTransform();
- const auto& viewport = displayDevice->getViewport();
- Region visible = tr.transform(visibleRegion.intersect(viewport));
- auto hwcId = displayDevice->getHwcDisplayId();
- auto& hwcInfo = mHwcLayers[hwcId];
- auto& hwcLayer = hwcInfo.layer;
- auto error = hwcLayer->setVisibleRegion(visible);
- if (error != HWC2::Error::None) {
- ALOGE("[%s] Failed to set visible region: %s (%d)", mName.string(),
- to_string(error).c_str(), static_cast<int32_t>(error));
- visible.dump(LOG_TAG);
- }
-
- error = hwcLayer->setSurfaceDamage(surfaceDamageRegion);
- if (error != HWC2::Error::None) {
- ALOGE("[%s] Failed to set surface damage: %s (%d)", mName.string(),
- to_string(error).c_str(), static_cast<int32_t>(error));
- surfaceDamageRegion.dump(LOG_TAG);
- }
-
- // Sideband layers
- if (mSidebandStream.get()) {
- setCompositionType(hwcId, HWC2::Composition::Sideband);
- ALOGV("[%s] Requesting Sideband composition", mName.string());
- error = hwcLayer->setSidebandStream(mSidebandStream->handle());
- if (error != HWC2::Error::None) {
- ALOGE("[%s] Failed to set sideband stream %p: %s (%d)",
- mName.string(), mSidebandStream->handle(),
- to_string(error).c_str(), static_cast<int32_t>(error));
- }
- return;
- }
-
- // Client layers
- if (hwcInfo.forceClientComposition ||
- (mActiveBuffer != nullptr && mActiveBuffer->handle == nullptr)) {
- ALOGV("[%s] Requesting Client composition", mName.string());
- setCompositionType(hwcId, HWC2::Composition::Client);
- return;
- }
-
- // SolidColor layers
- if (mActiveBuffer == nullptr) {
- setCompositionType(hwcId, HWC2::Composition::SolidColor);
-
- // For now, we only support black for DimLayer
- error = hwcLayer->setColor({0, 0, 0, 255});
- if (error != HWC2::Error::None) {
- ALOGE("[%s] Failed to set color: %s (%d)", mName.string(),
- to_string(error).c_str(), static_cast<int32_t>(error));
- }
-
- // Clear out the transform, because it doesn't make sense absent a
- // source buffer
- error = hwcLayer->setTransform(HWC2::Transform::None);
- if (error != HWC2::Error::None) {
- ALOGE("[%s] Failed to clear transform: %s (%d)", mName.string(),
- to_string(error).c_str(), static_cast<int32_t>(error));
- }
-
- return;
- }
-
- // Device or Cursor layers
- if (mPotentialCursor) {
- ALOGV("[%s] Requesting Cursor composition", mName.string());
- setCompositionType(hwcId, HWC2::Composition::Cursor);
- } else {
- ALOGV("[%s] Requesting Device composition", mName.string());
- setCompositionType(hwcId, HWC2::Composition::Device);
- }
-
- ALOGV("setPerFrameData: dataspace = %d", mCurrentState.dataSpace);
- error = hwcLayer->setDataspace(mCurrentState.dataSpace);
- if (error != HWC2::Error::None) {
- ALOGE("[%s] Failed to set dataspace %d: %s (%d)", mName.string(),
- mCurrentState.dataSpace, to_string(error).c_str(),
- static_cast<int32_t>(error));
+bool Layer::getForceClientComposition(int32_t hwcId) {
+ if (getBE().mHwcLayers.count(hwcId) == 0) {
+ ALOGE("getForceClientComposition: no HWC layer found (%d)", hwcId);
+ return false;
}
- uint32_t hwcSlot = 0;
- sp<GraphicBuffer> hwcBuffer;
- hwcInfo.bufferCache.getHwcBuffer(mActiveBufferSlot, mActiveBuffer,
- &hwcSlot, &hwcBuffer);
-
- auto acquireFence = mSurfaceFlingerConsumer->getCurrentFence();
- error = hwcLayer->setBuffer(hwcSlot, hwcBuffer, acquireFence);
- if (error != HWC2::Error::None) {
- ALOGE("[%s] Failed to set buffer %p: %s (%d)", mName.string(),
- mActiveBuffer->handle, to_string(error).c_str(),
- static_cast<int32_t>(error));
- }
-}
-
-#else
-void Layer::setPerFrameData(const sp<const DisplayDevice>& hw,
- HWComposer::HWCLayerInterface& layer) {
- // we have to set the visible region on every frame because
- // we currently free it during onLayerDisplayed(), which is called
- // after HWComposer::commit() -- every frame.
- // Apply this display's projection's viewport to the visible region
- // before giving it to the HWC HAL.
- const Transform& tr = hw->getTransform();
- Region visible = tr.transform(visibleRegion.intersect(hw->getViewport()));
- layer.setVisibleRegionScreen(visible);
- layer.setSurfaceDamage(surfaceDamageRegion);
- mIsGlesComposition = (layer.getCompositionType() == HWC_FRAMEBUFFER);
-
- if (mSidebandStream.get()) {
- layer.setSidebandStream(mSidebandStream);
- } else {
- // NOTE: buffer can be NULL if the client never drew into this
- // layer yet, or if we ran out of memory
- layer.setBuffer(mActiveBuffer);
- }
+ return getBE().mHwcLayers[hwcId].forceClientComposition;
}
-#endif
-#ifdef USE_HWC2
void Layer::updateCursorPosition(const sp<const DisplayDevice>& displayDevice) {
auto hwcId = displayDevice->getHwcDisplayId();
- if (mHwcLayers.count(hwcId) == 0 ||
- getCompositionType(hwcId) != HWC2::Composition::Cursor) {
+ if (getBE().mHwcLayers.count(hwcId) == 0 ||
+ getCompositionType(hwcId) != HWC2::Composition::Cursor) {
return;
}
@@ -1015,285 +690,62 @@ void Layer::updateCursorPosition(const sp<const DisplayDevice>& displayDevice) {
auto& displayTransform(displayDevice->getTransform());
auto position = displayTransform.transform(frame);
- auto error = mHwcLayers[hwcId].layer->setCursorPosition(position.left,
- position.top);
- ALOGE_IF(error != HWC2::Error::None, "[%s] Failed to set cursor position "
- "to (%d, %d): %s (%d)", mName.string(), position.left,
- position.top, to_string(error).c_str(),
- static_cast<int32_t>(error));
-}
-#else
-void Layer::setAcquireFence(const sp<const DisplayDevice>& /* hw */,
- HWComposer::HWCLayerInterface& layer) {
- int fenceFd = -1;
-
- // TODO: there is a possible optimization here: we only need to set the
- // acquire fence the first time a new buffer is acquired on EACH display.
-
- if (layer.getCompositionType() == HWC_OVERLAY || layer.getCompositionType() == HWC_CURSOR_OVERLAY) {
- sp<Fence> fence = mSurfaceFlingerConsumer->getCurrentFence();
- if (fence->isValid()) {
- fenceFd = fence->dup();
- if (fenceFd == -1) {
- ALOGW("failed to dup layer fence, skipping sync: %d", errno);
- }
- }
- }
- layer.setAcquireFenceFd(fenceFd);
+ auto error = getBE().mHwcLayers[hwcId].layer->setCursorPosition(position.left,
+ position.top);
+ ALOGE_IF(error != HWC2::Error::None,
+ "[%s] Failed to set cursor position "
+ "to (%d, %d): %s (%d)",
+ mName.string(), position.left, position.top, to_string(error).c_str(),
+ static_cast<int32_t>(error));
}
-Rect Layer::getPosition(
- const sp<const DisplayDevice>& hw)
-{
- // this gives us only the "orientation" component of the transform
- const State& s(getCurrentState());
-
- // apply the layer's transform, followed by the display's global transform
- // here we're guaranteed that the layer's transform preserves rects
- Rect win(s.active.w, s.active.h);
- if (!s.crop.isEmpty()) {
- win.intersect(s.crop, &win);
- }
- // subtract the transparent region and snap to the bounds
- Rect bounds = reduce(win, s.activeTransparentRegion);
- Rect frame(getTransform().transform(bounds));
- frame.intersect(hw->getViewport(), &frame);
- if (!s.finalCrop.isEmpty()) {
- frame.intersect(s.finalCrop, &frame);
- }
- const Transform& tr(hw->getTransform());
- return Rect(tr.transform(frame));
-}
-#endif
-
// ---------------------------------------------------------------------------
// drawing...
// ---------------------------------------------------------------------------
-void Layer::draw(const sp<const DisplayDevice>& hw, const Region& clip) const {
- onDraw(hw, clip, false);
+void Layer::draw(const RenderArea& renderArea, const Region& clip) const {
+ onDraw(renderArea, clip, false);
}
-void Layer::draw(const sp<const DisplayDevice>& hw,
- bool useIdentityTransform) const {
- onDraw(hw, Region(hw->bounds()), useIdentityTransform);
+void Layer::draw(const RenderArea& renderArea, bool useIdentityTransform) const {
+ onDraw(renderArea, Region(renderArea.getBounds()), useIdentityTransform);
}
-void Layer::draw(const sp<const DisplayDevice>& hw) const {
- onDraw(hw, Region(hw->bounds()), false);
-}
-
-static constexpr mat4 inverseOrientation(uint32_t transform) {
- const mat4 flipH(-1,0,0,0, 0,1,0,0, 0,0,1,0, 1,0,0,1);
- const mat4 flipV( 1,0,0,0, 0,-1,0,0, 0,0,1,0, 0,1,0,1);
- const mat4 rot90( 0,1,0,0, -1,0,0,0, 0,0,1,0, 1,0,0,1);
- mat4 tr;
-
- if (transform & NATIVE_WINDOW_TRANSFORM_ROT_90) {
- tr = tr * rot90;
- }
- if (transform & NATIVE_WINDOW_TRANSFORM_FLIP_H) {
- tr = tr * flipH;
- }
- if (transform & NATIVE_WINDOW_TRANSFORM_FLIP_V) {
- tr = tr * flipV;
- }
- return inverse(tr);
-}
-
-/*
- * onDraw will draw the current layer onto the presentable buffer
- */
-void Layer::onDraw(const sp<const DisplayDevice>& hw, const Region& clip,
- bool useIdentityTransform) const
-{
- ATRACE_CALL();
-
- if (CC_UNLIKELY(mActiveBuffer == 0)) {
- // the texture has not been created yet, this Layer has
- // in fact never been drawn into. This happens frequently with
- // SurfaceView because the WindowManager can't know when the client
- // has drawn the first time.
-
- // If there is nothing under us, we paint the screen in black, otherwise
- // we just skip this update.
-
- // figure out if there is something below us
- Region under;
- bool finished = false;
- mFlinger->mDrawingState.traverseInZOrder([&](Layer* layer) {
- if (finished || layer == static_cast<Layer const*>(this)) {
- finished = true;
- return;
- }
- under.orSelf( hw->getTransform().transform(layer->visibleRegion) );
- });
- // if not everything below us is covered, we plug the holes!
- Region holes(clip.subtract(under));
- if (!holes.isEmpty()) {
- clearWithOpenGL(hw, 0, 0, 0, 1);
- }
- return;
- }
-
- // Bind the current buffer to the GL texture, and wait for it to be
- // ready for us to draw into.
- status_t err = mSurfaceFlingerConsumer->bindTextureImage();
- if (err != NO_ERROR) {
- ALOGW("onDraw: bindTextureImage failed (err=%d)", err);
- // Go ahead and draw the buffer anyway; no matter what we do the screen
- // is probably going to have something visibly wrong.
- }
-
- bool blackOutLayer = isProtected() || (isSecure() && !hw->isSecure());
-
- RenderEngine& engine(mFlinger->getRenderEngine());
-
- if (!blackOutLayer) {
- // TODO: we could be more subtle with isFixedSize()
- const bool useFiltering = getFiltering() || needsFiltering(hw) || isFixedSize();
-
- // Query the texture matrix given our current filtering mode.
- float textureMatrix[16];
- mSurfaceFlingerConsumer->setFilteringEnabled(useFiltering);
- mSurfaceFlingerConsumer->getTransformMatrix(textureMatrix);
-
- if (getTransformToDisplayInverse()) {
-
- /*
- * the code below applies the primary display's inverse transform to
- * the texture transform
- */
- uint32_t transform =
- DisplayDevice::getPrimaryDisplayOrientationTransform();
- mat4 tr = inverseOrientation(transform);
-
- /**
- * TODO(b/36727915): This is basically a hack.
- *
- * Ensure that regardless of the parent transformation,
- * this buffer is always transformed from native display
- * orientation to display orientation. For example, in the case
- * of a camera where the buffer remains in native orientation,
- * we want the pixels to always be upright.
- */
- sp<Layer> p = mDrawingParent.promote();
- if (p != nullptr) {
- const auto parentTransform = p->getTransform();
- tr = tr * inverseOrientation(parentTransform.getOrientation());
- }
-
- // and finally apply it to the original texture matrix
- const mat4 texTransform(mat4(static_cast<const float*>(textureMatrix)) * tr);
- memcpy(textureMatrix, texTransform.asArray(), sizeof(textureMatrix));
- }
-
- // Set things up for texturing.
- mTexture.setDimensions(mActiveBuffer->getWidth(), mActiveBuffer->getHeight());
- mTexture.setFiltering(useFiltering);
- mTexture.setMatrix(textureMatrix);
-
- engine.setupLayerTexturing(mTexture);
- } else {
- engine.setupLayerBlackedOut();
- }
- drawWithOpenGL(hw, useIdentityTransform);
- engine.disableTexturing();
+void Layer::draw(const RenderArea& renderArea) const {
+ onDraw(renderArea, Region(renderArea.getBounds()), false);
}
-
-void Layer::clearWithOpenGL(const sp<const DisplayDevice>& hw,
- float red, float green, float blue,
- float alpha) const
-{
- RenderEngine& engine(mFlinger->getRenderEngine());
- computeGeometry(hw, mMesh, false);
+void Layer::clearWithOpenGL(const RenderArea& renderArea, float red, float green, float blue,
+ float alpha) const {
+ auto& engine(mFlinger->getRenderEngine());
+ computeGeometry(renderArea, getBE().mMesh, false);
engine.setupFillWithColor(red, green, blue, alpha);
- engine.drawMesh(mMesh);
+ engine.drawMesh(getBE().mMesh);
}
-void Layer::clearWithOpenGL(
- const sp<const DisplayDevice>& hw) const {
- clearWithOpenGL(hw, 0,0,0,0);
+void Layer::clearWithOpenGL(const RenderArea& renderArea) const {
+ clearWithOpenGL(renderArea, 0, 0, 0, 0);
}
-void Layer::drawWithOpenGL(const sp<const DisplayDevice>& hw,
- bool useIdentityTransform) const {
- const State& s(getDrawingState());
-
- computeGeometry(hw, mMesh, useIdentityTransform);
-
- /*
- * NOTE: the way we compute the texture coordinates here produces
- * different results than when we take the HWC path -- in the later case
- * the "source crop" is rounded to texel boundaries.
- * This can produce significantly different results when the texture
- * is scaled by a large amount.
- *
- * The GL code below is more logical (imho), and the difference with
- * HWC is due to a limitation of the HWC API to integers -- a question
- * is suspend is whether we should ignore this problem or revert to
- * GL composition when a buffer scaling is applied (maybe with some
- * minimal value)? Or, we could make GL behave like HWC -- but this feel
- * like more of a hack.
- */
- const Rect bounds{computeBounds()}; // Rounds from FloatRect
-
- Transform t = getTransform();
- Rect win = bounds;
- if (!s.finalCrop.isEmpty()) {
- win = t.transform(win);
- if (!win.intersect(s.finalCrop, &win)) {
- win.clear();
- }
- win = t.inverse().transform(win);
- if (!win.intersect(bounds, &win)) {
- win.clear();
- }
- }
-
- float left = float(win.left) / float(s.active.w);
- float top = float(win.top) / float(s.active.h);
- float right = float(win.right) / float(s.active.w);
- float bottom = float(win.bottom) / float(s.active.h);
-
- // TODO: we probably want to generate the texture coords with the mesh
- // here we assume that we only have 4 vertices
- Mesh::VertexArray<vec2> texCoords(mMesh.getTexCoordArray<vec2>());
- texCoords[0] = vec2(left, 1.0f - top);
- texCoords[1] = vec2(left, 1.0f - bottom);
- texCoords[2] = vec2(right, 1.0f - bottom);
- texCoords[3] = vec2(right, 1.0f - top);
-
- RenderEngine& engine(mFlinger->getRenderEngine());
- engine.setupLayerBlending(mPremultipliedAlpha, isOpaque(s), getAlpha());
-#ifdef USE_HWC2
- engine.setSourceDataSpace(mCurrentState.dataSpace);
-#endif
- engine.drawMesh(mMesh);
- engine.disableBlending();
-}
-
-#ifdef USE_HWC2
-void Layer::setCompositionType(int32_t hwcId, HWC2::Composition type,
- bool callIntoHwc) {
- if (mHwcLayers.count(hwcId) == 0) {
+void Layer::setCompositionType(int32_t hwcId, HWC2::Composition type, bool callIntoHwc) {
+ if (getBE().mHwcLayers.count(hwcId) == 0) {
ALOGE("setCompositionType called without a valid HWC layer");
return;
}
- auto& hwcInfo = mHwcLayers[hwcId];
+ auto& hwcInfo = getBE().mHwcLayers[hwcId];
auto& hwcLayer = hwcInfo.layer;
- ALOGV("setCompositionType(%" PRIx64 ", %s, %d)", hwcLayer->getId(),
- to_string(type).c_str(), static_cast<int>(callIntoHwc));
+ ALOGV("setCompositionType(%" PRIx64 ", %s, %d)", hwcLayer->getId(), to_string(type).c_str(),
+ static_cast<int>(callIntoHwc));
if (hwcInfo.compositionType != type) {
ALOGV(" actually setting");
hwcInfo.compositionType = type;
if (callIntoHwc) {
auto error = hwcLayer->setCompositionType(type);
- ALOGE_IF(error != HWC2::Error::None, "[%s] Failed to set "
- "composition type %s: %s (%d)", mName.string(),
- to_string(type).c_str(), to_string(error).c_str(),
- static_cast<int32_t>(error));
+ ALOGE_IF(error != HWC2::Error::None,
+ "[%s] Failed to set "
+ "composition type %s: %s (%d)",
+ mName.string(), to_string(type).c_str(), to_string(error).c_str(),
+ static_cast<int32_t>(error));
}
}
}
@@ -1304,86 +756,27 @@ HWC2::Composition Layer::getCompositionType(int32_t hwcId) const {
// have a HWC counterpart, then it will always be Client
return HWC2::Composition::Client;
}
- if (mHwcLayers.count(hwcId) == 0) {
+ if (getBE().mHwcLayers.count(hwcId) == 0) {
ALOGE("getCompositionType called with an invalid HWC layer");
return HWC2::Composition::Invalid;
}
- return mHwcLayers.at(hwcId).compositionType;
+ return getBE().mHwcLayers.at(hwcId).compositionType;
}
void Layer::setClearClientTarget(int32_t hwcId, bool clear) {
- if (mHwcLayers.count(hwcId) == 0) {
+ if (getBE().mHwcLayers.count(hwcId) == 0) {
ALOGE("setClearClientTarget called without a valid HWC layer");
return;
}
- mHwcLayers[hwcId].clearClientTarget = clear;
+ getBE().mHwcLayers[hwcId].clearClientTarget = clear;
}
bool Layer::getClearClientTarget(int32_t hwcId) const {
- if (mHwcLayers.count(hwcId) == 0) {
+ if (getBE().mHwcLayers.count(hwcId) == 0) {
ALOGE("getClearClientTarget called without a valid HWC layer");
return false;
}
- return mHwcLayers.at(hwcId).clearClientTarget;
-}
-#endif
-
-uint32_t Layer::getProducerStickyTransform() const {
- int producerStickyTransform = 0;
- int ret = mProducer->query(NATIVE_WINDOW_STICKY_TRANSFORM, &producerStickyTransform);
- if (ret != OK) {
- ALOGW("%s: Error %s (%d) while querying window sticky transform.", __FUNCTION__,
- strerror(-ret), ret);
- return 0;
- }
- return static_cast<uint32_t>(producerStickyTransform);
-}
-
-bool Layer::latchUnsignaledBuffers() {
- static bool propertyLoaded = false;
- static bool latch = false;
- static std::mutex mutex;
- std::lock_guard<std::mutex> lock(mutex);
- if (!propertyLoaded) {
- char value[PROPERTY_VALUE_MAX] = {};
- property_get("debug.sf.latch_unsignaled", value, "0");
- latch = atoi(value);
- propertyLoaded = true;
- }
- return latch;
-}
-
-uint64_t Layer::getHeadFrameNumber() const {
- Mutex::Autolock lock(mQueueItemLock);
- if (!mQueueItems.empty()) {
- return mQueueItems[0].mFrameNumber;
- } else {
- return mCurrentFrameNumber;
- }
-}
-
-bool Layer::headFenceHasSignaled() const {
-#ifdef USE_HWC2
- if (latchUnsignaledBuffers()) {
- return true;
- }
-
- Mutex::Autolock lock(mQueueItemLock);
- if (mQueueItems.empty()) {
- return true;
- }
- if (mQueueItems[0].mIsDroppable) {
- // Even though this buffer's fence may not have signaled yet, it could
- // be replaced by another buffer before it has a chance to, which means
- // that it's possible to get into a situation where a buffer is never
- // able to be latched. To avoid this, grab this buffer anyway.
- return true;
- }
- return mQueueItems[0].mFenceTime->getSignalTime() !=
- Fence::SIGNAL_TIME_PENDING;
-#else
- return true;
-#endif
+ return getBE().mHwcLayers.at(hwcId).clearClientTarget;
}
bool Layer::addSyncPoint(const std::shared_ptr<SyncPoint>& point) {
@@ -1406,28 +799,6 @@ bool Layer::getFiltering() const {
return mFiltering;
}
-// As documented in libhardware header, formats in the range
-// 0x100 - 0x1FF are specific to the HAL implementation, and
-// are known to have no alpha channel
-// TODO: move definition for device-specific range into
-// hardware.h, instead of using hard-coded values here.
-#define HARDWARE_IS_DEVICE_FORMAT(f) ((f) >= 0x100 && (f) <= 0x1FF)
-
-bool Layer::getOpacityForFormat(uint32_t format) {
- if (HARDWARE_IS_DEVICE_FORMAT(format)) {
- return true;
- }
- switch (format) {
- case HAL_PIXEL_FORMAT_RGBA_8888:
- case HAL_PIXEL_FORMAT_BGRA_8888:
- case HAL_PIXEL_FORMAT_RGBA_FP16:
- case HAL_PIXEL_FORMAT_RGBA_1010102:
- return false;
- }
- // in all other case, we have no blending (also for unknown formats)
- return true;
-}
-
// ----------------------------------------------------------------------------
// local state
// ----------------------------------------------------------------------------
@@ -1447,12 +818,11 @@ static void boundPoint(vec2* point, const Rect& crop) {
}
}
-void Layer::computeGeometry(const sp<const DisplayDevice>& hw, Mesh& mesh,
- bool useIdentityTransform) const
-{
+void Layer::computeGeometry(const RenderArea& renderArea, Mesh& mesh,
+ bool useIdentityTransform) const {
const Layer::State& s(getDrawingState());
- const Transform hwTransform(hw->getTransform());
- const uint32_t hw_h = hw->getHeight();
+ const Transform renderAreaTransform(renderArea.getTransform());
+ const uint32_t height = renderArea.getHeight();
FloatRect win = computeBounds();
vec2 lt = vec2(win.left, win.top);
@@ -1476,53 +846,20 @@ void Layer::computeGeometry(const sp<const DisplayDevice>& hw, Mesh& mesh,
}
Mesh::VertexArray<vec2> position(mesh.getPositionArray<vec2>());
- position[0] = hwTransform.transform(lt);
- position[1] = hwTransform.transform(lb);
- position[2] = hwTransform.transform(rb);
- position[3] = hwTransform.transform(rt);
- for (size_t i=0 ; i<4 ; i++) {
- position[i].y = hw_h - position[i].y;
+ position[0] = renderAreaTransform.transform(lt);
+ position[1] = renderAreaTransform.transform(lb);
+ position[2] = renderAreaTransform.transform(rb);
+ position[3] = renderAreaTransform.transform(rt);
+ for (size_t i = 0; i < 4; i++) {
+ position[i].y = height - position[i].y;
}
}
-bool Layer::isOpaque(const Layer::State& s) const
-{
- // if we don't have a buffer or sidebandStream yet, we're translucent regardless of the
- // layer's opaque flag.
- if ((mSidebandStream == nullptr) && (mActiveBuffer == nullptr)) {
- return false;
- }
-
- // if the layer has the opaque flag, then we're always opaque,
- // otherwise we use the current buffer's format.
- return ((s.flags & layer_state_t::eLayerOpaque) != 0) || mCurrentOpacity;
-}
-
-bool Layer::isSecure() const
-{
+bool Layer::isSecure() const {
const Layer::State& s(mDrawingState);
return (s.flags & layer_state_t::eLayerSecure);
}
-bool Layer::isProtected() const
-{
- const sp<GraphicBuffer>& activeBuffer(mActiveBuffer);
- return (activeBuffer != 0) &&
- (activeBuffer->getUsage() & GRALLOC_USAGE_PROTECTED);
-}
-
-bool Layer::isFixedSize() const {
- return getEffectiveScalingMode() != NATIVE_WINDOW_SCALING_MODE_FREEZE;
-}
-
-bool Layer::isCropped() const {
- return !mCurrentCrop.isEmpty();
-}
-
-bool Layer::needsFiltering(const sp<const DisplayDevice>& hw) const {
- return mNeedsFiltering || hw->needsFiltering();
-}
-
void Layer::setVisibleRegion(const Region& visibleRegion) {
// always called from main thread
this->visibleRegion = visibleRegion;
@@ -1533,12 +870,17 @@ void Layer::setCoveredRegion(const Region& coveredRegion) {
this->coveredRegion = coveredRegion;
}
-void Layer::setVisibleNonTransparentRegion(const Region&
- setVisibleNonTransparentRegion) {
+void Layer::setVisibleNonTransparentRegion(const Region& setVisibleNonTransparentRegion) {
// always called from main thread
this->visibleNonTransparentRegion = setVisibleNonTransparentRegion;
}
+void Layer::clearVisibilityRegions() {
+ visibleRegion.clear();
+ visibleNonTransparentRegion.clear();
+ coveredRegion.clear();
+}
+
// ----------------------------------------------------------------------------
// transaction
// ----------------------------------------------------------------------------
@@ -1559,8 +901,7 @@ void Layer::pushPendingState() {
// to be applied as per normal (no synchronization).
mCurrentState.barrierLayer = nullptr;
} else {
- auto syncPoint = std::make_shared<SyncPoint>(
- mCurrentState.frameNumber);
+ auto syncPoint = std::make_shared<SyncPoint>(mCurrentState.frameNumber);
if (barrierLayer->addSyncPoint(syncPoint)) {
mRemoteSyncPoints.push_back(std::move(syncPoint));
} else {
@@ -1579,10 +920,7 @@ void Layer::pushPendingState() {
}
void Layer::popPendingState(State* stateToCommit) {
- auto oldFlags = stateToCommit->flags;
*stateToCommit = mPendingStates[0];
- stateToCommit->flags = (oldFlags & ~stateToCommit->mask) |
- (stateToCommit->flags & stateToCommit->mask);
mPendingStates.removeAt(0);
ATRACE_INT(mTransactionName.string(), mPendingStates.size());
@@ -1602,10 +940,8 @@ bool Layer::applyPendingStates(State* stateToCommit) {
continue;
}
- if (mRemoteSyncPoints.front()->getFrameNumber() !=
- mPendingStates[0].frameNumber) {
- ALOGE("[%s] Unexpected sync point frame number found",
- mName.string());
+ if (mRemoteSyncPoints.front()->getFrameNumber() != mPendingStates[0].frameNumber) {
+ ALOGE("[%s] Unexpected sync point frame number found", mName.string());
// Signal our end of the sync point and then dispose of it
mRemoteSyncPoints.front()->setTransactionApplied();
@@ -1641,17 +977,6 @@ bool Layer::applyPendingStates(State* stateToCommit) {
return stateUpdateAvailable;
}
-void Layer::notifyAvailableFrames() {
- auto headFrameNumber = getHeadFrameNumber();
- bool headFenceSignaled = headFenceHasSignaled();
- Mutex::Autolock lock(mLocalSyncPointMutex);
- for (auto& point : mLocalSyncPoints) {
- if (headFrameNumber >= point->getFrameNumber() && headFenceSignaled) {
- point->setFrameAvailable();
- }
- }
-}
-
uint32_t Layer::doTransaction(uint32_t flags) {
ATRACE_CALL();
@@ -1663,59 +988,50 @@ uint32_t Layer::doTransaction(uint32_t flags) {
const Layer::State& s(getDrawingState());
- const bool sizeChanged = (c.requested.w != s.requested.w) ||
- (c.requested.h != s.requested.h);
+ const bool sizeChanged = (c.requested.w != s.requested.w) || (c.requested.h != s.requested.h);
if (sizeChanged) {
// the size changed, we need to ask our client to request a new buffer
ALOGD_IF(DEBUG_RESIZE,
- "doTransaction: geometry (layer=%p '%s'), tr=%02x, scalingMode=%d\n"
- " current={ active ={ wh={%4u,%4u} crop={%4d,%4d,%4d,%4d} (%4d,%4d) }\n"
- " requested={ wh={%4u,%4u} }}\n"
- " drawing={ active ={ wh={%4u,%4u} crop={%4d,%4d,%4d,%4d} (%4d,%4d) }\n"
- " requested={ wh={%4u,%4u} }}\n",
- this, getName().string(), mCurrentTransform,
- getEffectiveScalingMode(),
- c.active.w, c.active.h,
- c.crop.left,
- c.crop.top,
- c.crop.right,
- c.crop.bottom,
- c.crop.getWidth(),
- c.crop.getHeight(),
- c.requested.w, c.requested.h,
- s.active.w, s.active.h,
- s.crop.left,
- s.crop.top,
- s.crop.right,
- s.crop.bottom,
- s.crop.getWidth(),
- s.crop.getHeight(),
- s.requested.w, s.requested.h);
+ "doTransaction: geometry (layer=%p '%s'), tr=%02x, scalingMode=%d\n"
+ " current={ active ={ wh={%4u,%4u} crop={%4d,%4d,%4d,%4d} (%4d,%4d) }\n"
+ " requested={ wh={%4u,%4u} }}\n"
+ " drawing={ active ={ wh={%4u,%4u} crop={%4d,%4d,%4d,%4d} (%4d,%4d) }\n"
+ " requested={ wh={%4u,%4u} }}\n",
+ this, getName().string(), mCurrentTransform,
+ getEffectiveScalingMode(), c.active.w, c.active.h, c.crop.left, c.crop.top,
+ c.crop.right, c.crop.bottom, c.crop.getWidth(), c.crop.getHeight(), c.requested.w,
+ c.requested.h, s.active.w, s.active.h, s.crop.left, s.crop.top, s.crop.right,
+ s.crop.bottom, s.crop.getWidth(), s.crop.getHeight(), s.requested.w,
+ s.requested.h);
// record the new size, form this point on, when the client request
// a buffer, it'll get the new size.
- mSurfaceFlingerConsumer->setDefaultBufferSize(
- c.requested.w, c.requested.h);
- }
-
- const bool resizePending = (c.requested.w != c.active.w) ||
- (c.requested.h != c.active.h);
+ setDefaultBufferSize(c.requested.w, c.requested.h);
+ }
+
+ // Don't let Layer::doTransaction update the drawing state
+ // if we have a pending resize, unless we are in fixed-size mode.
+ // the drawing state will be updated only once we receive a buffer
+ // with the correct size.
+ //
+ // In particular, we want to make sure the clip (which is part
+ // of the geometry state) is latched together with the size but is
+ // latched immediately when no resizing is involved.
+ //
+ // If a sideband stream is attached, however, we want to skip this
+ // optimization so that transactions aren't missed when a buffer
+ // never arrives
+ //
+ // In the case that we don't have a buffer we ignore other factors
+ // and avoid entering the resizePending state. At a high level the
+ // resizePending state is to avoid applying the state of the new buffer
+ // to the old buffer. However in the state where we don't have an old buffer
+ // there is no such concern but we may still be being used as a parent layer.
+ const bool resizePending = ((c.requested.w != c.active.w) || (c.requested.h != c.active.h)) &&
+ (getBE().compositionInfo.mBuffer != nullptr);
if (!isFixedSize()) {
- if (resizePending && mSidebandStream == NULL) {
- // don't let Layer::doTransaction update the drawing state
- // if we have a pending resize, unless we are in fixed-size mode.
- // the drawing state will be updated only once we receive a buffer
- // with the correct size.
- //
- // in particular, we want to make sure the clip (which is part
- // of the geometry state) is latched together with the size but is
- // latched immediately when no resizing is involved.
- //
- // If a sideband stream is attached, however, we want to skip this
- // optimization so that transactions aren't missed when a buffer
- // never arrives
-
+ if (resizePending && getBE().compositionInfo.hwc.sidebandStream == nullptr) {
flags |= eDontUpdateGeometryState;
}
}
@@ -1762,8 +1078,7 @@ uint32_t Layer::doTransaction(uint32_t flags) {
// we may use linear filtering, if the matrix scales us
const uint8_t type = c.active.transform.getType();
- mNeedsFiltering = (!c.active.transform.preserveRects() ||
- (type >= Transform::SCALE));
+ mNeedsFiltering = (!c.active.transform.preserveRects() || (type >= Transform::SCALE));
}
// If the layer is hidden, signal and clear out all local sync points so
@@ -1821,13 +1136,27 @@ bool Layer::setChildLayer(const sp<Layer>& childLayer, int32_t z) {
if (childLayer->setLayer(z)) {
mCurrentChildren.removeAt(idx);
mCurrentChildren.add(childLayer);
+ return true;
}
- return true;
+ return false;
}
-bool Layer::setLayer(int32_t z) {
- if (mCurrentState.z == z)
+bool Layer::setChildRelativeLayer(const sp<Layer>& childLayer,
+ const sp<IBinder>& relativeToHandle, int32_t relativeZ) {
+ ssize_t idx = mCurrentChildren.indexOf(childLayer);
+ if (idx < 0) {
return false;
+ }
+ if (childLayer->setRelativeLayer(relativeToHandle, relativeZ)) {
+ mCurrentChildren.removeAt(idx);
+ mCurrentChildren.add(childLayer);
+ return true;
+ }
+ return false;
+}
+
+bool Layer::setLayer(int32_t z) {
+ if (mCurrentState.z == z && !usingRelativeZ(LayerVector::StateSet::Current)) return false;
mCurrentState.sequence++;
mCurrentState.z = z;
mCurrentState.modified = true;
@@ -1858,7 +1187,7 @@ void Layer::addZOrderRelative(const wp<Layer>& relative) {
setTransactionFlags(eTransactionNeeded);
}
-bool Layer::setRelativeLayer(const sp<IBinder>& relativeToHandle, int32_t z) {
+bool Layer::setRelativeLayer(const sp<IBinder>& relativeToHandle, int32_t relativeZ) {
sp<Handle> handle = static_cast<Handle*>(relativeToHandle.get());
if (handle == nullptr) {
return false;
@@ -1868,10 +1197,19 @@ bool Layer::setRelativeLayer(const sp<IBinder>& relativeToHandle, int32_t z) {
return false;
}
+ if (mCurrentState.z == relativeZ && usingRelativeZ(LayerVector::StateSet::Current) &&
+ mCurrentState.zOrderRelativeOf == relative) {
+ return false;
+ }
+
mCurrentState.sequence++;
mCurrentState.modified = true;
- mCurrentState.z = z;
+ mCurrentState.z = relativeZ;
+ auto oldZOrderRelativeOf = mCurrentState.zOrderRelativeOf.promote();
+ if (oldZOrderRelativeOf != nullptr) {
+ oldZOrderRelativeOf->removeZOrderRelative(this);
+ }
mCurrentState.zOrderRelativeOf = relative;
relative->addZOrderRelative(this);
@@ -1881,31 +1219,39 @@ bool Layer::setRelativeLayer(const sp<IBinder>& relativeToHandle, int32_t z) {
}
bool Layer::setSize(uint32_t w, uint32_t h) {
- if (mCurrentState.requested.w == w && mCurrentState.requested.h == h)
- return false;
+ if (mCurrentState.requested.w == w && mCurrentState.requested.h == h) return false;
mCurrentState.requested.w = w;
mCurrentState.requested.h = h;
mCurrentState.modified = true;
setTransactionFlags(eTransactionNeeded);
return true;
}
-#ifdef USE_HWC2
bool Layer::setAlpha(float alpha) {
-#else
-bool Layer::setAlpha(uint8_t alpha) {
-#endif
- if (mCurrentState.alpha == alpha)
+ if (mCurrentState.color.a == alpha) return false;
+ mCurrentState.sequence++;
+ mCurrentState.color.a = alpha;
+ mCurrentState.modified = true;
+ setTransactionFlags(eTransactionNeeded);
+ return true;
+}
+
+bool Layer::setColor(const half3& color) {
+ if (color.r == mCurrentState.color.r && color.g == mCurrentState.color.g &&
+ color.b == mCurrentState.color.b)
return false;
+
mCurrentState.sequence++;
- mCurrentState.alpha = alpha;
+ mCurrentState.color.r = color.r;
+ mCurrentState.color.g = color.g;
+ mCurrentState.color.b = color.b;
mCurrentState.modified = true;
setTransactionFlags(eTransactionNeeded);
return true;
}
+
bool Layer::setMatrix(const layer_state_t::matrix22_t& matrix) {
mCurrentState.sequence++;
- mCurrentState.requested.transform.set(
- matrix.dsdx, matrix.dtdy, matrix.dtdx, matrix.dsdy);
+ mCurrentState.requested.transform.set(matrix.dsdx, matrix.dtdy, matrix.dtdx, matrix.dsdy);
mCurrentState.modified = true;
setTransactionFlags(eTransactionNeeded);
return true;
@@ -1918,19 +1264,16 @@ bool Layer::setTransparentRegionHint(const Region& transparent) {
}
bool Layer::setFlags(uint8_t flags, uint8_t mask) {
const uint32_t newFlags = (mCurrentState.flags & ~mask) | (flags & mask);
- if (mCurrentState.flags == newFlags)
- return false;
+ if (mCurrentState.flags == newFlags) return false;
mCurrentState.sequence++;
mCurrentState.flags = newFlags;
- mCurrentState.mask = mask;
mCurrentState.modified = true;
setTransactionFlags(eTransactionNeeded);
return true;
}
bool Layer::setCrop(const Rect& crop, bool immediate) {
- if (mCurrentState.requestedCrop == crop)
- return false;
+ if (mCurrentState.requestedCrop == crop) return false;
mCurrentState.sequence++;
mCurrentState.requestedCrop = crop;
if (immediate && !mFreezeGeometryUpdates) {
@@ -1944,8 +1287,7 @@ bool Layer::setCrop(const Rect& crop, bool immediate) {
}
bool Layer::setFinalCrop(const Rect& crop, bool immediate) {
- if (mCurrentState.requestedFinalCrop == crop)
- return false;
+ if (mCurrentState.requestedFinalCrop == crop) return false;
mCurrentState.sequence++;
mCurrentState.requestedFinalCrop = crop;
if (immediate && !mFreezeGeometryUpdates) {
@@ -1959,51 +1301,28 @@ bool Layer::setFinalCrop(const Rect& crop, bool immediate) {
}
bool Layer::setOverrideScalingMode(int32_t scalingMode) {
- if (scalingMode == mOverrideScalingMode)
- return false;
+ if (scalingMode == mOverrideScalingMode) return false;
mOverrideScalingMode = scalingMode;
setTransactionFlags(eTransactionNeeded);
return true;
}
-void Layer::setInfo(uint32_t type, uint32_t appId) {
- mCurrentState.appId = appId;
- mCurrentState.type = type;
- mCurrentState.modified = true;
- setTransactionFlags(eTransactionNeeded);
-}
-
-uint32_t Layer::getEffectiveScalingMode() const {
- if (mOverrideScalingMode >= 0) {
- return mOverrideScalingMode;
- }
- return mCurrentScalingMode;
-}
-
-bool Layer::setLayerStack(uint32_t layerStack) {
- if (mCurrentState.layerStack == layerStack)
- return false;
- mCurrentState.sequence++;
- mCurrentState.layerStack = layerStack;
+void Layer::setInfo(int32_t type, int32_t appId) {
+ mCurrentState.appId = appId;
+ mCurrentState.type = type;
mCurrentState.modified = true;
setTransactionFlags(eTransactionNeeded);
- return true;
}
-bool Layer::setDataSpace(android_dataspace dataSpace) {
- if (mCurrentState.dataSpace == dataSpace)
- return false;
+bool Layer::setLayerStack(uint32_t layerStack) {
+ if (mCurrentState.layerStack == layerStack) return false;
mCurrentState.sequence++;
- mCurrentState.dataSpace = dataSpace;
+ mCurrentState.layerStack = layerStack;
mCurrentState.modified = true;
setTransactionFlags(eTransactionNeeded);
return true;
}
-android_dataspace Layer::getDataSpace() const {
- return mCurrentState.dataSpace;
-}
-
uint32_t Layer::getLayerStack() const {
auto p = mDrawingParent.promote();
if (p == nullptr) {
@@ -2012,8 +1331,7 @@ uint32_t Layer::getLayerStack() const {
return p->getLayerStack();
}
-void Layer::deferTransactionUntil(const sp<Layer>& barrierLayer,
- uint64_t frameNumber) {
+void Layer::deferTransactionUntil(const sp<Layer>& barrierLayer, uint64_t frameNumber) {
mCurrentState.barrierLayer = barrierLayer;
mCurrentState.frameNumber = frameNumber;
// We don't set eTransactionNeeded, because just receiving a deferral
@@ -2025,124 +1343,16 @@ void Layer::deferTransactionUntil(const sp<Layer>& barrierLayer,
mCurrentState.modified = false;
}
-void Layer::deferTransactionUntil(const sp<IBinder>& barrierHandle,
- uint64_t frameNumber) {
+void Layer::deferTransactionUntil(const sp<IBinder>& barrierHandle, uint64_t frameNumber) {
sp<Handle> handle = static_cast<Handle*>(barrierHandle.get());
deferTransactionUntil(handle->owner.promote(), frameNumber);
}
-void Layer::useSurfaceDamage() {
- if (mFlinger->mForceFullDamage) {
- surfaceDamageRegion = Region::INVALID_REGION;
- } else {
- surfaceDamageRegion = mSurfaceFlingerConsumer->getSurfaceDamage();
- }
-}
-
-void Layer::useEmptyDamage() {
- surfaceDamageRegion.clear();
-}
// ----------------------------------------------------------------------------
// pageflip handling...
// ----------------------------------------------------------------------------
-bool Layer::shouldPresentNow(const DispSync& dispSync) const {
- if (mSidebandStreamChanged || mAutoRefresh) {
- return true;
- }
-
- Mutex::Autolock lock(mQueueItemLock);
- if (mQueueItems.empty()) {
- return false;
- }
- auto timestamp = mQueueItems[0].mTimestamp;
- nsecs_t expectedPresent =
- mSurfaceFlingerConsumer->computeExpectedPresent(dispSync);
-
- // Ignore timestamps more than a second in the future
- bool isPlausible = timestamp < (expectedPresent + s2ns(1));
- ALOGW_IF(!isPlausible, "[%s] Timestamp %" PRId64 " seems implausible "
- "relative to expectedPresent %" PRId64, mName.string(), timestamp,
- expectedPresent);
-
- bool isDue = timestamp < expectedPresent;
- return isDue || !isPlausible;
-}
-
-bool Layer::onPreComposition(nsecs_t refreshStartTime) {
- if (mBufferLatched) {
- Mutex::Autolock lock(mFrameEventHistoryMutex);
- mFrameEventHistory.addPreComposition(mCurrentFrameNumber, refreshStartTime);
- }
- mRefreshPending = false;
- return mQueuedFrames > 0 || mSidebandStreamChanged || mAutoRefresh;
-}
-
-bool Layer::onPostComposition(const std::shared_ptr<FenceTime>& glDoneFence,
- const std::shared_ptr<FenceTime>& presentFence,
- const CompositorTiming& compositorTiming) {
- // mFrameLatencyNeeded is true when a new frame was latched for the
- // composition.
- if (!mFrameLatencyNeeded)
- return false;
-
- // Update mFrameEventHistory.
- {
- Mutex::Autolock lock(mFrameEventHistoryMutex);
- mFrameEventHistory.addPostComposition(mCurrentFrameNumber,
- glDoneFence, presentFence, compositorTiming);
- }
-
- // Update mFrameTracker.
- nsecs_t desiredPresentTime = mSurfaceFlingerConsumer->getTimestamp();
- mFrameTracker.setDesiredPresentTime(desiredPresentTime);
-
- std::shared_ptr<FenceTime> frameReadyFence =
- mSurfaceFlingerConsumer->getCurrentFenceTime();
- if (frameReadyFence->isValid()) {
- mFrameTracker.setFrameReadyFence(std::move(frameReadyFence));
- } else {
- // There was no fence for this frame, so assume that it was ready
- // to be presented at the desired present time.
- mFrameTracker.setFrameReadyTime(desiredPresentTime);
- }
-
- if (presentFence->isValid()) {
- mFrameTracker.setActualPresentFence(
- std::shared_ptr<FenceTime>(presentFence));
- } else {
- // The HWC doesn't support present fences, so use the refresh
- // timestamp instead.
- mFrameTracker.setActualPresentTime(
- mFlinger->getHwComposer().getRefreshTimestamp(
- HWC_DISPLAY_PRIMARY));
- }
-
- mFrameTracker.advanceFrame();
- mFrameLatencyNeeded = false;
- return true;
-}
-
-#ifdef USE_HWC2
-void Layer::releasePendingBuffer(nsecs_t dequeueReadyTime) {
- if (!mSurfaceFlingerConsumer->releasePendingBuffer()) {
- return;
- }
-
- auto releaseFenceTime = std::make_shared<FenceTime>(
- mSurfaceFlingerConsumer->getPrevFinalReleaseFence());
- mReleaseTimeline.updateSignalTimes();
- mReleaseTimeline.push(releaseFenceTime);
-
- Mutex::Autolock lock(mFrameEventHistoryMutex);
- if (mPreviousFrameNumber != 0) {
- mFrameEventHistory.addRelease(mPreviousFrameNumber,
- dequeueReadyTime, std::move(releaseFenceTime));
- }
-}
-#endif
-
bool Layer::isHiddenByPolicy() const {
const Layer::State& s(mDrawingState);
const auto& parent = mDrawingParent.promote();
@@ -2152,256 +1362,7 @@ bool Layer::isHiddenByPolicy() const {
return s.flags & layer_state_t::eLayerHidden;
}
-bool Layer::isVisible() const {
-#ifdef USE_HWC2
- return !(isHiddenByPolicy()) && getAlpha() > 0.0f
- && (mActiveBuffer != NULL || mSidebandStream != NULL);
-#else
- return !(isHiddenByPolicy()) && getAlpha()
- && (mActiveBuffer != NULL || mSidebandStream != NULL);
-#endif
-}
-
-bool Layer::allTransactionsSignaled() {
- auto headFrameNumber = getHeadFrameNumber();
- bool matchingFramesFound = false;
- bool allTransactionsApplied = true;
- Mutex::Autolock lock(mLocalSyncPointMutex);
-
- for (auto& point : mLocalSyncPoints) {
- if (point->getFrameNumber() > headFrameNumber) {
- break;
- }
- matchingFramesFound = true;
-
- if (!point->frameIsAvailable()) {
- // We haven't notified the remote layer that the frame for
- // this point is available yet. Notify it now, and then
- // abort this attempt to latch.
- point->setFrameAvailable();
- allTransactionsApplied = false;
- break;
- }
-
- allTransactionsApplied = allTransactionsApplied && point->transactionIsApplied();
- }
- return !matchingFramesFound || allTransactionsApplied;
-}
-
-Region Layer::latchBuffer(bool& recomputeVisibleRegions, nsecs_t latchTime)
-{
- ATRACE_CALL();
-
- if (android_atomic_acquire_cas(true, false, &mSidebandStreamChanged) == 0) {
- // mSidebandStreamChanged was true
- mSidebandStream = mSurfaceFlingerConsumer->getSidebandStream();
- if (mSidebandStream != NULL) {
- setTransactionFlags(eTransactionNeeded);
- mFlinger->setTransactionFlags(eTraversalNeeded);
- }
- recomputeVisibleRegions = true;
-
- const State& s(getDrawingState());
- return getTransform().transform(Region(Rect(s.active.w, s.active.h)));
- }
-
- Region outDirtyRegion;
- if (mQueuedFrames <= 0 && !mAutoRefresh) {
- return outDirtyRegion;
- }
-
- // if we've already called updateTexImage() without going through
- // a composition step, we have to skip this layer at this point
- // because we cannot call updateTeximage() without a corresponding
- // compositionComplete() call.
- // we'll trigger an update in onPreComposition().
- if (mRefreshPending) {
- return outDirtyRegion;
- }
-
- // If the head buffer's acquire fence hasn't signaled yet, return and
- // try again later
- if (!headFenceHasSignaled()) {
- mFlinger->signalLayerUpdate();
- return outDirtyRegion;
- }
-
- // Capture the old state of the layer for comparisons later
- const State& s(getDrawingState());
- const bool oldOpacity = isOpaque(s);
- sp<GraphicBuffer> oldActiveBuffer = mActiveBuffer;
-
- if (!allTransactionsSignaled()) {
- mFlinger->signalLayerUpdate();
- return outDirtyRegion;
- }
-
- // This boolean is used to make sure that SurfaceFlinger's shadow copy
- // of the buffer queue isn't modified when the buffer queue is returning
- // BufferItem's that weren't actually queued. This can happen in shared
- // buffer mode.
- bool queuedBuffer = false;
- LayerRejecter r(mDrawingState, getCurrentState(), recomputeVisibleRegions,
- getProducerStickyTransform() != 0, mName.string(),
- mOverrideScalingMode, mFreezeGeometryUpdates);
- status_t updateResult = mSurfaceFlingerConsumer->updateTexImage(&r,
- mFlinger->mPrimaryDispSync, &mAutoRefresh, &queuedBuffer,
- mLastFrameNumberReceived);
- if (updateResult == BufferQueue::PRESENT_LATER) {
- // Producer doesn't want buffer to be displayed yet. Signal a
- // layer update so we check again at the next opportunity.
- mFlinger->signalLayerUpdate();
- return outDirtyRegion;
- } else if (updateResult == SurfaceFlingerConsumer::BUFFER_REJECTED) {
- // If the buffer has been rejected, remove it from the shadow queue
- // and return early
- if (queuedBuffer) {
- Mutex::Autolock lock(mQueueItemLock);
- mQueueItems.removeAt(0);
- android_atomic_dec(&mQueuedFrames);
- }
- return outDirtyRegion;
- } else if (updateResult != NO_ERROR || mUpdateTexImageFailed) {
- // This can occur if something goes wrong when trying to create the
- // EGLImage for this buffer. If this happens, the buffer has already
- // been released, so we need to clean up the queue and bug out
- // early.
- if (queuedBuffer) {
- Mutex::Autolock lock(mQueueItemLock);
- mQueueItems.clear();
- android_atomic_and(0, &mQueuedFrames);
- }
-
- // Once we have hit this state, the shadow queue may no longer
- // correctly reflect the incoming BufferQueue's contents, so even if
- // updateTexImage starts working, the only safe course of action is
- // to continue to ignore updates.
- mUpdateTexImageFailed = true;
-
- return outDirtyRegion;
- }
-
- if (queuedBuffer) {
- // Autolock scope
- auto currentFrameNumber = mSurfaceFlingerConsumer->getFrameNumber();
-
- Mutex::Autolock lock(mQueueItemLock);
-
- // Remove any stale buffers that have been dropped during
- // updateTexImage
- while (mQueueItems[0].mFrameNumber != currentFrameNumber) {
- mQueueItems.removeAt(0);
- android_atomic_dec(&mQueuedFrames);
- }
-
- mQueueItems.removeAt(0);
- }
-
-
- // Decrement the queued-frames count. Signal another event if we
- // have more frames pending.
- if ((queuedBuffer && android_atomic_dec(&mQueuedFrames) > 1)
- || mAutoRefresh) {
- mFlinger->signalLayerUpdate();
- }
-
- // update the active buffer
- mActiveBuffer = mSurfaceFlingerConsumer->getCurrentBuffer(
- &mActiveBufferSlot);
- if (mActiveBuffer == NULL) {
- // this can only happen if the very first buffer was rejected.
- return outDirtyRegion;
- }
-
- mBufferLatched = true;
- mPreviousFrameNumber = mCurrentFrameNumber;
- mCurrentFrameNumber = mSurfaceFlingerConsumer->getFrameNumber();
-
- {
- Mutex::Autolock lock(mFrameEventHistoryMutex);
- mFrameEventHistory.addLatch(mCurrentFrameNumber, latchTime);
-#ifndef USE_HWC2
- auto releaseFenceTime = std::make_shared<FenceTime>(
- mSurfaceFlingerConsumer->getPrevFinalReleaseFence());
- mReleaseTimeline.updateSignalTimes();
- mReleaseTimeline.push(releaseFenceTime);
- if (mPreviousFrameNumber != 0) {
- mFrameEventHistory.addRelease(mPreviousFrameNumber,
- latchTime, std::move(releaseFenceTime));
- }
-#endif
- }
-
- mRefreshPending = true;
- mFrameLatencyNeeded = true;
- if (oldActiveBuffer == NULL) {
- // the first time we receive a buffer, we need to trigger a
- // geometry invalidation.
- recomputeVisibleRegions = true;
- }
-
- setDataSpace(mSurfaceFlingerConsumer->getCurrentDataSpace());
-
- Rect crop(mSurfaceFlingerConsumer->getCurrentCrop());
- const uint32_t transform(mSurfaceFlingerConsumer->getCurrentTransform());
- const uint32_t scalingMode(mSurfaceFlingerConsumer->getCurrentScalingMode());
- if ((crop != mCurrentCrop) ||
- (transform != mCurrentTransform) ||
- (scalingMode != mCurrentScalingMode))
- {
- mCurrentCrop = crop;
- mCurrentTransform = transform;
- mCurrentScalingMode = scalingMode;
- recomputeVisibleRegions = true;
- }
-
- if (oldActiveBuffer != NULL) {
- uint32_t bufWidth = mActiveBuffer->getWidth();
- uint32_t bufHeight = mActiveBuffer->getHeight();
- if (bufWidth != uint32_t(oldActiveBuffer->width) ||
- bufHeight != uint32_t(oldActiveBuffer->height)) {
- recomputeVisibleRegions = true;
- }
- }
-
- mCurrentOpacity = getOpacityForFormat(mActiveBuffer->format);
- if (oldOpacity != isOpaque(s)) {
- recomputeVisibleRegions = true;
- }
-
- // Remove any sync points corresponding to the buffer which was just
- // latched
- {
- Mutex::Autolock lock(mLocalSyncPointMutex);
- auto point = mLocalSyncPoints.begin();
- while (point != mLocalSyncPoints.end()) {
- if (!(*point)->frameIsAvailable() ||
- !(*point)->transactionIsApplied()) {
- // This sync point must have been added since we started
- // latching. Don't drop it yet.
- ++point;
- continue;
- }
-
- if ((*point)->getFrameNumber() <= mCurrentFrameNumber) {
- point = mLocalSyncPoints.erase(point);
- } else {
- ++point;
- }
- }
- }
-
- // FIXME: postedRegion should be dirty & bounds
- Region dirtyRegion(Rect(s.active.w, s.active.h));
-
- // transform the dirty region to window-manager space
- outDirtyRegion = (getTransform().transform(dirtyRegion));
-
- return outDirtyRegion;
-}
-
-uint32_t Layer::getEffectiveUsage(uint32_t usage) const
-{
+uint32_t Layer::getEffectiveUsage(uint32_t usage) const {
// TODO: should we do something special if mSecure is set?
if (mProtectedByApp) {
// need a hardware-protected path to external video sink
@@ -2426,7 +1387,7 @@ void Layer::updateTransformHint(const sp<const DisplayDevice>& hw) const {
orientation = 0;
}
}
- mSurfaceFlingerConsumer->setTransformHint(orientation);
+ setTransformHint(orientation);
}
// ----------------------------------------------------------------------------
@@ -2451,21 +1412,21 @@ LayerDebugInfo Layer::getLayerDebugInfo() const {
info.mHeight = ds.active.h;
info.mCrop = ds.crop;
info.mFinalCrop = ds.finalCrop;
- info.mAlpha = ds.alpha;
+ info.mColor = ds.color;
info.mFlags = ds.flags;
info.mPixelFormat = getPixelFormat();
- info.mDataSpace = getDataSpace();
+ info.mDataSpace = static_cast<android_dataspace>(mCurrentDataSpace);
info.mMatrix[0][0] = ds.active.transform[0][0];
info.mMatrix[0][1] = ds.active.transform[0][1];
info.mMatrix[1][0] = ds.active.transform[1][0];
info.mMatrix[1][1] = ds.active.transform[1][1];
{
- sp<const GraphicBuffer> activeBuffer = getActiveBuffer();
- if (activeBuffer != 0) {
- info.mActiveBufferWidth = activeBuffer->getWidth();
- info.mActiveBufferHeight = activeBuffer->getHeight();
- info.mActiveBufferStride = activeBuffer->getStride();
- info.mActiveBufferFormat = activeBuffer->format;
+ sp<const GraphicBuffer> buffer = getBE().compositionInfo.mBuffer;
+ if (buffer != 0) {
+ info.mActiveBufferWidth = buffer->getWidth();
+ info.mActiveBufferHeight = buffer->getHeight();
+ info.mActiveBufferStride = buffer->getStride();
+ info.mActiveBufferFormat = buffer->format;
} else {
info.mActiveBufferWidth = 0;
info.mActiveBufferHeight = 0;
@@ -2480,7 +1441,6 @@ LayerDebugInfo Layer::getLayerDebugInfo() const {
return info;
}
-#ifdef USE_HWC2
void Layer::miniDumpHeader(String8& result) {
result.append("----------------------------------------");
result.append("---------------------------------------\n");
@@ -2494,7 +1454,7 @@ void Layer::miniDumpHeader(String8& result) {
}
void Layer::miniDump(String8& result, int32_t hwcId) const {
- if (mHwcLayers.count(hwcId) == 0) {
+ if (getBE().mHwcLayers.count(hwcId) == 0) {
return;
}
@@ -2512,21 +1472,21 @@ void Layer::miniDump(String8& result, int32_t hwcId) const {
result.appendFormat(" %s\n", name.string());
const Layer::State& layerState(getDrawingState());
- const HWCInfo& hwcInfo = mHwcLayers.at(hwcId);
- result.appendFormat(" %10u | ", layerState.z);
- result.appendFormat("%10s | ",
- to_string(getCompositionType(hwcId)).c_str());
+ const LayerBE::HWCInfo& hwcInfo = getBE().mHwcLayers.at(hwcId);
+ if (layerState.zOrderRelativeOf != nullptr || mDrawingParent != nullptr) {
+ result.appendFormat(" rel %6d | ", layerState.z);
+ } else {
+ result.appendFormat(" %10d | ", layerState.z);
+ }
+ result.appendFormat("%10s | ", to_string(getCompositionType(hwcId)).c_str());
const Rect& frame = hwcInfo.displayFrame;
- result.appendFormat("%4d %4d %4d %4d | ", frame.left, frame.top,
- frame.right, frame.bottom);
+ result.appendFormat("%4d %4d %4d %4d | ", frame.left, frame.top, frame.right, frame.bottom);
const FloatRect& crop = hwcInfo.sourceCrop;
- result.appendFormat("%6.1f %6.1f %6.1f %6.1f\n", crop.left, crop.top,
- crop.right, crop.bottom);
+ result.appendFormat("%6.1f %6.1f %6.1f %6.1f\n", crop.left, crop.top, crop.right, crop.bottom);
result.append("- - - - - - - - - - - - - - - - - - - - ");
result.append("- - - - - - - - - - - - - - - - - - - -\n");
}
-#endif
void Layer::dumpFrameStats(String8& result) const {
mFrameTracker.dumpStats(result);
@@ -2545,8 +1505,7 @@ void Layer::getFrameStats(FrameStats* outStats) const {
}
void Layer::dumpFrameEvents(String8& result) {
- result.appendFormat("- Layer %s (%s, %p)\n",
- getName().string(), getTypeId(), this);
+ result.appendFormat("- Layer %s (%s, %p)\n", getName().string(), getTypeId(), this);
Mutex::Autolock lock(mFrameEventHistoryMutex);
mFrameEventHistory.checkFencesForCompletion();
mFrameEventHistory.dump(result);
@@ -2555,10 +1514,16 @@ void Layer::dumpFrameEvents(String8& result) {
void Layer::onDisconnect() {
Mutex::Autolock lock(mFrameEventHistoryMutex);
mFrameEventHistory.onDisconnect();
+ mTimeStats.onDisconnect(getName().c_str());
}
void Layer::addAndGetFrameTimestamps(const NewFrameEventsEntry* newTimestamps,
- FrameEventHistoryDelta *outDelta) {
+ FrameEventHistoryDelta* outDelta) {
+ if (newTimestamps) {
+ mTimeStats.setPostTime(getName().c_str(), newTimestamps->frameNumber,
+ newTimestamps->postedTime);
+ }
+
Mutex::Autolock lock(mFrameEventHistoryMutex);
if (newTimestamps) {
// If there are any unsignaled fences in the aquire timeline at this
@@ -2576,23 +1541,6 @@ void Layer::addAndGetFrameTimestamps(const NewFrameEventsEntry* newTimestamps,
}
}
-std::vector<OccupancyTracker::Segment> Layer::getOccupancyHistory(
- bool forceFlush) {
- std::vector<OccupancyTracker::Segment> history;
- status_t result = mSurfaceFlingerConsumer->getOccupancyHistory(forceFlush,
- &history);
- if (result != NO_ERROR) {
- ALOGW("[%s] Failed to obtain occupancy history (%d)", mName.string(),
- result);
- return {};
- }
- return history;
-}
-
-bool Layer::getTransformToDisplayInverse() const {
- return mSurfaceFlingerConsumer->getTransformToDisplayInverse();
-}
-
size_t Layer::getChildrenCount() const {
size_t count = 0;
for (const sp<Layer>& child : mCurrentChildren) {
@@ -2629,7 +1577,7 @@ bool Layer::reparentChildren(const sp<IBinder>& newParentHandle) {
sp<Client> client(child->mClientRef.promote());
if (client != nullptr) {
- client->setParentLayer(newParent);
+ client->updateParent(newParent);
}
}
mCurrentChildren.clear();
@@ -2637,21 +1585,59 @@ bool Layer::reparentChildren(const sp<IBinder>& newParentHandle) {
return true;
}
-bool Layer::detachChildren() {
- traverseInZOrder(LayerVector::StateSet::Drawing, [this](Layer* child) {
- if (child == this) {
- return;
- }
+void Layer::setChildrenDrawingParent(const sp<Layer>& newParent) {
+ for (const sp<Layer>& child : mDrawingChildren) {
+ child->mDrawingParent = newParent;
+ }
+}
+
+bool Layer::reparent(const sp<IBinder>& newParentHandle) {
+ if (newParentHandle == nullptr) {
+ return false;
+ }
+ auto handle = static_cast<Handle*>(newParentHandle.get());
+ sp<Layer> newParent = handle->owner.promote();
+ if (newParent == nullptr) {
+ ALOGE("Unable to promote Layer handle");
+ return false;
+ }
+
+ sp<Layer> parent = getParent();
+ if (parent != nullptr) {
+ parent->removeChild(this);
+ }
+ newParent->addChild(this);
+
+ sp<Client> client(mClientRef.promote());
+ sp<Client> newParentClient(newParent->mClientRef.promote());
+
+ if (client != newParentClient) {
+ client->updateParent(newParent);
+ }
+
+ return true;
+}
+
+bool Layer::detachChildren() {
+ for (const sp<Layer>& child : mCurrentChildren) {
+ sp<Client> parentClient = mClientRef.promote();
sp<Client> client(child->mClientRef.promote());
- if (client != nullptr) {
- client->detachLayer(child);
+ if (client != nullptr && parentClient != client) {
+ client->detachLayer(child.get());
+ child->detachChildren();
}
- });
+ }
return true;
}
+bool Layer::isLegacyDataSpace() const {
+ // return true when no higher bits are set
+ return !(mCurrentDataSpace & (ui::Dataspace::STANDARD_MASK |
+ ui::Dataspace::TRANSFER_MASK | ui::Dataspace::RANGE_MASK));
+}
+
void Layer::setParent(const sp<Layer>& layer) {
mCurrentParent = layer;
}
@@ -2672,8 +1658,14 @@ int32_t Layer::getZ() const {
return mDrawingState.z;
}
-__attribute__((no_sanitize("unsigned-integer-overflow")))
-LayerVector Layer::makeTraversalList(LayerVector::StateSet stateSet) {
+bool Layer::usingRelativeZ(LayerVector::StateSet stateSet) {
+ const bool useDrawing = stateSet == LayerVector::StateSet::Drawing;
+ const State& state = useDrawing ? mDrawingState : mCurrentState;
+ return state.zOrderRelativeOf != nullptr;
+}
+
+__attribute__((no_sanitize("unsigned-integer-overflow"))) LayerVector Layer::makeTraversalList(
+ LayerVector::StateSet stateSet, bool* outSkipRelativeZUsers) {
LOG_ALWAYS_FATAL_IF(stateSet == LayerVector::StateSet::Invalid,
"makeTraversalList received invalid stateSet");
const bool useDrawing = stateSet == LayerVector::StateSet::Drawing;
@@ -2681,10 +1673,11 @@ LayerVector Layer::makeTraversalList(LayerVector::StateSet stateSet) {
const State& state = useDrawing ? mDrawingState : mCurrentState;
if (state.zOrderRelatives.size() == 0) {
+ *outSkipRelativeZUsers = true;
return children;
}
- LayerVector traverse;
+ LayerVector traverse(stateSet);
for (const wp<Layer>& weakRelative : state.zOrderRelatives) {
sp<Layer> strongRelative = weakRelative.promote();
if (strongRelative != nullptr) {
@@ -2693,6 +1686,10 @@ LayerVector Layer::makeTraversalList(LayerVector::StateSet stateSet) {
}
for (const sp<Layer>& child : children) {
+ const State& childState = useDrawing ? child->mDrawingState : child->mCurrentState;
+ if (childState.zOrderRelativeOf != nullptr) {
+ continue;
+ }
traverse.add(child);
}
@@ -2703,19 +1700,35 @@ LayerVector Layer::makeTraversalList(LayerVector::StateSet stateSet) {
* Negatively signed relatives are before 'this' in Z-order.
*/
void Layer::traverseInZOrder(LayerVector::StateSet stateSet, const LayerVector::Visitor& visitor) {
- LayerVector list = makeTraversalList(stateSet);
+ // In the case we have other layers who are using a relative Z to us, makeTraversalList will
+ // produce a new list for traversing, including our relatives, and not including our children
+ // who are relatives of another surface. In the case that there are no relative Z,
+ // makeTraversalList returns our children directly to avoid significant overhead.
+ // However in this case we need to take the responsibility for filtering children which
+ // are relatives of another surface here.
+ bool skipRelativeZUsers = false;
+ const LayerVector list = makeTraversalList(stateSet, &skipRelativeZUsers);
size_t i = 0;
for (; i < list.size(); i++) {
const auto& relative = list[i];
+ if (skipRelativeZUsers && relative->usingRelativeZ(stateSet)) {
+ continue;
+ }
+
if (relative->getZ() >= 0) {
break;
}
relative->traverseInZOrder(stateSet, visitor);
}
+
visitor(this);
for (; i < list.size(); i++) {
const auto& relative = list[i];
+
+ if (skipRelativeZUsers && relative->usingRelativeZ(stateSet)) {
+ continue;
+ }
relative->traverseInZOrder(stateSet, visitor);
}
}
@@ -2725,23 +1738,110 @@ void Layer::traverseInZOrder(LayerVector::StateSet stateSet, const LayerVector::
*/
void Layer::traverseInReverseZOrder(LayerVector::StateSet stateSet,
const LayerVector::Visitor& visitor) {
- LayerVector list = makeTraversalList(stateSet);
+ // See traverseInZOrder for documentation.
+ bool skipRelativeZUsers = false;
+ LayerVector list = makeTraversalList(stateSet, &skipRelativeZUsers);
int32_t i = 0;
for (i = int32_t(list.size()) - 1; i >= 0; i--) {
const auto& relative = list[i];
+
+ if (skipRelativeZUsers && relative->usingRelativeZ(stateSet)) {
+ continue;
+ }
+
if (relative->getZ() < 0) {
break;
}
relative->traverseInReverseZOrder(stateSet, visitor);
}
visitor(this);
- for (; i>=0; i--) {
+ for (; i >= 0; i--) {
const auto& relative = list[i];
+
+ if (skipRelativeZUsers && relative->usingRelativeZ(stateSet)) {
+ continue;
+ }
+
relative->traverseInReverseZOrder(stateSet, visitor);
}
}
+LayerVector Layer::makeChildrenTraversalList(LayerVector::StateSet stateSet,
+ const std::vector<Layer*>& layersInTree) {
+ LOG_ALWAYS_FATAL_IF(stateSet == LayerVector::StateSet::Invalid,
+ "makeTraversalList received invalid stateSet");
+ const bool useDrawing = stateSet == LayerVector::StateSet::Drawing;
+ const LayerVector& children = useDrawing ? mDrawingChildren : mCurrentChildren;
+ const State& state = useDrawing ? mDrawingState : mCurrentState;
+
+ LayerVector traverse(stateSet);
+ for (const wp<Layer>& weakRelative : state.zOrderRelatives) {
+ sp<Layer> strongRelative = weakRelative.promote();
+ // Only add relative layers that are also descendents of the top most parent of the tree.
+ // If a relative layer is not a descendent, then it should be ignored.
+ if (std::binary_search(layersInTree.begin(), layersInTree.end(), strongRelative.get())) {
+ traverse.add(strongRelative);
+ }
+ }
+
+ for (const sp<Layer>& child : children) {
+ const State& childState = useDrawing ? child->mDrawingState : child->mCurrentState;
+ // If a layer has a relativeOf layer, only ignore if the layer it's relative to is a
+ // descendent of the top most parent of the tree. If it's not a descendent, then just add
+ // the child here since it won't be added later as a relative.
+ if (std::binary_search(layersInTree.begin(), layersInTree.end(),
+ childState.zOrderRelativeOf.promote().get())) {
+ continue;
+ }
+ traverse.add(child);
+ }
+
+ return traverse;
+}
+
+void Layer::traverseChildrenInZOrderInner(const std::vector<Layer*>& layersInTree,
+ LayerVector::StateSet stateSet,
+ const LayerVector::Visitor& visitor) {
+ const LayerVector list = makeChildrenTraversalList(stateSet, layersInTree);
+
+ size_t i = 0;
+ for (; i < list.size(); i++) {
+ const auto& relative = list[i];
+ if (relative->getZ() >= 0) {
+ break;
+ }
+ relative->traverseChildrenInZOrderInner(layersInTree, stateSet, visitor);
+ }
+
+ visitor(this);
+ for (; i < list.size(); i++) {
+ const auto& relative = list[i];
+ relative->traverseChildrenInZOrderInner(layersInTree, stateSet, visitor);
+ }
+}
+
+std::vector<Layer*> Layer::getLayersInTree(LayerVector::StateSet stateSet) {
+ const bool useDrawing = stateSet == LayerVector::StateSet::Drawing;
+ const LayerVector& children = useDrawing ? mDrawingChildren : mCurrentChildren;
+
+ std::vector<Layer*> layersInTree = {this};
+ for (size_t i = 0; i < children.size(); i++) {
+ const auto& child = children[i];
+ std::vector<Layer*> childLayers = child->getLayersInTree(stateSet);
+ layersInTree.insert(layersInTree.end(), childLayers.cbegin(), childLayers.cend());
+ }
+
+ return layersInTree;
+}
+
+void Layer::traverseChildrenInZOrder(LayerVector::StateSet stateSet,
+ const LayerVector::Visitor& visitor) {
+ std::vector<Layer*> layersInTree = getLayersInTree(stateSet);
+ std::sort(layersInTree.begin(), layersInTree.end());
+ traverseChildrenInZOrderInner(layersInTree, stateSet, visitor);
+}
+
Transform Layer::getTransform() const {
Transform t;
const auto& p = mDrawingParent.promote();
@@ -2753,20 +1853,18 @@ Transform Layer::getTransform() const {
// for in the transform. We need to mirror this scaling in child surfaces
// or we will break the contract where WM can treat child surfaces as
// pixels in the parent surface.
- if (p->isFixedSize() && p->mActiveBuffer != nullptr) {
+ if (p->isFixedSize() && p->getBE().compositionInfo.mBuffer != nullptr) {
int bufferWidth;
int bufferHeight;
if ((p->mCurrentTransform & NATIVE_WINDOW_TRANSFORM_ROT_90) == 0) {
- bufferWidth = p->mActiveBuffer->getWidth();
- bufferHeight = p->mActiveBuffer->getHeight();
+ bufferWidth = p->getBE().compositionInfo.mBuffer->getWidth();
+ bufferHeight = p->getBE().compositionInfo.mBuffer->getHeight();
} else {
- bufferHeight = p->mActiveBuffer->getWidth();
- bufferWidth = p->mActiveBuffer->getHeight();
+ bufferHeight = p->getBE().compositionInfo.mBuffer->getWidth();
+ bufferWidth = p->getBE().compositionInfo.mBuffer->getHeight();
}
- float sx = p->getDrawingState().active.w /
- static_cast<float>(bufferWidth);
- float sy = p->getDrawingState().active.h /
- static_cast<float>(bufferHeight);
+ float sx = p->getDrawingState().active.w / static_cast<float>(bufferWidth);
+ float sy = p->getDrawingState().active.h / static_cast<float>(bufferHeight);
Transform extraParentScaling;
extraParentScaling.set(sx, 0, 0, sy);
t = t * extraParentScaling;
@@ -2775,23 +1873,17 @@ Transform Layer::getTransform() const {
return t * getDrawingState().active.transform;
}
-#ifdef USE_HWC2
-float Layer::getAlpha() const {
+half Layer::getAlpha() const {
const auto& p = mDrawingParent.promote();
- float parentAlpha = (p != nullptr) ? p->getAlpha() : 1.0;
- return parentAlpha * getDrawingState().alpha;
+ half parentAlpha = (p != nullptr) ? p->getAlpha() : 1.0_hf;
+ return parentAlpha * getDrawingState().color.a;
}
-#else
-uint8_t Layer::getAlpha() const {
- const auto& p = mDrawingParent.promote();
- float parentAlpha = (p != nullptr) ? (p->getAlpha() / 255.0f) : 1.0;
- float drawingAlpha = getDrawingState().alpha / 255.0f;
- drawingAlpha = drawingAlpha * parentAlpha;
- return static_cast<uint8_t>(std::round(drawingAlpha * 255));
+half4 Layer::getColor() const {
+ const half4 color(getDrawingState().color);
+ return half4(color.r, color.g, color.b, getAlpha());
}
-#endif
void Layer::commitChildList() {
for (size_t i = 0; i < mCurrentChildren.size(); i++) {
@@ -2802,6 +1894,113 @@ void Layer::commitChildList() {
mDrawingParent = mCurrentParent;
}
+void Layer::writeToProto(LayerProto* layerInfo, LayerVector::StateSet stateSet) {
+ const bool useDrawing = stateSet == LayerVector::StateSet::Drawing;
+ const LayerVector& children = useDrawing ? mDrawingChildren : mCurrentChildren;
+ const State& state = useDrawing ? mDrawingState : mCurrentState;
+
+ Transform requestedTransform = state.active.transform;
+ Transform transform = getTransform();
+
+ layerInfo->set_id(sequence);
+ layerInfo->set_name(getName().c_str());
+ layerInfo->set_type(String8(getTypeId()));
+
+ for (const auto& child : children) {
+ layerInfo->add_children(child->sequence);
+ }
+
+ for (const wp<Layer>& weakRelative : state.zOrderRelatives) {
+ sp<Layer> strongRelative = weakRelative.promote();
+ if (strongRelative != nullptr) {
+ layerInfo->add_relatives(strongRelative->sequence);
+ }
+ }
+
+ LayerProtoHelper::writeToProto(state.activeTransparentRegion,
+ layerInfo->mutable_transparent_region());
+ LayerProtoHelper::writeToProto(visibleRegion, layerInfo->mutable_visible_region());
+ LayerProtoHelper::writeToProto(surfaceDamageRegion, layerInfo->mutable_damage_region());
+
+ layerInfo->set_layer_stack(getLayerStack());
+ layerInfo->set_z(state.z);
+
+ PositionProto* position = layerInfo->mutable_position();
+ position->set_x(transform.tx());
+ position->set_y(transform.ty());
+
+ PositionProto* requestedPosition = layerInfo->mutable_requested_position();
+ requestedPosition->set_x(requestedTransform.tx());
+ requestedPosition->set_y(requestedTransform.ty());
+
+ SizeProto* size = layerInfo->mutable_size();
+ size->set_w(state.active.w);
+ size->set_h(state.active.h);
+
+ LayerProtoHelper::writeToProto(state.crop, layerInfo->mutable_crop());
+ LayerProtoHelper::writeToProto(state.finalCrop, layerInfo->mutable_final_crop());
+
+ layerInfo->set_is_opaque(isOpaque(state));
+ layerInfo->set_invalidate(contentDirty);
+
+ // XXX (b/79210409) mCurrentDataSpace is not protected
+ layerInfo->set_dataspace(dataspaceDetails(static_cast<android_dataspace>(mCurrentDataSpace)));
+
+ layerInfo->set_pixel_format(decodePixelFormat(getPixelFormat()));
+ LayerProtoHelper::writeToProto(getColor(), layerInfo->mutable_color());
+ LayerProtoHelper::writeToProto(state.color, layerInfo->mutable_requested_color());
+ layerInfo->set_flags(state.flags);
+
+ LayerProtoHelper::writeToProto(transform, layerInfo->mutable_transform());
+ LayerProtoHelper::writeToProto(requestedTransform, layerInfo->mutable_requested_transform());
+
+ auto parent = useDrawing ? mDrawingParent.promote() : mCurrentParent.promote();
+ if (parent != nullptr) {
+ layerInfo->set_parent(parent->sequence);
+ }
+
+ auto zOrderRelativeOf = state.zOrderRelativeOf.promote();
+ if (zOrderRelativeOf != nullptr) {
+ layerInfo->set_z_order_relative_of(zOrderRelativeOf->sequence);
+ }
+
+ // XXX getBE().compositionInfo.mBuffer is not protected
+ auto buffer = getBE().compositionInfo.mBuffer;
+ if (buffer != nullptr) {
+ LayerProtoHelper::writeToProto(buffer, layerInfo->mutable_active_buffer());
+ }
+
+ layerInfo->set_queued_frames(getQueuedFrameCount());
+ layerInfo->set_refresh_pending(isBufferLatched());
+ layerInfo->set_window_type(state.type);
+ layerInfo->set_app_id(state.appId);
+}
+
+void Layer::writeToProto(LayerProto* layerInfo, int32_t hwcId) {
+ writeToProto(layerInfo, LayerVector::StateSet::Drawing);
+
+ const auto& hwcInfo = getBE().mHwcLayers.at(hwcId);
+
+ const Rect& frame = hwcInfo.displayFrame;
+ LayerProtoHelper::writeToProto(frame, layerInfo->mutable_hwc_frame());
+
+ const FloatRect& crop = hwcInfo.sourceCrop;
+ LayerProtoHelper::writeToProto(crop, layerInfo->mutable_hwc_crop());
+
+ const int32_t transform = static_cast<int32_t>(hwcInfo.transform);
+ layerInfo->set_hwc_transform(transform);
+
+ const int32_t compositionType = static_cast<int32_t>(hwcInfo.compositionType);
+ layerInfo->set_hwc_composition_type(compositionType);
+
+ if (std::strcmp(getTypeId(), "BufferLayer") == 0 &&
+ static_cast<BufferLayer*>(this)->isProtected()) {
+ layerInfo->set_is_protected(true);
+ } else {
+ layerInfo->set_is_protected(false);
+ }
+}
+
// ---------------------------------------------------------------------------
}; // namespace android